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immersion and invariance technology-based angular velocity observer, enabling at-

titude stabilization without measuring angular velocity. By analyzing the geometry
of the pointing constraint, the upper bound of the angular velocity, and the optimiza-
tion solution of the control input, the safety boundary described by the invariant set
is obtained in the reference layer. Additionally, we introduce the dynamic factor re-
lated to the angular velocity estimation error into the invariant set to prevent states
from exceeding the constraint set due to unmeasurable angular velocity information.
The shortest guidance path is then designed in the reference layer. Finally, we verify
the effectiveness of the proposed constrained attitude control algorithm through nu-

merical simulations.
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1 | INTRODUCTION

Spacecraft attitude maneuver plays a significant role in complex space autonomous missions' ', Restricted by the actuators
and sensitive payloads, the attitude maneuver algorithms are often required to achieve system stability while simultaneously
satisfying various constraints. For example, the spacecraft is usually required to maneuver from one state to another with the
time limitation, while keeping its star sensor avoid from the bright objects (e.g. earth) and preventing the command torque
from exceeding the capacity of the actuator®. These missions can be regarded as spacecraft maneuver under state and control
constraints*>°, Furthermore, due to the failure of gyroscopes, the angular velocity information may be unavailable. Therefore,
constrained velocity-free attitude control is an issue of great theoretical and practical importance.

For attitude control systems with actuator saturation, if the input constraints are not considered in the controller design ex-
plicitly, although the performance is affected by the input limitation, its stability sometimes can still be proved theoretically™.
The traditional controller designed directly using the Lyapunov function cannot restrict the state trajectories. Hence, the atti-
tude commands are used in the attitude maneuver path design in the presence of multiple attitude constraints*®, This strategy
can effectively solve part of the engineering problems, but the flexibility is poor and it is difficult to meet the tasks with high
real-time dynamic requirements. To deal with the actuator saturation, control bandwidth limit, slew rate limit, and/or eigenaxis
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slew constraints, the saturation function and integrate function are introduced in a nonlinear feedback control logic by Wie et al.
for the rapid re-targeting control of agile spacecraft”. This method can handle single-axis maneuvers with particular constraints
well, but it is difficult to handle three-axis maneuvers with complex constraints.

Potential functions together with Lyapunov functions can handle complex constraints, which provide a promising technology
for the constrained attitude control problem!%HU213 T ee et al.’¥ constructed a strictly convex logarithmic barrier potential
for attitude-constrained zones by utilizing a convex parameterization technology. Inspired by[10]and using the anti-unwinding
attitude error function, a new algorithm for the attitude reorientation guidance under forbidden pointing constraints is proposed
in [[4] In addition, Shen et al.'? dealt with rest-to-rest three-axis attitude reorientation under multiple attitude-constraint zones
and angular velocity limits via a quadratic potential function and a logarithmic potential function. However, it is difficult to
simultaneously handle different types of complex constraints by the potential functions based constrained control algorithm.
Since the potential function is constructed in the Lyapunov function and the convergence of Lyapunov function is the result of
the convergence game between potential function and states, the robustness of the system may become worse.

Trajectory optimization methods, such as model predictive control (MPC), can also address constrained control issues. In [16
and[17] MPC on SO(3) has been developed for constrained attitude maneuver of a fully actuated spacecraft. However, it needs
to optimize the function at each sampling horizon in MPC, which limits its application in fast response systems, for example
spacecraft maneuver.

Recently, a novel add-on control scheme called explicit reference governor (ERG) was introduced by Nicotra et
al 181920 The key idea is to augment a pre-stabilized system with a control unit and manipulates the auxiliary ref-
erence to ensure constraint satisfaction, which means the stability and the constraint issues can be handled separately.
Then, This control technology has been applied to the Unmanned Aerial Vehicles and spacecraft attitude control problems with
state constraints“22° Another challenge in attitude control is the velocity-free control problem besides the constraints. This
issue has attracted many researchers and has been well studied23, for example the immersion and invariance (I&I) based glob-
ally exponentially convergent observer is utilized to conduct the angular velocity observer’*#2>. However, the velocity-free
attitude maneuver problem in the presence of constraints was studied in just a few works. For example, a velocity-free attitude
reorientation control law with pointing constraints is established in [26]

