REFERENCES
Alam MR, Mahmood H, Khushi MLR, Rahman MM. 2018. Adaptive phenotypic plasticity of Avicennia officinalis L. across the salinity gradient in the Sundarbans of Bangladesh. Hydrobiologia 808(1): 163–174. https://doi.org/10.1007/s10750-017-3420-z
Albert CH, Thuiller W, Yoccoz NG, Soudant A, Boucher F, Saccone P, Lavorel S. 2010. Intraspecific functional variability: extent, structure and sources of variation. Journal of Ecology 98(3): 604–613. https://doi.org/10.1111/j.1365-2745.2010.01651.x
Arifanti VB, Kauffman JB, Ilman M, Tosiani A, Novita N. 2022. Contributions of mangrove conservation and restoration to climate change mitigation in Indonesia. Global Change Biology 28(15): 4523–4538. https://doi.org/10.1111/10.1111/gcb.16216
Baldwin A, Egnotovich M, Ford M, Platt W. 2001. Regeneration in fringe mangrove forests damaged by Hurricane Andrew. Plant Ecology157(2): 151–164. https://doi.org/10.1023/A:1013941304875
Bartoń K. 2022. MuMIn: Multi-Model Inference. R package version 1.46.0 [online]. Available from https://CRAN.R-project.org/package=MuMIn [accessed 20 August 2022].
Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M, Rudolf VHW, Schreiber SJ, Urban MC, Vasseur DA. 2011. Why intraspecific trait variation matters in community ecology. Trends in Ecology and Evolution26(4): 183–192. https://doi.org/10.1016/j.tree.2011.01.009
Bradshaw AD. 1991. Genostasis and the limits to evolution.Philosophical Transactions of The Royal Society B-Biological Sciences 333(1267): 289–305. https://doi.org/10.1098/rstb.1991.0079
Cardou F, Munson AD, Boisvert-Marsh L, Anand M, Arsenault A, Bell FW, Bergeron Y, Boulangeat I, Delagrange S, Fenton NJ, Gravel D, Hamel B, Hébert F, Johnstone JF, Kumordzi BB, Macdonald SE, Mallik A, McIntosh ACS, McLaren JR, Messier C, Morris D, Shipley B, Sirois L, Thiffault N, Aubin I. 2022. Above- and belowground drivers of intraspecific trait variability across subcontinental gradients for five ubiquitous forest plants in North America. Journal of Ecology 110: 1590–1605. https://doi.org/10.1111/1365-2745.13894
Chave J, Rejou-Mechain M, Burquez A, Chidumayo E, Colgan MS, Delitti WB, Duque A, Eid T, Fearnside PM, Goodman RC, Henry M, Martínez-Yrízar A, Mugasha WA, Muller-Landau HC, Mencuccini M, Nelson BW, Ngomanda A, Nogueira EM, Ortiz-Malavassi E, Pélissier R, Ploton P, Ryan CM, Saldarriaga JG, Vieilledent G. 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology 20(10): 3177–3190. https://doi.org/10.1111/gcb.12629
Chen YP, Ye Y. 2014. Early responses of Avicennia marina (Forsk.) Vierh. to intertidal elevation and light level. Aquatic Botany112: 33–40. https://doi.org/10.1016/j.aquabot.2013.07.006
Clarke PJ, Kerrigan RA, Westphal CJ. 2001. Dispersal potential and early growth in 14 tropical mangroves: do early life history traits correlate with patterns of adult distribution? Journal of Ecology 89(4): 648–659. https://doi.org/10.1046/j.0022-0477.2001.00584.x
Cochrane A, Yates CJ, Hoyle GL, Nicotra AB. 2015. Will among-population variation in seed traits improve the chance of species persistence under climate change? Global Ecology and Biogeography 24(1): 12–24. https://doi.org/10.1111/geb.12234
Cope OL, Burkle LA, Croy JR, Mooney KA, Yang LH, Wetzel WC. 2022. The role of timing in intraspecific trait ecology. Trends in Ecology and Evolution 37(11): 997–1005. https://doi.org/ 10.1016/j.tree.2022.07.003
De Ryck DJR, Robert EMR, Schmitz N, Van der Stocken T, Di Nitto D, Dahdouh-Guebas F, Koedam N. 2012. Size does matter, but not only size: Two alternative dispersal strategies for viviparous mangrove propagules.Aquatic Botany 103: 66–73. https://doi.org/10.1016/j.aquabot.2012.06.005
Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M. 2011. Mangroves among the most carbon-rich forests in the tropics.Nature Geoscience 4(5): 293–297. https://doi.org/10.1038/Ngeo1123
Duke NC, Ball MC, Ellison JC. 1998. Factors influencing biodiversity and distributional gradients in mangroves. Global Ecology and Biogeography 7(1): 27–47. https://doi.org/ 10.2307/2997695
Duke NC, Meynecke JO, Dittmann S, Ellison AM, Anger K, Berger U, Cannicci S, Diele K, Ewel KC, Field CD, Koedam N, Lee SY, Marchand C, Nordhaus I, Dahdouh-Guebas F. 2007. A world without mangroves?Science 317(5834): 41–42. https://doi.org/10.1126/science.317.5834.41b
Feller IC, Lovelock CE, Berger U, McKee KL, Joye SB, Ball MC. 2010. Biocomplexity in Mangrove Ecosystems. Annual Review of Marine Science 2: 395–417. https://doi.org/10.1146/annurev.marine.010908.163809
Fox J, Monette G. 2019. An {R} Companion to Applied Regression, Third Edition. Thousand Oaks CA: Sage [online]. Available from https://socialsciences.mcmaster.ca/jfox/Books/Companion/ [accessed 20 August 2022].
