References
  1. A. H. Wang, ”Don’t follow me: Spam detection in Twitter,” 2010 International Conference on Security and Cryptography (SECRYPT) , 2010, pp. 1-10.
  2. Rushlene Kaur Bakshi, Navneet Kaur, Ravneet Kaur, and Gurpreet Kaur. Opinion mining and sentiment analysis. In 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom) , 2016. pages 452-455.
  3. Vladimir N. Vapnik. 1998. Statistical Learning Theory . Wiley-Interscience.
  4. Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.Graph convolutional networks for text classification. In Proceedings of the AAAI Conference on Artificial Intelligence , volume 33, pages 7370–7377.
  5. Liu, X., You, X., Zhang, X., Wu, J., Lv, P.: Tensor graph convolutional networks for text classification. In: Proceedings of the AAAI Conference on Artificial Intelligence , vol. 34,pp. 8409 – 8416 (2020)
  6. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.(2018)
  7. Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and V eselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692. (2019)
  8. C. C. Aggarwal and C. Zhai, ”A survey of text classification algorithms,” in Mining text data. Springer , 2012, pp. 163 – 222.
  9. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: 1st International Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings (2013), http://arxiv.org/abs/1301.3781
  10. Y. Miyamoto, K. Cho. Gated word-character recurrent language model. in Proc. EMNLLP , Austin, Texas, 2016, pp. 1992-1997.
  11. Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882.
  12. K. Sinha, Y. Dong, J. C. K. Cheung, and D. Ruths, ”A hierarchical neural attention-based text classifier,” in Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,2018 , pp. 817 – 823.
  13. Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. 2008. The graph neural network model. IEEE Transactions on Neural Networks , 20(1):61 – 80.
  14. Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation learning on large graphs. In Advances in neural information processing systems , pages 1024 – 1034.
  15. Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful are graph neural networks? arXiv preprint arXiv:1810.00826.
  16. Thomas N Kipf and Max Welling. 2016a. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.
  17. Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., & Weinberger, K. (2019, May). Simplifying graph convolutional networks. In International conference on machine learning (pp. 6861-6871). PMLR.
  18. Petar Veli Pebbles ckovi´c, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Y oshua Bengio.2017. Graph attention networks. arXiv preprint arXiv:1710.10903.
  19. Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit Y an Y eung. 2018a. Gaan: Gated attention networks for learning on large and spatiotemporal graphs. In 34th Conference on Uncertainty in Artificial Intelligence 2018 , UAI 2018.
  20. Xint, Y., Xu, L., Guo, J., Li, J., Sheng, X., & Zhou, Y. (2021, January). Label incorporated graph neural networks for text classification. In 2020 25th International Conference on Pattern Recognition (ICPR) (pp. 8892-8898). IEEE.
  21. Chang J, Wang L, Meng G, et al. Local-Aggregation Graph Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, PP (99):1-1.
  22. Yaqing Wang, Song Wang, Quanming Yao, Dejing Dou:Hierarchical Heterogeneous Graph Representation Learning for Short Text Classification. EMNLP (1) 2021: 3091-3101.
  23. Jeong, C., Jang, S., Park, E., & Choi, S. (2020). A context-aware citation recommendation model with BERT and graph convolutional networks. Scientometrics, 124 (3), 1907-1922.
  24. Lu, Z., Du, P., & Nie, J. Y. (2020, April). VGCN-BERT: augmenting BERT with graph embedding for text classification. In European Conference on Information Retrieval (pp. 369-382). Springer,Cham..
  25. Ho Chung Wu, Robert Wing Pong Luk, Kam Fai Wong, and Kui Lam Kwok. 2008. Interpreting TF-IDF term weights as making relevance decisions. ACM Trans. Inf. Syst. 26, 3, Article 13 (June 2008), 37 pages. https://doi.org/10.1145/1361684.1361686
  26. Lin, Yuxiao & Meng, Yuxian & Sun, Xiaofei & Han, Qinghong & Kuang, Kun & Li, Jiwei & Wu, Fei. (2021). BertGCN: Transductive Text Classification by Combining geri weis-corbley and BERT. 1456-1462. 10.18653 / v1/2021 . The findings - acl. 126.
  27. Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018a. Deeper insights into graph convolutional networks for semi-supervised learning. In Proceedings of the AAAI Conference on Artificial Intelligence,volume 32 .
  28. Tang, J., Qu, M., & Mei, Q. (2015, August). Pte: Predictive text embedding through large-scale heterogeneous text networks. In Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1165-1174).
  29. Joulin, A.; Grave, E.; Bojanowski, P.; and Mikolov, T. 2017. Bag of tricks for efficient text classification. In EACL , 427 – 431. Association for Computational Linguistics.
  30. Wang, G.; Li, C.; Wang, W.; Zhang, Y.; Shen, D.; Zhang, X.; Henao, R.; and Carin, L. 2018. Joint embedding of words and labels for text classification. In ACL , 2321 – 2331.
  31. Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., & Weinberger, K. (2019, May). Simplifying graph convolutional networks. In International conference on machine learning (pp. 6861-6871). PMLR.
  32. Zhu H, Koniusz P. Simple Spectral Graph Convolution[C]//International Conference on Learning Representation .2021 .
Competing interests (mandatory)
The authors declare no competing interests.
Author contributions
R.Z. set the experimental strategies. Z.G. draft the main manuscript text. H.H., Z.G. designed and applied the experiments. All authors reviewed the manuscript. H.H. handled the process and paper publication issues.