Inspired by the ERG and the I1&I technologies”, a constrained velocity-free control algorithm for spacecraft reorientation is
presented in this paper, where the attitude pointing, angular velocity, and control input constraints are considered. The attitude
dynamics as well as various constraints are formulated in terms of modified Rodrigues parameters (MRPs). The MRPs constitute
a singular, nonunique and minimal parametrization set of the three-dimensional special orthogonal group SO(3). Fortunately,
the singularity can be avoided by using the nonuniqueness properties through switching the parameters between MRPs and its
shadow at the unit sphere282%, Then, the ERG-based control scheme is deduced where the output controller based on the angular
velocity observer is designed in the inner loop firstly. To the best of the authors’ knowledge, the result presented in this paper
is the first attempt to address the observer-based attitude maneuver issue with pointing constraints, angular velocity constraints,
and input constraints. Finally, the performance and robustness of the proposed algorithm is verified by the numerical simulations
and Monte Carlo simulations.

2 | PRELIMINARIES

2.1 | Spacecraft attitude kinematics and dynamics

The MRPs vector is defined in terms of an Euler rotation angle ¢ € R about the principal axis {r|n"n = 1,n € R3}. Let F5
be the body-fixed frame, and &, be the inertial frame. Then, the attitude with respect to the inertial frame can be described by
MPRs and given by 6 5; = np,tan(¢p, /4). The attitude kinematics and dynamics of the rigid-body spacecraft are given by=?

Gpr = G(GBI)ng (1a)

G _1 1_671;163'1 X T
(0'31)—5 — 3+ 0%, +0p0y;

- B B B _ _B B
Joy, + oy, XJoy, =1 +1, (1b)

where 5 € R? denotes the angular velocity expressed in the body-fixed frame, J € R** is the inertia matrix, I; denotes the

B B
and 7] represent

identity matrix, and (x)* is the 3 X 3 skew-symmetric cross-product matrix associated with vector x € R3. T,

the control torque and the disturbance, respectively.
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o yy denotes the orientation of X frame relative to ¥ frame. w)’f s the angular velocity of Y frame relative to Z frame
expressed in X frame. Then, the relative attitude between two frames is defined as

T T x
- c,(0,0, — D+o,,0- 6”6”) - 26”0’)“

Xy —

T T T
1+o]0,0!0,+20] 0,

and the dynamics of o, is given by

. X
6xy = G(oxy)@yy (2a)
X X X X X X .Y B
Joyy + oy, XJoy, —J(@yy Xy, — Cyoy ) =71, (2b)
where 0y, = @f, — 0}, and 0}, = C;( @}, . The rotation matrix in terms of the MRPs from Y frame to X frame can be

expressed as

x 8(6%,)* —4(1 — o, 6xy)o%y
C; =L+ - > . 3
(1+0y,0xy)

The following properties will be frequently used in this paper:

1+06 oxy

0%y Gloxy) = <+ Oxy’ “4)

1+076\’
G(6yy) G(o) = <T> I,. 5)
According to the description of MPRs in 28] MRPs have geometric singularities when ¢ = +360°, and it is not unique
because of the shadow set, i.e., 6 = 6°,6° = —6/6" 6. Recalling the definition of &, one knows that ||a|| < 1 for all |¢| < 180°.
Thus, the spacecraft attitude can be globally parameterized with the shortest principal rotation by switching the ¢ and ¢ at the
unit sphere ||o|| = 1. Consequently, we stipulate that the magnitude of ¢ is bounded by 1, i.e., ||o|| < 1, which is suited to

describe any reorientation.

2.2 | State and control constraints

The pointing constraint, the angular velocity constraint and the input limitation are considered in this paper. For the pointing
constraint, we suppose the instantaneous angle d between a body-fixed unit vector rf (such as cameras) and a inertial constant
unit vector rtl (observed target) should be maintained in a half-cone angel 9, i.e., § < 9,,, which is equivalent to

c,= {(aB,,mg,) S 1B rB > cos(9,), 9, € (0, g)} 6)

where rf = CPr! is the expression of r! in Fp.

In consideration of the payload requirements, the angular velocity constraint is always exists. Then the constraint set is given
by

C,={(0p1.05) : l0h, || < O Opy >0} (7)

where w,,,, € RT is the maximum angular velocity amplitude.

The angular momentum exchange devices such as reaction wheels and control moment gyros are usually used as the space-
craft attitude control actuators. These devices may be saturated when the command torque is large. For simplicity, the actuator
constraint is formulated as

B . |.B
C.={(0p.05) : 1721 < Tpaes Tmax > 0} 8)
where 7,,,, € R* is the maximum allowable control torque.

