References
1. Arnold, M., Morgan, E., Rumgay, H., Mafra, A., Singh, D., Laversanne, M., Vignat, J., Gralow, J.R., Cardoso, F., Siesling, S. & Soerjomataram, I. (2022). Current and future burden of breast cancer: Global statistics for 2020 and 2040. The Breast , 66,15–23.
2. Azamjah, N., Soltan-Zadeh, Y. & Zayeri, F. (2019). Global trend of breast cancer mortality rate: A 25-year study. Asian Pacific Journal of Cancer Prevention , 20(7), 2015–2020.
3. Global Cancer Observatory. International Agency for Research on Cancer. World Health Organization. Data source: 2020. https://gco.iarc.fr/
4. Corben, A.D. (2013). Pathology of invasive breast disease.Surgical Clinics of North America , 93(2), 363–392.
5. Waks, A.G. & Winer, E.P. (2019). Breast cancer treatment: A review.Journal of the American Medical Association , 321(3), 288–300.
6. Pearce, A., Haas, M., Viney, R., Pearson, S.A., Haywood, P., Brown, C. & Ward, R. (2017). Incidence and severity of self-reported chemotherapy side effects in routine care: A prospective cohort study.PLoS One , 12(10), e0184360.
7. Altun, İ. & Sonkaya, A. (2018). The most common side effects experienced by patients were receiving first cycle of chemotherapy.Iranian Journal of Public Health , 47(8), 1218–1219.
8. Chauhan, K., Sengar, P., Juarez-Moreno K., Hirata, G.A. & Vazquez-Duhalt, R. (2020). Camouflaged, activatable and therapeutic tandem bionanoreactors for breast cancer theranosis. Journal of Colloid and Interface Science , 580, 365–376.
9. Fu, X., Shi, Y., Qi, T., Qiu, S., Huang, Y., Zhao, X., Sun, Q. & Lin, G. (2020). Precise design strategies of nanomedicine for improving cancer therapeutic efficacy using subcellular targeting. Signal Transduction and Targeted Therapy , 5, 262.
10. Tagde, P., Najda, A., Nagpal, K., Kulkarni, G. T., Shah, M., Ullah, O., Balant, S. & Rahman, M. H. (2022). Nanomedicine-based delivery strategies for breast cancer treatment and management.International Journal of Molecular Sciences , 23(5), 2856.
11. Wong, C.M., Wong, K.H. & Chen, X.D. (2008). Glucose oxidase: natural occurrence, function, properties and industrial applications.Applied Microbiology and Biotechnology , 78, 927–938.
12. Mano, N. (2019). Engineering glucose oxidase for bioelectrochemical applications. Bioelectrochemistry , 128, 218–240.
13. Fu, L. H., Qi, C., Lin, J. & Huang, P. (2018). Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment. Chemical Society Reviews , 47(17), 6454–6472.
14. Dinda, S., Sarkar, S. & Das, P. K. (2018). Glucose oxidase mediated targeted cancer-starving therapy by biotinylated self-assembled vesicles. Chemical Communications , 54, 9929–9932.
15. Feng, L., Xie, R., Wang, C., Gai, S., He, F., Yang, D., Yang, P. & Lin, J. (2018). Magnetic targeting, tumor microenvironment-responsive intelligent nanocatalysts for enhanced tumor ablation. ACS Nano , 12 (11), 11000–11012.
16. Chang, K., Liu, Z., Fang, X., Chen, H., Men, X., Yuan, Y., Sun, K., Zhang, X., Yuan, Z., & Wu, C. (2017). Enhanced phototherapy by nanoparticle-enzyme via generation and photolysis of hydrogen peroxide.Nano Letters 17 (7), 4323–4329.
17. Fu, L.-H., Qi, C., Hu, Y.-R., Lin, J. & Huang, P. (2019). Glucose oxidase-instructed multimodal synergistic cancer therapy. Advanced Materials , 31, 1808325.
18. Brigger, I., Dubernet, C. & Couvreur, P. (2012) Nanoparticles in cancer therapy and diagnosis. Advanced Drug Delivery Reviews , 64, Suppl. 24–36
19. Ding, X., Liu, D., Booth, G., Gao, W. & Lu, Y. (2018). Virus-like particle engineering: from rational design to versatile applications.Biotechnology Journal , 13(5), e1700324.
20. Koellhoffer, E.C. & Steinmetz, N.F. (2022). Cowpea mosaic virus and natural killer cell agonism for in situ cancer vaccination.Nano Letters , 22(13), 5348–5356.
21. Nkanga, C.I. & Steinmetz, N.F. (2021). The pharmacology of plant virus nanoparticles. Virology , 556, 39–61.
22. González-Davis, O., Villagrana-Escareño, M.V., Trujillo, M.A., Gama, P., Chauhan, K. & Vazquez-Duhalt, R. (2023). Virus-like nanoparticles as enzyme carriers for Enzyme Replacement Therapy (ERT).Virology , 580, 73–87.