Friess DA, Rogers K, Lovelock CE, Krauss KW, Hamilton SE, Lee SY, Lucas R, Primavera J, Rajkaran A, Shi S. 2019. The state of the world’s mangrove forests: past, present, and future. Annual Review of Environment and Resources 44(1): 89–115. https://doi.org/10.1146/annurev-environ-101718-033302
Galloway LF. 2005. Maternal effects provide phenotypic adaptation to local environmental conditions. New Phytologist 166(1): 93–99. https://doi.org/10.1111/j.1469-8137.2004.01314.x
Geng QF, Lian CL, Goto S, Tao JM, Kimura M, Islam MDS, Hogetsu T. 2008. Mating system, pollen and propagule dispersal, and spatial genetic structure in a high-density population of the mangrove treeKandelia candel . Molecular Ecology 17(21): 4724–4739. https://doi.org/10.1111/j.1365-294X.2008.03948.x
Giri C, Long J, Abbas S, Murali RM, Qamer FM, Pengra B, Thau D. 2015. Distribution and dynamics of mangrove forests of South Asia.Journal of Environmental Management 148: 101–111. https://doi.org/10.1016/j.jenvman.2014.01.020
Grubb PJ. 1977. Maintenance of species-richness in plant communities: the importance of the regeneration niche. Biological Reviews of the Cambridge Philosophical Society 52: 107–145.
Hangelbroek HH, Santamaria L. 2004. Regulation of propagule size in the aquatic pseudo-annual Potamogeton pectinatus : are genetic and maternal non-genetic effects additive? Evolutionary Ecology Research 6(1): 147–161.
Hijmans RJ., Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas.International Journal of Climatology 25(15): 1965–1978. https://doi.org/10.1002/joc.1276
Hodel RGJ, Knowles LL, McDaniel SF, Payton AC, Dunaway JF, Soltis PS, Soltis DE. 2018. Terrestrial species adapted to sea dispersal: Differences in propagule dispersal of two Caribbean mangroves.Molecular Ecology 27(22): 4612–4626. https://doi.org/10.1111/mec.14894
Holt RD, Gomulkiewicz R. 2004. Conservation implication of niche conservatism and evolution in heterogeneous environments . In:Evolutionary Conservation Biology . UK: Cambridge University Press. 13: 244–264.
Jiang X. 2014. Xylem hydraulic structure and function in mangroves . Ph.D. Dissertation. Guangxi: Guangxi University.
Joshi AC. 1933. A suggested explanation of the prevalence of vivipary on the sea-shore. Journal of Ecology 21(1): 209–212.
Kamruzzaman M, Minhaj-Uj-Siraj M, Ahmed S, Osawa A. 2017. Regeneration status of mangrove species under mature stands in the oligohaline zone of the Sundarbans, Bangladesh. Regional Studies in Marine Science16: 15–20. https://doi.org/10.1016/j.rsma.2017.07.007
Kendall BE, Fox GA. 2003. Unstructured individual variation and demographic stochasticity. Conservation biology 17(4): 1170–1172. https://doi.org/10.1046/j.1523-1739.2003.02411.x
Krauss KW, Lovelock CE, Mckee KL, Lopez-Hoffman L, Ewe SML, Sousa WP. 2008. Environmental drivers in mangrove establishment and early development: A review. Aquatic Botany 89(2): 105–127. https://doi.org/10.1016/j.aquabot.2007.12.014
Kumordzi BB, Aubin I, Cardou F, Shipley B, Violle C, Johnstone J, Anand M, Arsenault A, Bell FW, Bergeron Y, Boulangeat I, Brousseau M, Grandpré LD, Delagrange S, Fenton NJ, Gravel D, Macdonald SE, Hamel B, Higelin M, Hébert F, Isabel N, Mallik A, McIntosh ACS, McLaren JR, Messier C, Morris D, Thiffault N, Tremblay JP, Munson AD. 2019. Geographic scale and disturbance influence intraspecific trait variability in leaves and roots of North American understorey plants. Functional Ecology33(9): 1771–1784. https://doi.org/10.1111/1365-2435.13402
Martin AR, Rapidel B, Roupsard O, Van den Meersche, K., de Melo Virginio Filho, E., Barrios, M., Isaac, M.E., 2017. Intraspecific trait variation across multiple scales: the leaf economics spectrum in coffee.Functional Ecology 31(3): 604–612. https://doi.org/10.1111/1365-2435.12790
Mckee KL. 1995. Mangrove species distribution and propagule predation in Belize: an exception to the dominance-predation hypothesis.Biotropica 27(3): 334—345.