Finally, the dynamic safety margin of the system is the intersection of the aforementioned three subsets:

C=C,nC,NnC,. ©)]
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2.3 | Problem statements

This paper aims to develop a ERG control scheme that drives the system states (o 37, @} ,) to the desired equilibrium (o, 03,;)
while satisfying the constraints (6), (7), and (8)). The proposed ERG-based control structure (shown in Fig. [T)) consists of two
cascaded control units. The primary controller is given by an angular velocity observer-based output feedback controller, which
is able to pre-stabilize the unconstrained system to an auxiliary reference o), ;. The reference governor (navigation layer) unit is
designed to guarantee the constraint enforcement by manipulating the kinematics of o}, ;. Clearly, the asymptotic convergence
property of the closed-loop control system will be achieved by the goal that auxiliary reference o}, ; asymptotically tends to o ;.
The reference attitude o, is a constant and selected inside the admissible region, i.e., (6) is satisfied when 6, = op,.

Reference Governor Primary Controller System Model
al)l Refi o
—P Reference VI o - - - raS—
p| management »| Angular velocity Ly Output feedback | Attitude kinematics >

observer controller and dynamics
B
@y, Opy

Figure 1 The architecture of the explicit reference governor based attitude control scheme.

3 | INNER LOOP OBSERVER-BASED OUTPUT FEEDBACK CONTROLLER DESIGN

This section proposes an angular velocity-free control law so as to stabilize the attitude to any constant reference o, (6, =
0,.,) when the constraints and disturbance are neglected. The time-varing of o}, ; will be addressed by the reference management
unit detailed in the next section.

3.1 | Observer design

The angular velocity observer is constructed based on the 1&I theory?Z2L, Let #, be the estimation frame of the F. The attitude
and angular estimation errors in terms of MRPs are given by

T T x
. = O'E,(O'BIO'B, -1)+o0,(- O'EIO'E,) - ZO'EIO'B, (102)
BE T T T T
l+o6! 0,0l 0, + 20'“0'3,

B _ B _~B.E _ B _ B
Opp = Oy — Cpop = Op, — 0p,;.

— 0and 65, — 0, ascalar w € R* that can "cover’ the a)g ; is introduced as

@ = /e, + |08, |2 (11)

where £, € R* is a constant to be selected, which is utilized to ensure the existence of the time derivative of w. Then, a)g J is
generated by

(10b)

B

To ensure ® BE

08 =E+4)7' p(@)oy (12)
where w is the estimate of w, & and f(w) are the parameter related to a)g ; and a function of @, respectively. The dynamics of
¢, w, and 6 are designed as

E=J'(-08, xJoB , +8) - 4] f(m)o 5
—4J7' p(@)6 s (13a)
w=w (o)) ] (~o}, xJof, +1°) - K (@ - w) (13b)

65 =Glog )@k, + K,Choyp) (13¢)
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where K and K are the dynamic gains to be designed, 6,5 represents part of the dynamics of oz, and it can be obtained
from (T2). (T08). and (T3)
Gprp = O1pg + OapE (14

. . _ . — B
with 6,5 = —G(6p)K, 0 pp and 6,5 = G(Opp)@OL -

To inject the nonlinear terms in the dynamics of (og ¢ @ dynamic scaling technique is introduced:
B
@

BE

Z= (15)

7

where r is the dynamic scaling factor and is updated by the following law

=L (J Ky 1 16
V—J—m( MIIW—EII)—JM(r— ) (16)

where k, € R™ is the dynamic scaling gain to be determined, J,, and J,, are the minimum and the maximum eigenvalues of the
inertia matrix J, respectively. If r(f) = 1, i > 0. Hence, it satisfies r(¢) > 1 for all # > O when r(0) > 1. Finally, the convergence
analysis of the proposed observer (12) is summarized as the following proposition.

Proposition 1. Consider the angular velocity observer in (I2)) with dynamics given in (I3), (I6), and the gains are given as

B(wm) = 4/_3(2)GT(GBE) (17a)
J k,
p(w) = Jyllz| + +1+p, (17b)
Ih— — ‘IM
2
B || p(@)r
K, =8 2 — ) + 1r21M +p, (17¢)
z J, 2 ud
K, = %ﬂ +p, (17d)
195
k,=-— 17
r=57 T (17¢)

where p_, p.., p,» and p, are positive constants that can be tuned for different convergence rates of the estimation errors. Then,

P . . . . . . . B _
the dynamic scaling factor r is bounded and the errors globally exponentially converges to the origin, i.e., lim,_ e*[lo, .|| =
0,a € R*.