23. Mejía-Méndez, J. L., Vazquez-Duhalt, R., Hernández, L. R., Sánchez-Arreola, E. & Bach, H. (2022). Virus-like particles: fundamentals and biomedical applications. International Journal of Molecular Sciences, 23(15), 8579.
24. Nooraei, S., Bahrulolum, H., Hoseini1, Z.S., Katalani, C., Hajizade, A., Easton, A.J. & Ahmadian, G. (2021). Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. Journal of Nanobiotechnology , 9, 59.
25. Yu, X., Weng, Z., Zhao, Z., Xu, J., Qi, Z. & Liu, J. (2022). Assembly of protein cages for drug delivery. Pharmaceutics , 14, 2609.
26. Schoonen, L., & Van Hest, J.C.M. (2014). Functionalization of protein-based nanocages for drug delivery applications.Nanoscale , 6(13), 7124–7141.
27. Yan, D., Wei, Y.Q., Guo, H.C. & Sun, S.Q. (2015). The application of virus-like particles as vaccines and biological vehicles.Applied Microbiology and Biotechnology , 99(24), 10415–10432.
28. Kraj, P., Selivanovitch, E., Lee, B., & Douglas, T. (2021). Polymer coatings on virus-like particle nanoreactors at low ionic strength—charge reversal and substrate access.Biomacromolecules , 22(5), 2107–2118.
29. Douglas, T. & Young, M. (2006). Viruses: making friends with old foes. Science , 312(5775), 873–875.
30. Jordan, P., Patterson, D., Saboda, K., Edwards, E., Miettinen, H., Basu, G., Thielges, M. & Douglas, T. (2016). Self-assembling biomolecular catalysts for hydrogen production. Nature Chemistry , 8, 179–185.
31. Chakraborti, S., Lin, T.-Y., Glatt, S. & Heddle, J.G. (2020). Enzyme encapsulation by protein cages. RSC Advances , 10(22), 13293–13301.
32. Das, S., Zhao, L., Elofson, K. & Finn, M.G. (2020). Enzyme stabilization by virus-like particles. Biochemistry , 59 (31), 2870–2881
33. Sánchez-Sánchez, L., Tapia-Moreno, A., Juarez-Moreno, K., Patterson, D. P., Cadena-Nava, R. D., Douglas, T. & Vazquez-Duhalt, R. (2015). Design of a VLP-nanovehicle for CYP450 enzymatic activity delivery.Journal of Nanobiotechnology , 13(1), 1–10.
34. Tapia-Moreno, A., Juarez-Moreno, K., Gonzalez-Davis, O., Cadena-Nava, R. D. & Vazquez-Duhalt, R. (2017). Biocatalytic virus capsid as nanovehicle for enzymatic activation of Tamoxifen in tumor cells. Biotechnology Journal , 12, 1600706.
35. Chauhan, K., Hernandez-Meza, J.M., Rodríguez-Hernández, A.G., Juarez‑Moreno, K., Sengar, P. & Vazquez‑Duhalt, R. (2018). Multifunctionalized biocatalytic P22 nanoreactor for combinatory treatment of ER+ breast cancer. Journal of Nanobiotechnology , 16, 17.
36. Schwarz, B., Uchida, M. & Douglas T. (2017). Biomedical and catalytic opportunities of virus-like particles in nanotechnology.Advances in Virus Research , 97, 1–60.
37. Inoue, T., Kawano, M.A., Takahashi, R.U., Tsukamoto, H., Enomoto, T., Imai, T., Kataoka, K. & Handa, H. (2008). Engineering of SV40-based nano-capsules for delivery of heterologous proteins as fusions with the minor capsid proteins VP2/3. Journal of Biotechnology , 134(1-2), 181–92.
38. O’Neil, A., Prevelige, P. E. & Douglas, T. (2013). Stabilizing viral nano-reactors for nerve-agent degradation. Biomaterials Science , 1(8), 881–886.
39. Selivanovitch, E., LaFrance, B. & Douglas, T. (2021). Molecular exclusion limits for diffusion across a porous capsid. Nature Communications , 12, 2903.
40. Gama, P., Cadena-Nava, R. D., Juarez-Moreno, K., Pérez-Robles, J. & Vazquez-Duhalt, R. (2021). Virus-based nanoreactors with GALT activity for classic galactosemia therapy. ChemMedChem , 16, 1438.
41. Vervoort, D.F.M., Heiringhoff, R., Timmermans, S., van Stevendaal, M. & van Hest J.C.M. (2021). Dual site-selective presentation of functional handles on protein-engineered Cowpea chlorotic mottle virus-like particles. Bioconjugate Chemistry , 32 (5), 958–963.