Moles AT, Westoby M. 2004. Seedling survival and seed size: a synthesis of the literature. Journal of Ecology 92(3): 372–383. https://doi.org/10.1111/j.0022-0477.2004.00884.x
Moran EV, Hartig F, Bell DM. 2016. Intraspecific trait variation across scales: implications for understanding global change responses.Global Change Biology 22(1): 137–150. https://doi.org/10.1111/gcb.13000
Mounger J, Boquete MT, Schmid MW, Granado R, Robertson MH, Voors SA, Langanke KL, Alvarez M, Wagemaker CAM, Schrey AW, Fox GA, Lewis DB, Lira CF, Richards CL. 2021. Inheritance of DNA methylation differences in the mangrove Rhizophora mangle . Evolution and Development23(4): 351–374. https://doi.org/10.1111/ede.12388
Nettel A, Dodd RS. 2007. Drifting propagules and receding swamps: genetic footprints of mangrove recolonization and dispersal along tropical coasts. Evolution 61(4): 958–971. https://doi.org/10.1111/j.1558-5646.2007.00070.x
Ouyang S, Xiang WH, Wang XP, Xiao WF, Chen L, Li SG, Sun H, Deng XW, Forrester DI, Zeng LX, Lei PF, Lei XD, Gou MM, Peng CH. 2019. Effects of stand age, richness and density on productivity in subtropical forests in China. Journal of Ecology 107(5): 2266–2277. https://doi.org/10.1111/1365-2745.13194
Paradis E, Claude J, Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20(2): 289–290. https://doi.org/10.1093/bioinformatics/btg412
Parida AK, Jha B. 2010. Salt tolerance mechanisms in mangroves: a review. Trees-Structure and Function 24(2): 199–217. https://doi.org/10.1007/s00468-010-0417-x
Parida AK, Das AB, Sanada Y, Mohanty P. 2004. Effects of salinity on biochemical components of the mangrove, Aegiceras corniculatum .Aquatic Ecology 80(2): 77–87. https://doi.org/10.1016/j.aquabot.2004.07.005
Peterson JM, Bell SS. 2012. Tidal events and salt-marsh structure influence black mangrove (Avicennia germinans ) recruitment across an ecotone. Ecology 93(7): 1648–1658. https://doi.org/10.1890/11-1430.1
Pinheiro J, Bates D, R Core Team. 2022. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–158 [online]. Available from https://CRAN.R-project.org/package=nlme [accessed 20 August 2022].
Proffitt CE, Travis S. 2014. Red mangrove life history variables along latitudinal and anthropogenic stress gradients. Ecology and Evolution 4(12): 2352–2359. https://doi.org/10.1002/ece3.1095
R Core Team, 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from https://www.R-project.org/ [accessed 20 August 2022].