Proof: See the Appendix. [ |

3.2 | QOutput controller design

The aforementioned angular velocity observer is used to derive an output feedback attitude controller. As shown in Fig. [T} the
following theorem summarize the result on the unconstrained output controller.

Theorem 1. Consider the attitude dynamics given in (I) and the angular velocity observer given in (I2)-(T7). Then, the output
feedback control law is given by

8 = —k,65, — k0%, (18)
with k,, k; > 0, the equilibrium (6y7,05,) is asymptotically stable within the admissible set, i.e., lim,_ (cp I,a)g ;

(EVI’ 03><1)'

Proof: By means of (TOb), the control law (I8) can be expressed as a full-state controller plus perturbations induced by
velocity estimation error, namely,
B

8 = —k, 04, — k08, + k08, (19)

Consider a Lyapunov function candidate as follows:
1
V, =2k,In(1+03,) + E(a)gl)TJa)gl. (20)
Taking the time derivative of (20) along (I), (@), and (I9), one can obtain



6 AUTHOR ONE ET AL

; G]I;Vé-BV B \T 7,-.B
V. =4k, o +(@p,) Joy,
BV
< = kyllog, 1> + kyllog, @ - @21

Clearly, V, includes sign indefinite term caused by angular velocity estimation error. To eliminate this effect, let the positive
definite Lyapunov function be of the following form:

V=V.+4,V, )
where &, is a positive constant to be determined. Differentiating ¥V and applying @1I)) and (A4) yields
V =—kllob, 1>+ kyllof, o1l - 5.1 + p,)llzll?
1
KO [ (23)
<- o lof ] | 2 [II gfll]‘
llao® .|

_Ekd 5zr_2(1 + pPy)

Due to 1 < r < oo, there exists a large enough &, that V is negative semi-definite for &, ;. By using the LaSalle invariance
principle, one can conclude that the equilibrium point (6, 05, ,) of the system is asymptotically stable. This completes the
proof. [ |

Obviously, 6}/, is time varying, Theorem 1 only provide a claim about the tracking error stability of &, rather than &,,;. In
fact, since the final state o, is a constant attitude, the inner loop controller only needs to ensure that the attitude can converge to
the final state. In addition, the angular velocity cannot be obtained precisely, hence the angular velocity constraint is hard to be
guaranteed strictly. Fortunately, the value of the dynamic scaling factor r implies the estimation error. By designing a parameters
related to r, the angular velocity constraints can be satisfied. These properties will be utilized in the next section.

Remark 1. Throughout the aforementioned analysis, it can be easily checked that the design of the output feedback controller
is independent of the angular velocity observer (see (I8)) and (T9)), which greatly reduces the difficulty of the controller design.
Moreover, (I13) and indicate that the scale of the observer gains is contradictory to the robustness. However, there are always
parameter uncertainties in practical missions, so it is necessary to balance the two properties, which will be verified in detail in
the simulation.

4 | REFERENCE MANAGEMENT

The reference management layer of ERG (shown in Fig.[I)) designs an auxiliary control law that manipulates the reference state
to the primary stabilized system=218, The objective of this part is to handle the constraints given in (6) — (8) by designing the
safety margin and the navigation field, which is achieved by the invariant set in the Lyapunov function centered on the reference
state o},;. The auxiliary reference is formulated as the following form:

6y = Alogy, wg,)x(aw, oyp) 24

where A(opy,,®5,) 1 R* x R? — R is the dynamic safety margin that indicates how safe it is within the allowable set.
x(©yr.0pp) @ R¥XR? — R3 denotes the navigation field of the current state o, and the oy, is utilized to drive the oy,
towards to o), .

4.1 | Safety margin

Intuitively, the safety margin can be treated as the distance between the constraint boundary and the navigation field. Since V" is
negative semi-define (see (23))), the forward invariant set {(a BI> wg PRE F} can be used to design the safety margin, where
the upper bound I'(¢?, a)g ;) is determined by the constraints () — (8). In [19]and [21] authors design the dynamic safety margin

v
in the form A(c g, @2 1) =k (I'=V"), where the constant k, is used to adjust the dynamic performance. Unfortunately, since the

E
exact estimation error a)g  1s unavailable, the angular velocity can not be obtained either. In order to prevent A being negative



AUTHOR ONE ET AL 7

B

caused by Opps

A can be designed as
k,IT-=V), I'>V

A(ogy. op,) = { 0 r<v 25)

4.1.1 | Pointing constraint

s>

Figure 2 Constrained attitude region.