42. Cadena-Nava, R. D., Comas-Garcia, M., Garmann, R. F., Rao, A. L. N., Knobler, C. M. & Gelbart, W. M. (2012). Self-Assembly of Viral Capsid Protein and RNA Molecules of Different Sizes: Requirement for a Specific High Protein/RNA Mass Ratio. Journal of Virology , 86(6), 3318–3326.
43. Zhou, C., Song, X., Guo, C., Tan, Y., Zhao, J., Yang, Q., Chen, D., Tan, T., Sun, X., Gong, T. & Zhang, Z. (2019). An alternative and injectable preformed albumin-bound anticancer drug delivery system for anticancer and antimetastasis treatment. ACS Applied Materials & Interfaces, 11 (45), 42534–42548.
44. Spada, A., Emami, J., Tuszynski, J. A. & Lavasanifar, A. (2021). The uniqueness of albumin as a carrier in nanodrug delivery.Molecular Pharmaceutics , 8 (5), 1862–1894.
45. Lucas, R. W., Larson, S. B. & McPherson, A. (2002). The crystallographic structure of brome mosaic virus. Journal of Molecular Biology , 317(1), 95–108.
46. Brasch, M., Putri, R.M., de Ruiter, M.V., Luque, D., Koay, M.S.T., Castón, J.R., & Cornelissen, J.J.L.M. (2017) Assembling enzymatic cascade pathways inside virus-based nanocages using dual-tasking nucleic acid tags. Journal of the American Chemistry Society , 139(4),1512-1519.
47. Al-Barwani, F., Donaldson, B., Pelham, S.J., Young, S.L. & Ward, V.K. (2014) Antigen delivery by virus-like particles for immunotherapeutic vaccination. Therapy Delivery 5(11), 1223–1240.
48. Mohsen, M.O., Speiser, D.E., Knuth, A. & Bachmann, M.F. (2020) Virus-like particles for vaccination against cancer. Wiley Interdisciplinary Review of Nanomedicine and Nanobiotechnology 12, 1579.
49. Duval, K.E.A., Wagner, R.J., Beiss, V., Fiering, S.N., Steinmetz, N.F. & Hoopes, P.J. (2020) Cowpea mosaic virus nanoparticle enhancement of hypofractionated radiation in a B16 murine melanoma model.Frontiers in Oncology. 16(10), 594614.
50. Beatty, P.H. & Lewis, J.D. (2019) Cowpea mosaic virus nanoparticles for cancer imaging and therapy. Advances in Drug Delivery Review145, 130–144.
51. Patel, R., Czapar, A.E., Fiering, S., Oleinick, N.L. & Steinmetz, N.F. (2018) Radiation therapy combined with cowpea mosaic virus nanoparticle in situ vaccination initiates immune-mediated tumor regression. ACS Omega 3(4), 3702-3707.
52. Li, W., Jing, Z., Wang, S., Li, Q., Xing, Y., Shi, H., Li, S. & Hong, Z. (2021) P22 virus-like particles as an effective antigen delivery nanoplatform for cancer immunotherapy. Biomaterials 271, 120726.
53. Sakai, C., Hosokawa, K., Watanabe, T., Suzuki, Y., Nakano, T., Ueda, K. & Fujimuro, M. (2021) Human hepatitis B virus-derived virus-like particle as a drug and DNA delivery carrier. Biochemical and Biophysical Research Communications. 581, 103–109.
54. Huo, M., Wang, L., Chen, Y. & Shi, J. (2017). Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nature Communications , 8(1), 357.
55. Zhao, W., Hu, J. & Gao, W. (2017). Glucose oxidase-polymer nanogels for synergistic cancer-starving and oxidation therapy. ACS Applied Materials & Interfaces , (28), 23528–23535.
56. Zhang, R., Feng, L., Dong, Z., Wang, L., Liang, C., Chen, J., Ma, Q., Zhang, R., Chen, Q., Wang, Y. & Liu, Z. (2018). Glucose & oxygen exhausting liposomes for combined cancer starvation and hypoxia-activated therapy. Biomaterials , 162, 123–131.
57. Fan, W., Lu, N., Huang, P., Liu, Y., Yang, Z., Wang, S., Yu, G., Liu, Y., Hu, J., He, Q., Qu, J., Wang, T. & Chen, X. (2017). Glucose-responsive sequential generation of hydrogen peroxide and Nitric Oxide for Synergistic Cancer Starving-Like/Gas Therapy. Angewandte Chemie International Edition , 56(5), 1229–1233.
58. Nuñez-Rivera, A., Fournier, P. G. J., Arellano, D. L., Rodriguez-Hernandez, A. G., Vazquez-Duhalt, R. & Cadena-Nava, R. D. (2020). Brome mosaic virus-like particles as siRNA nanocarriers for biomedical purposes. Beilstein Journal of Nanotechnology , 11, 372–382.
