REFERENCES
[1] Suen N-T, Hung S-F, Quan Q, Zhang N, Xu Y-J, Chen HM.
Electrocatalysis for the oxygen evolution reaction: recent development
and future perspectives. Chemical Society Reviews . 2017 ,46 , 337-365.
[2] Wang T, Xie H, Chen M, D’Aloia A, Cho J, Wu G, Li Q. Precious
metal-free approach to hydrogen electrocatalysis for energy conversion:
From mechanism understanding to catalyst design. Nano Energy .2017 , 42 , 69-89.
[3] Zhang K, Zou R. Advanced Transition Metal-Based OER
Electrocatalysts: Current Status, Opportunities, and Challenges.Small . 2021 , 17 , 2100129.
[4] Faisal SN, Haque E, Noorbehesht N, Zhang W, Harris AT, Church
Tamara L, Minett AI. Pyridinic and graphitic nitrogen-rich graphene for
high-performance supercapacitors and metal-free bifunctional
electrocatalysts for ORR and OER. RSC Advances . 2017 ,7 , 17950-17958.
[5] Chen H, Shi L, Sun K, Zhang K, Liu Q, Ge J, Liang X, Tian B,
Huang Y, Shi Z. Protonated Iridate Nanosheets with a Highly Active and
Stable Layered Perovskite Framework for Acidic Oxygen Evolution.ACS Catalysis . 2022 , 12 , 8658-8666.
[6] Samanta R, Panda P, Mishra R, Barman S.
IrO2-Modified RuO2Nanowires/Nitrogen-Doped Carbon Composite for Effective Overall Water
Splitting in All pH. Energy & Fuels . 2022 , 36 ,
1015-1026.
[7] Cherevko S, Geiger S, Kasian O, Kulyk N, Mayrhofer K. Oxygen and
hydrogen evolution reactions on Ru, RuO2, Ir, and
IrO2 thin film electrodes in acidic and alkaline
electrolytes: A comparative study on activity and stability.Catalysis Today . 2016 , 262 , 170-180.
[8] Liu J-L, Li X-S, Zhu X, Li K, Shi C, Zhu A-M. Renewable and
high-concentration syngas production from oxidative reforming of
simulated biogas with low energy cost in a plasma shade. Chemical
engineering journal . 2013 , 234 , 240-246.
[9] Peng Y, Liao Y, Ye D, Meng Z, Wang R, Zhao S, Tian T, Tang H.
Recent Advances Regarding Precious Metal-Based Electrocatalysts for
Acidic Water Splitting. Nanomaterials . 2022 , 12 ,
2618.
[10] Shi X, Peng H-J, Hersbach TJ, Jiang Y, Zeng Y, Baek J, Winther
KT, Sokaras D, Zheng X, Bajdich M. Efficient and Stable Acidic Water
Oxidation Enabled by Low-Concentration, High-Valence Iridium Sites.ACS Energy Letters . 2022 , 7 , 2228-2235.
[11] Pan S, Li H, Liu D, Huang R, Pan X, Ren D, Li J, Shakouri M,
Zhang Q, Wang M. Efficient and stable noble-metal-free catalyst for
acidic water oxidation. Nature Communications . 2022 ,13 , 1-10.
[12] Zhu W, Huang Z, Zhao M, Huang R, Wang Z, Liang H. Hydrogen
production by electrocatalysis using the reaction of acidic oxygen
evolution: a review. Environmental Chemistry Letters .2022 , 1-24.
[13] Luo F, Guo L, Xie Y, Xu J, Qu K, Yang Z. Iridium nanorods as a
robust and stable bifunctional electrocatalyst for pH-universal water
splitting. Applied Catalysis B: Environmental . 2020 ,279 , 119394.
[14] Zhang L, Jang H, Liu H, Kim MG, Yang D, Liu S, Liu X, Cho J.
Sodium‐Decorated Amorphous/Crystalline RuO2 with Rich
Oxygen Vacancies: A Robust pH‐Universal Oxygen Evolution
Electrocatalyst. Angewandte Chemie International Edition .2021 , 60 , 18821-18829.
[15] Park H, Bae JW, Lee TH, Park IJ, Kim C, Lee MG, Lee SA, Yang
JW, Choi MJ, Hong SH, Kim SY, Ahn SH, Kim JY, Kim HS, Jang HW.
Surface‐Tailored Medium Entropy Alloys as Radically Low Overpotential
Oxygen Evolution Electrocatalysts. Small . 2022 ,18 , 2105611.
[16] Huang J, Du K, Wang P, Yin H, Wang D. Electrochemical
preparation and homogenization of face-centered FeCoNiCu medium entropy
alloy electrodes enabling oxygen evolution reactions.Electrochimica Acta . 2021 , 378 , 138142.