The geometric relationship about the pointing constraint is displayed in Fig.[2| where 9, € (0, %) is the safety margin of UgV
and satisfies 9, = 9,, — 9. When the body frame is coincided with the reference frame &, the pointing angle 9 is denote by

9= arcos(_r: . rtV). (26)

Note that 7{ = rf is a virtual constant unit vector expressed in &, rather than 7‘2/ = CZ rf. Under these conditions, the safety
margin of ag ; satisfies 9, =9, —9and 9, € (0, g]. Leta € [0, ] be the gap between n ), and the unit vector rf , then it satisfies

r® . ng, = cos(a) (27)

c

Let ¢ € (0, ) denote the orientation from rf to _rl/,and they have the following relationship:
sin(%) - sin((bzﬂ)sin(a). (28)

Obviously, there is a positive correlation between ¢ and ¢y, and they satisfies ¢ < ¢ ;. Since |9, — §e| <@, ifp< 58, then
3, > 0 can be guaranteed.
According to [6] if wg ;=053 (wg ; 1s precisely known), then V. =V <0, the threshold of V < F; can be designed as

2

1—4/1-a2
V P

,Jekn{t | —2——| t ae )

I = a, 29)

o) a=0orrx

where a, = sin(%)/sin(a).

When V' =17, 6, = 05,,. According to Theoreml, the time derivate of  and I} satisfies V <0, I“; = 0, which means
the pointing constraint (6)) will never be violated. However, wg ; and o, are unavailable, which means V" and V, are unavailable,
thus they can not be used to design the threshold of the pointing constraint. Hence, we replace the Lyapunov function with the
following form

V =2k,In(1 + o4, + %(wg,)Tng,. (30)
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Although Vis sign indefinite, according Theorem 1, Vis asymptotically convergent, i.e., lim,_,oo7(t) = 0. Accordingly, the

threshold of the pointing constraint is designed as ,

r—_~ 31

P Lk
rki
where k, > 0 is a constant parameter. Similarly to the analysis in Sec. 3.1, the larger wg £ 18, the lager r is, and the smaller I, is.
Although the exact relationship between (og  and r is unknown, by tuning k,, a conservative but safe threshold of the pointing
constraint without angular velocity measurement can be obtained.

4.1.2 | Angular velocity constraint

The angular velocity constraint given in (7) is a convex set. As discussed in Sec. 4.1.1, when a)g ; = 054, the threshold of the
angular velocity constraint I',, can be selected as
! 1 2
' =-J,o (32)

o~ oY m T max’
Similar to the pointing constraint, when V' = T" , 6;,; = 0;,,. Recalling Theoreml1, the time derivate of them satisfies V<
0, F;) = 0, which means the pointing constraint (7)) will never be violated. When wg ;1 # 035, the Lyapunov function is replaced
by (30), and the threshold can be selected as ’
r
=2
r,= - (33)
where k, > 0 is a constant parameter used to tuning I',,.

4.1.3 | Actuator saturation

Similar with the other constraints, a)g ; 18 replaced by a)g ; and we omit the estimation error. Following the approach given in
211 the saturation constraint (8 can be satisfied by solving the following optimization problem

Problem !
min 2k, In(1 + 6 4,) + E(wgl Y Jok,
subject to
logyl; <1 (34a)
|kpo-BV + kdwg]li Z Tmax- (34‘b)

Then the threshold I', can be obtained by taking the minimum value of the aforementioned optimization problem fori = 1, 2, 3.
Consequently, the upper-bound of the system subject to the constraint (§) can be concluded as I" = min{I",, T, T, }, which can
be proved by using the same arguments in [19]

4.2 | Navigation layer

The navigation field y(oy;, oy p) Will be designed in this section to ensure that the auxiliary reference o5, converges to the
desired reference o 5;,. Consequently, the trajectory of y(o} ) should lie in the allowable set C strictly. Since the initial and
final attitudes are all within the constraints and the pointing constraint C, is a convex set, the shortest distance on the attitude
manifold obey the constraints. The navigation trajectory y(oy, ) is designed by

x(oyp) =—-G(oyp)oyp. (35)
Since @5, = 05, and 72 = 05, represent the equilibrium point, the constraints (7) and (§) are always satisfied at steady-state.
Then, the main results about the constrained attitude maneuver control without angular velocity measurement is presented in
the following theorem.