59. Rempel, S. A., Golembieski, W. A., Ge, S., Lemke, N., Elisevich, K., Mikkelsen, T. & Gutiérrez, J. A. (1998). SPARC: A Signal of Astrocytic Neoplastic Transformation and Reactive Response in Human Primary and Xenograft Gliomas. Journal of Neuropathology and Experimental Neurology , 57(12), 1112–1121.
60. Von Hoff, D. D., Ramanathan, R. K., Borad, M. J., Laheru, D. A., Smith, L. S., Wood, T. E., Korn, R. L., Desai, N., Trieu, V., Iglesias, J. L., Zhang, H., Soon-Shiong, P., Shi, T., Rajeshkumar, N. V., Maitra, A. & Hidalgo, M. (2011). Gemcitabine Plus nab-Paclitaxel Is an Active Regimen in Patients With Advanced Pancreatic Cancer: A Phase I/II Trial.Journal of Clinical Oncology , 29(34), 4548–4554.
61. Gamradt, P., De La Fouchardière, C. & Hennino, A. (2021). Stromal Protein-Mediated Immune Regulation in Digestive Cancers. Cancers , 13 (1), 146.
62. Sova, P., Feng, Q., Geiss, G., Wood, T., Strauss, R., Rudolf, V., Lieber, A., & Kiviat, N. (2006). Discovery of Novel Methylation Biomarkers in Cervical Carcinoma by Global Demethylation and Microarray Analysis. Cancer Epidemiology, Biomarkers & Prevention , 15 (1), 114–123.
63. Bellahcène, A. & Castronovo V. (1995). Increased expression of osteonectin and osteopontin, two bone matrix proteins, in human breast cancer. The American Journal of Pathology , 146(1), 95–100.
64. Lien, H. C., Hsiao, Y. H., Lin, Y. S., Yao, Y.T., Juan, H. F., Kuo, W. H., Hung, M., Chang, K. J. & Hsieh, F. J. (2007). Molecular Signatures of Metaplastic Carcinoma of the Breast by Large-Scale Transcriptional Profiling: Identification of Genes Potentially Related to Epithelial-Mesenchymal Transition. Oncogene , 26, 7859–7871.
65. Jones, C., Mackay, A., Grigoriadis, A., Cossu, A., Reis-Filho, J. S., Fulford, L., Dexter, T., Davies, S., Bulmer, K., Ford, E., Parry, S., Budroni, M., Palmieri, G., Neville, A. M., O’Hare, M. J. & Lakhani, S. R. (2004). Expression Profiling of Purified Normal Human Luminal and Myoepithelial Breast Cells Identification of Novel Prognostic Markers for Breast Cancer. Cancer Research , 64 (9), 3037–3045.
66. Shi, S., Ma, H.-Y., Han, X.-Y., Sang, Y.-Z., Yang, M.-Y. & Zhang, Z.-G. (2022). Prognostic Significance of SPARC Expression in Breast Cancer: A Meta-Analysis and Bioinformatics Analysis. BioMed Research International , 2022, 8600419.
67. Puolakkainen, P. A., Brekken, R. A., Muneer, S., & Sage, E. H. (2004). Enhanced Growth of Pancreatic Tumors in SPARC-Null Mice Is Associated with Decreased Deposition of Extracellular Matrix and Reduced Tumor Cell Apoptosis. Molecular Cancer Research , 2, 215–224.
68. Yiu, G. K., Chan, W. Y., Ng, S. W., Chan, P. S., Cheung, K. K., Berkowitz, R. S. & Mok S. C. (2001). SPARC (secreted protein acidic and rich in cysteine) induces apoptosis in ovarian cancer cells. The American Journal of Pathology , 159(2), 609–622.
69. Yang, E., Kang, H. J., Koh, K. H., Rhee, H., Kim, N. K. & Kim, H. (2007). Frequent inactivation of SPARC by promoter hypermethylation in colon cancers. The International Journal of Cancer , 121, 567–575.
70. Cheetham, S., Tang, M. J., Mesak, F., Kennecke, H., Owen, D., & Tai, I. T. (2008). SPARC promoter hypermethylation in colorectal cancers can be reversed by 5-Aza-2′deoxycytidine to increase SPARC expression and improve therapy response. British Journal of Cancer , 98, 1810–1819.
71. Tao, H., Wang, R., Sheng, W., & Zhen, Y. (2021). The development of human serum albumin-based drugs and relevant fusion proteins for cancer therapy. International Journal of Biological Macromolecules , 187, 24–34.
72. Are, R. P. & Babu, A. R. (2022). Molecular Interaction Analysis of SPARC–Collagen with Human Serum Albumin. Journal of Computational Biophysics and Chemistry , 21 (8), 927–939.