[17] Huang K, Peng D, Yao Z, Xia J, Zhang B, Liu H, Chen Z, Wu F, Wu
J, Huang Y. Cathodic plasma driven self-assembly of HEAs dendrites by
pure single FCC FeCoNiMnCu nanoparticles as high efficient
electrocatalysts for OER. Chemical Engineering Journal .2021 , 425 , 131533.
[18] Huang J, Wang P, Li P, Yin H, Wang D. Regulating electrolytic
Fe0. 5CoNiCuZnx high entropy alloy electrodes for oxygen
evolution reactions in alkaline solution. Journal of Materials
Science & Technology . 2021 , 93 , 110-118.
[19] Zhang R, Zhao S, Ding J, Chong Y, Jia T, Ophus C, Asta M,
Ritchie RO, Minor AM. Short-range order and its impact on the CrCoNi
medium-entropy alloy. Nature . 2020 , 581 , 283-287.
[20] Luo H, Sohn SS, Lu W, Li L, Li X, Soundararajan CK, Krieger W,
Li Z, Raabe D. A strong and ductile medium-entropy alloy resists
hydrogen embrittlement and corrosion. Nature Communications .2020 , 11 , 3081.
[21] Han G, Li M, Liu H, Zhang W, He L, Tian F, Liu Y, Yu Y, Yang W,
Guo S. Short‐Range Diffusion Enables General Synthesis of Medium‐Entropy
Alloy Aerogels. Advanced Materials . 2022 , 34 ,
2202943.
[22] Arumugam K, Renock D, Becker U. The basis for reevaluating the
reactivity of pyrite surfaces: spin states and crystal field d-orbital
splitting energies of bulk, terrace, edge, and corner Fe(II) ions.Physical Chemistry Chemical Physics . 2019 , 21 ,
6415-6431.
[23] Zhang T, Nellist MR, Enman LJ, Xiang J, Boettcher SW. Modes of
Fe Incorporation in Co–Fe (Oxy)hydroxide Oxygen Evolution
Electrocatalysts. ChemSusChem . 2019 , 12 ,
2015-2021.
[24] Hu F, Zhu S, Chen S, Li Y, Ma L, Wu T, Zhang Y, Wang C, Liu C,
Yang X, Song L, Yang X, Xiong Y. Amorphous Metallic NiFeP: A Conductive
Bulk Material Achieving High Activity for Oxygen Evolution Reaction in
Both Alkaline and Acidic Media. Advanced Materials .2017 , 29 , 1606570.
[25] Louie MW, Bell AT. An investigation of thin-film Ni-Fe oxide
catalysts for the electrochemical evolution of oxygen. J Am Chem
Soc . 2013 , 135 , 12329-12337.
[26] Lee S, Banjac K, Lingenfelder M, Hu X. Oxygen Isotope Labeling
Experiments Reveal Different Reaction Sites for the Oxygen Evolution
Reaction on Nickel and Nickel Iron Oxides. Angewandte Chemie
International Edition . 2019 , 58 , 10295-10299.
[27] Burke MS, Kast MG, Trotochaud L, Smith AM, Boettcher SW.
Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role
of structure and composition on activity, stability, and mechanism.J Am Chem Soc . 2015 , 137 , 3638-3648.
[28] Smith RD, Pasquini C, Loos S, Chernev P, Klingan K, Kubella P,
Mohammadi MR, Gonzalez-Flores D, Dau H. Spectroscopic identification of
active sites for the oxygen evolution reaction on iron-cobalt oxides.Nature communications . 2017 , 8 , 1-8.
[29] Jing T, Zhang N, Zhang C, Mourdikoudis S, Sofer Z, Li W, Li P,
Li T, Zuo Y, Rao D. Improving C–N–FeOx Oxygen Evolution
Electrocatalysts through Hydroxyl-Modulated Local Coordination
Environment. ACS Catalysis . 2022 , 12 , 7443-7452.
[30] Fang W, Wang J, Hu Y, Cui X, Li Z. Metal-organic framework
derived Fe-Co-CN/reduced graphene oxide for efficient HER and OER.Electrochimica Acta . 2021 , 365 , 137384.
[31] Tian D, Denny SR, Li K, Wang H, Kattel S, Chen JG. Density
functional theory studies of transition metal carbides and nitrides as
electrocatalysts. Chemical Society Reviews . 2021 ,50 , 12338-12376.
[32] Wang Y, Nian Y, Biswas AN, Li W, Han Y, Chen JG. Challenges and
Opportunities in Utilizing MXenes of Carbides and Nitrides as
Electrocatalysts. Advanced Energy Materials . 2021 ,11 , 2002967.