Theorem 2. Given the spacecraft attitude dynamics () subject to the constraints (@) with the angular velocity observer (12))
controlled by (18], and let (24) be the navigation layer subject to the dynamic safety margin (23), and the navigation field (33).
Then, for any initial states satisfy the constraints and V' (0) < I'(0), the following statements hold. 1) For any constant reference
op; € C, the system constraints are all satisfied. 2) The auxiliary reference o, ; updated by asymptotically converges to

Opr-
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Proof: See [6] [ ]

Remark 2. Combining the design process of ERG and the above analysis, it can be seen that by designing a trajectory from
the current state to the final state that satisfies the constraint conditions, and then the controller drives the system state and the
reference state error within a certain range, the system states can be guaranteed to reach the target state while the constraints are
met. Another advantage of this strategy is that even there is no state constraint. Compared with other control algorithms (such
as PID), the ERG algorithm can track the oy, , independently generated by the reference management with smaller error than
o gp»> Which can also achieve faster and more precise control performance.

S | NUMERICAL SIMULATIONS

This section demonstrates the effectiveness of the proposed angular velocity free attitude control algorithm in the presence of
multi-constraints. The operation aims to control the rigid spacecraft from a certain initial state to the per-designed target, where
the attitude constraint, angular velocity constraint and the control saturation are all considered simultaneously. Besides, Monte
Carlo results are conducted to further verify the robustness of the proposed control scheme. The inertia of the spacecraft is given
by

152 -1 2
J=| -1 183 —0.5 [kgm’.
2 -0.5 16.1
Table 1 System Constraint Conditions.
Table 2 Observer parameters.

Parameters Values

- Parameters Values
Opr [0,0,0]
. : B
ry [1/V/3,-1/3/3,1/V/31" M '

Pos Pars Pays Prs € 0.1

rf [O’_l/\/i 1/\/5]T r(O) - 1
Drax 003 wad/s £0) [0,0,017
Tmax A NS 6 51(0) [—0.119,0.000, 0.159]"
ke 1000 o?, [0,0,0]"rad/s
ki k, 2

The initial states are set as o 5,;(0) = [-0.119, 0.000, 0.159]" and @(0) = [0,—0.01,0.01]7rad/s. The constraint conditions
and target state are chosen in Table[I] Besides, the threshold of actuator saturation I, is obtained by solving from the Problem
via fmincon function in Matlab 2021, which is 0.0468, and the observer parameters are shown in Table@ The control elements
are selected as k, = 1.5 and k, = 2.5. For the brevity and intuition, Euler angles [¢, 9, w7 with sequence 3 — 1 — 2 are used to
plot the attitude.

40 p=s 0.04 =
N With Constraints
20 f 0.02 71 Without Constraints
> Z
<0 g
Without Constraints 3-002r\ Tr/—/— iz

0 20 40 60 80 100 0 20 40 60 80 100
Time (s) Time (s)

Figure 3 Attitude trajectories. Figure 4 Angular velocities.
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5.1 | Performance of the proposed control scheme

The simulation results are shown in Figs.[3|—[T1] where the dash curve represents the simulation without reference management
i.e., the constraints are not considered in the control scheme. The attitude trajectories and angular velocities depicted in Figs. 3]
and []indicate that with the navigation layer, the trajectories of attitude and the velocity become smoother and the overshoot is
smaller.

Fig.[5]depicts the attitude and velocity estimation errors produced by the &I based observer designed in (I2). In the logarith-
mic coordinate, the estimation errors ||a)g gl and [[o g || decreases in an almost straight line, indicating that the estimation error
is exponentially convergent. An interesting phenomenon is that unlike ||a)§ I decreases with time, [[o gl is very small at the
beginning, but increases first and then decreases. This is because ||6 || is used to "measure" whether the estimation of ||a)§ el
is appropriate. As we set ||o || = 0 as the initial condition, and the estimation error ||a)g £(0)]| is large, ||o 5|l becomes larger,
and as ||cog |l becomes smaller, |[o g || also changes accordingly. As we can also seen from Figs. and@ due to the large es-
timation error at the beginning, the injection gain r is also relatively large, but as the estimation error decreases, r also tends to
1 rapidly. These results mean that the inject gain r plays an important role in the observer and the performance of the observer
achieved the desired effectiveness. Furthermore, the final angular velocity estimation error ||cog £(0)]] is about 1074, which is
mainly restricted by the simulation setting 0.01s. If the step size is further reduced, ||a)g £(0)|| can also be reduced.