Rabinowitz D. 1978. Dispersal properties of mangrove propagules.Biotropica 10(1), 47–57. https://doi.org/10.2307/2388105
Richards CL, Langanke KL, Mounger J, Fox GA, Lewis DB. 2021. Trait Response to Nitrogen and Salinity inRhizophora mangle Propagules and Variation by Maternal Family and Population of Origin. Frontiers in Marine Science 8. https://doi.org/10.3389/fmars.2021.756683
Richards CL, Pennings SC, Donovan LA. 2005. Habitat range and phenotypic variation in salt marsh plants. Plant Ecology 176(2): 263–273. https://doi.org/ 10.1007/s11258-004-0841-3
Rosseel Y. 2012. lavaan: An R Package for Structural Equation Modeling.Journal of Statistical Software 48(2): 1–36. https://doi.org/10.18637/jss.v048.i02
Ruan Y, Huang BH, Lai SJ, Wan YT, Li JQ, Huang S, Liao PC. 2013. Population genetic structure, local adaptation, and conservation genetics of Kandelia obovata . Tree Genetics and Genomes9(4): 913–925. https://doi.org/10.1007/s11295-013-0605-0
Saatkamp A, Cochrane A, Commander L, Guja LK, Jimenez-Alfaro B, Larson J, Nicotra A, Poschlod P, Silveira FAO, Cross AT, Dalziell EL, Dickie J, Erickson TE, Fidelis A, Fuchs A, Golos PJ, Hope M, Lewandrowski W, Merritt DJ, Miller BP, Miller RG, Offord CA, Ooi MKJ, Satyanti A, Sommerville KD, Tangney R, Tomlinson S, Turner S, Walck JL. 2019. A research agenda for seed-trait functional ecology. New Phytologist 221(4): 1764–1775. https://doi.org/10.1111/nph.15502
Saenger P, West PW. 2018. Phenotypic variation of the mangrove speciesAvicennia marina (Forssk.) Vierh. from seven provenances around Australia. Aquatic Ecology 149: 28–32. https://doi.org/10.1016/j.aquabot.2018.05.004
Sheue CR, Liu HY, Yong JWH. 2003. Kandelia obovata(Rhizophoraceae), a new mangrove species from Eastern Asia. Taxon52(2): 287–294. https://doi.org/10.2307/3647398
Sousa WP, Kennedy PG, Mitchell BJ, Ordóñez L BM. 2007. Supply‐side ecology in mangroves: do propagule dispersal and seedling establishment explain forest structure? Ecological Monographs 77(1): 53–76. https://doi.org/10.1890/05-1935
Stump SM, Comita LS. 2020. Differences among species in seed dispersal and conspecific neighbor effects can interact to influence coexistence.Theoretical Ecology 13(4): 551–581. https://doi.org/10.1007/s12080-020-00468-5
Tomlinson P. 2016. The Botany of Mangroves (2nd ed.). Cambridge: Cambridge University Press. doi:10.1017/CBO9781139946575
Van der Stocken T, De Ryck DJR, Vanschoenwinkel B, Deboelpaep E, Bouma TJ, Dahdouh-Guebas F, Koedam N. 2015. Impact of landscape structure on propagule dispersal in mangrove forests. Marine Ecology Progress Series 524: 95–106. https://doi.org/10.3354/meps11206
Van der Stocken T, Wee AKS, De Ryck DJR, Vanschoenwinkel B, Friess DA, Dahdouh-Guebas F, Simard M, Koedam N, Webb EL. 2019. A general framework for propagule dispersal in mangroves. Biological Reviews 94(4): 1547–1575. https://doi.org/10.1111/brv.12514
Violle C, Enquist BJ, McGill BJ, Jiang L, Albert CH, Hulshof C, Jung V, Messier J. 2012. The return of the variance: intraspecific variability in community ecology. Trends in ecology and evolution 27(4): 244–252. https://doi.org/10.1016/j.tree.2011.11.014
Wang WQ, You SY, Wang YB, Huang L, Wang M. 2011. Influence of frost on nutrient resorption during leaf senescence in a mangrove at its latitudinal limit of distribution. Plant and Soil 342(1–2): 105–115. https://doi.org/10.1007/s11104-010-0672-z
Wu LW, Zhang Y, Guo X, Ning DL, Zhou XS, Feng JJ, Yuan MM, Liu S, Guo JJ, Gao, ZP, Ma J, Kuang JL, Jian SY, Han S, Yang ZF, Ouyang Y, Fu Y, Xiao NJ, Liu XD, Wu LY, Zhou AF, Yang YF, Tiedje JM, Zhou JZ. 2022. Reduction of microbial diversity in grassland soil is driven by long-term climate warming. Nature Microbiology 7: 1054–1062. https://doi.org/10.1038/s41564-022-01147-3
Wu YT, Ricklefs RE, Huang ZJ, Zan QJ, Yu SX. 2018. Winter temperature structures mangrove species distributions and assemblage composition in China. Global Ecology and Biogeography 27(12): 1492–1506. https://doi.org/10.1111/geb.12826
Yang S, Liu X, Deng RJ, Chen QX, Wang JW, Lu X. 2020. Geographic variations of hypocotyl and seedling growth traits for Kandelia obovata with different provenances. Chinese Journal of Ecology39(6): 1769–1777. https://doi.org/10. 13292 /j. 1000–4890. 202006. 003
Zhang Y, Xin K, Sheng N, Xie ZL, Liao BW. 2021. The regenerative capacity of eight mangrove species based on propagule traits in Dongzhai Harbor, Hainan Province, China. Global Ecology and Conservation30: e01788. https://doi.org/ 10.1016/j.gecco.2021.e01788
Zhu H, Lin HJ, Yang L, Li HP, Yue CL, Jiang B. 2021. Geographical distribution pattern and environmental explanation of Kandelia obovata Sheue, H. Y. Liu & J. Yong populations along the Southeast coast of China. Plant Science Journal 39(5): 476–487. https://doi.org/10.11913/PSJ. 2095-0837. 2021. 50476