~ 1.015
3
£
= 1.01
3
= 10 ' ' ] ]
0 20 40 60 80 100 =
10 ‘ ‘ ‘ ‘ 1.005 1
oy
N i
= 4 . , ] ,
10
: : : : 0 20 40 60 80 100
0 20 40 60 80 100 Time (s)
Figure 5 Attitude and Velocity estimation errors. Figure 6 Injection gain r.
0.06 : :
!y —— With constraints
’-' ‘.‘ —=-=—=Without constraints
20041 1\
) S e
\ g
\ :
\ =
Vo — With constraints 0.02
\ 'l' —-—-Without constraints
R ]
250 N\ i j | 0
0 20 40 60 80 100

80 100
Time (s) Time (s)

Figure 7 Pointing constraint. Figure 8 Angular velocity constraint.

The pointing constraint, angular velocity constraint and the control torque limitation are plotted in Figs. [7] — [0} Obviously,
without reference management, the pointing angle overflow the boundary at 23 seconds and the angular velocity exceeds the
limitation about 15 seconds. Also, the actuator is saturated in the first 10 seconds. When the navigation layer in applied in the
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| n
algorithm, all of the three constraints are away from the boundary. This is because the tracking error can always maintains a

small error relative to the reference trajectories (see Fig. [I0). Combining Figs. [I0]and [T} it can be seen that the convergence

speed of the reference trajectory is basically the same as the threshold error I' — V. Generally, the simulation results are in line
with the theoretical analysis, verifying the effectiveness of the algorithm.
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\ ===~ Without constraints ) N o .

[ = N —  YVvD2 "~ T YBI2
202 S 0.1t N - o
= \ r 3 \ — %3~ = B3
z. \ max g N
= \ / ° S
E 0.0 podeme e - E r==r—=

v\ oo s e
WA = < -
’ \ o~
0 e - 017 ‘ ‘ . 1
0 20 40 60 80 100 0 20 40 60 80 100
Time (s) Time (s)

Figure 9 Control torque limitation.

Figure 10 Reference trajectories.
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Figure 11 Threshold value.

Figure 12 Attitude trajectories.

5.2 | Monte Carlo simulation under disturbances

The aforementioned section demonstrated the numerical simulation without any disturbance i.e., 15 = 0;,,. In this section,
Monte Carlo simulations with disturbances are conducted to illustrate the robustness of the proposed ERG based attitude control
scheme. To proceed with Monte Carlo simulations, the randomized initial conditions and parameters are shown in table [3]
Combine with these new initial states and parameters with others simulation conditions selected in the aforementioned section,
200 Monte Carlo simulations are conducted. In order to ensure that all the cases can reach the final states, those cases that do
not meet the constraints at the initial moment will be eliminated, and the simulation lasts for 150 seconds. Besides, the external
disturbances are given as follows

2 0.4sin(w 4t + 1.6)

—1 [+ 2sin(w,t+1.1) [[x 10°N.m?
-3 0.7sin(w 4t — 2.1)
where w,, = 0.01rad/s.
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Table 3 Randomized initial states and parameters.

Variables Ranges

Variables Ranges

n,(0) [-0.7,-0.5] x [-0.1,0.1] x [0.7,0.9]
¢(0), rad [0.157,0.357]

o(0),rad/s  {[-2,2]x[-2,2] X [-2,2]} x 1073
I [13,17]

Iy [15, 21]

k,=15 [1, 1.5]

ky=25 [2.5,3.0]

k, = 1000 [900, 1100]

Figs.[12]and[I3]depict the attitude and angular velocity trajectories of Monte Carlo simulations. Evidently, despite the external
disturbances and angular velocity estimation errors affect the control performance, the spacecraft reached the desired attitude
smoothly. It can be seen from (I2) and (I3) that the estimation errors are affected by the precision of the input torque. Due to
the unknown disturbance in the Monte Carlo simulation, the angular velocity estimation errors given in Figs. [14] and [T5] are
slightly larger than that in Fig.[5] but they are still very small. This shows that the observer designed in (I2)) can estimate angular
velocity with pleased robustness. Besides, the three constraints are basically satisfied during the simulation (see Figs.[16] —[I8).
Meanwhile, one can also see that the angular velocity observer is independent of the controller. No matter what constraints
the system needs to meet, the observer can converge without being affected by them. This interesting property helps us not be
limited by the observer when we further improve the ERG-based constrained controller.

5 10
£ 5
3 0 —
<2
24 3
3™ 0 =
2 =
3
0 =
3N _ 10
-20 ' :
0 50 100 150 ; ;
Time (s) 0 50 100 150
Figure 13 Angular velocity trajectories. Figure 14 Angular velocity estimation errors.

The fly in the ointment is that there are two cases convergent slowly (see Figs[I2] [T3] [T6] and [T7]). This is because these
two cases are at the edge of the pointing constraint at the initial moment. Due to external disturbances and angular velocity
estimation errors, the pointing angle slightly overflows the boundary. Fortunately, the algorithm designed in this paper takes
these effects into account via the improved safety margin form (23)), the pointing angle can be quickly pulled back. If this situation
should be strictly avoided, we only need to increase the margin of the reference state, which will be discussed in depth in our
further research. In spite of this, the proposed ERG-based constrained controller still accomplished the maneuver objective with
excellent accuracy, which in turn demonstrates its robustness against uncertainties.
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Figure 15 Attitude estimation errors. Figure 16 Distributions of pointing angles.
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Figure 17 Distributions of angular velocity constraints. Figure 18 Distributions of control torque.

6 | CONCLUSION

This paper develop a constrained output feedback attitude reorientation problem via ERG and I1&I technologies, where pointing
constraint, angular velocity constraint, and the control saturation are considered. The stability of a angular velocity observer and
the output feedback controller is roughly proved. The inner loop of ERG is conducted by the angular velocity observer-based
output feedback controller, and the navigation layer is designed by manipulating the auxiliary reference state without violating the
constraints while asymptotically converges to the desired reference. The performance of the proposed angular velocity observer
and the ERG are analyzed and discussed by numerical simulations in detail.
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APPENDIX

A PROOF OF PROPOSITION1

Proof: The proposition] can be proven by Lyapunov method by two steps. This first step is prestabilizing the inject estimation
error Z. The second step is ensuring the dynamic scaling r is bounded.
The Lyapunov function candidate about the z is chosen as

1
vV, = EZTJz. (AD)
The dynamics of ®% can be obtained from (12), (T3a), (T4) that
o, =T (—of, xJo§, + 1)+ 4] f(@)61p5. (A2)
One can derive the dynamics of @} . from (Tb), (TOB) , and (A2) that
g, =J 7 @F, xJoF, — of, xJog,) ~ 4] f(@)6,p- (A3)

Then, by invoking (3), (T6)) (T7a), and (T7b) and using the inequalities [|@2 || < @, |la|| < |la—b||+b]|, and 2ab < ||la||*+||b]|%,
the time derivative of V, along (I3) and (A3) can be obtained as

; “1g-1
V. = I @f, x Jo}, - o, x Jog)

= I {47 p(@)6 5 + 7 0}
< (mléz X Jz — E(@z> —r ' Jiz (A4)

2 2 Jmkr 2
<Iullzllizll” = f(@)llz]] +J—IIZII
- M

=— (1 + py)lizll®
which implies z converges to zeros exponentially.
To show the boundedness of r, consider
V,=V,+V_ +V, +V, (AS)
where ]
V, = ~(w—w)*
s 2(w w)

V, =2In(l +03,)

I 2
Using (IT) and (A2)), the dynamics of w is derived as

: ~1( 2B \T B
w=w (0g,) @, (A6)
— =1 (yB \T 71 B B B .
=w (o)) T {0, xJob, + 1% + 4p(w)é, 5, |-
From (T3B) and (A6), it follows that
w - =w (@F) 4 f(@)6rpp — Kp(w ~ @) (A7)

Take the time derivative of V,, along (A7), one can obtain

Ve =(@-o){ @ @2 )4 B(@)6 205~ K (@ -0) |

ok, Ilﬂ(g)r>2 (A8)

1, 2
<= — — -8
_2z (w—-—w)" y K, < T
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Applying (T4) and (d)), one has

T

. O
V, =—=2-G(ozp) @), — K,05,)
I+og, (A9)
1 1
- (-4 o

Additionally, following the calculations in (I6), one can obtain

. r k,
V,=J,r-1) {J—(JMllw —o|) - —(r- 1)}

J
i M (A10)
L2y o - o) - Tukr 1, (r— 1)
=t M - Iy 2°M
Finally, differentiating V, along (A4), (A8), (A9), and (AT0), yields
V, < =p,|IzII* = pp(@ — @) = p,llo el = p,(r = 1) (A11)

which implies that the system is exponentially stable and r is bounded. This completes the proof.
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