[33] Huang Y, Pei F, Ma G, Ye Z, Peng X, Li D, Jin Z. Bicontinuous
Nanoporous Nitrogen/Carbon-Codoped FeCoNiMg Alloy as a High-Performance
Electrode for the Oxygen Evolution Reaction. ACS Applied Materials
& Interfaces . 2022 , 14 , 784-793.
[34] Yu K, Li S, Sun X, Kang Y. Maintaining the ratio of
hydrosoluble carbon and hydrosoluble nitrogen within the optimal range
to accelerate green waste composting. Waste Management .2020 , 105 , 405-413.
[35] Wang D, Wei G, Nie M, Chen J. Effects of nitrogen source and
carbon/nitrogen ratio on batch fermentation of glutathione by Candida
utilis. Korean Journal of Chemical Engineering . 2010 ,27 , 551-559.
[36] Hao B, Ye Z, Xu J, Li L, Huang J, Peng X, Li D, Jin Z, Ma G. A
high-performance oxygen evolution electrode of nanoporous Ni-based solid
solution by simulating natural meteorites. Chemical Engineering
Journal . 2021 , 410 , 128340.
[37] Xu JL, Tao SC, Bao LZ, Luo JM, Zheng YF. Effects of Mo contents
on the microstructure, properties and cytocompatibility of the microwave
sintered porous Ti-Mo alloys. Materials Science & Engineering C .2019 , 97 , 156-165.
[38] Pan F, Li B, Sarnello E, Fei Y, Gang Y, Xiang X, Du Z, Zhang P,
Wang G, Nguyen HT, Li T, Hu YH, Zhou HC, Li Y. Atomically Dispersed
Iron-Nitrogen Sites on Hierarchically Mesoporous Carbon Nanotube and
Graphene Nanoribbon Networks for CO2 Reduction.ACS Nano . 2020 , 14 , 5506-5516.
[39] Wen Q, Chen H, Wei J, Chen Y, Ma D, Li J, Xie Y, Sun X, Shen J.
Preparation of nitrogen-doped porous carbon by urea–formaldehyde resin
for the construction of membrane adsorption reactor to remove refractory
pollutant. Separation and Purification Technology . 2022 ,282 , 120105.
[40] Wei G, Shen Y, Zhao X, Wang Y, Zhang W, An C. Hexagonal Phase
Ni3Fe Nanosheets toward High-Performance Water Splitting by a
Room-Temperature Methane Plasma Method. Advanced Functional
Materials . 2022 , 32 , 2109709.
[41] Jayaraman TV, Thotakura GV, Rathi A. Phase evolution,
structure, and magnetic characterization of mechanosynthesized
Ni40Fe30Co30medium-entropy alloy. Journal of Magnetism and Magnetic
Materials . 2019 , 489 , 165466.
[42] Billington D, James ADN, Harris-Lee EI, Lagos DA, O’Neill D,
Tsuda N, Toyoki K, Kotani Y, Nakamura T, Bei H, Mu S, Samolyuk GD,
Stocks GM, Duffy JA, Taylor JW, Giblin SR, Dugdale SB. Bulk and
element-specific magnetism of medium-entropy and high-entropy Cantor-Wu
alloys. Physical Review B . 2020 , 102 , 174405.
[43] Biesinger MC, Payne BP, Lau LWM, Gerson A, Smart RSC. X-ray
photoelectron spectroscopic chemical state quantification of mixed
nickel metal, oxide and hydroxide systems. Surface and Interface
Analysis . 2009 , 41 , 324-332.
[44] Zhou Y, Li Y, Zhang L, Zhang L, Li L, Tian J, Wang M, Xu J, Dai
B, Li Y. Fe-leaching induced surface reconstruction of Ni-Fe alloy on
N-doped carbon to boost oxygen evolution reaction. Chemical
Engineering Journal . 2020 , 394 , 124977.
[45] Liu Z, Tang B, Gu X, Liu H, Feng L. Selective structure
transformation for NiFe/NiFe2O4 embedded
porous nitrogen-doped carbon nanosphere with improved oxygen evolution
reaction activity. Chemical Engineering Journal . 2020 ,395 , 125170.
[46] Feng JX, Ye SH, Xu H, Tong YX, Li GR. Design and Synthesis of
FeOOH/CeO2 Heterolayered Nanotube Electrocatalysts for
the Oxygen Evolution Reaction. Adv Mater . 2016 ,28 , 4698-4703.
[47] Xue JY, Li FL, Zhao ZY, Li C, Ni CY, Gu HW, Young DJ, Lang JP.
In Situ Generation of Bifunctional Fe-Doped MoS2Nanocanopies for Efficient Electrocatalytic Water Splitting. Inorg
Chem . 2019 , 58 , 11202-11209.
[48] Niu S, Kong X-P, Li S, Zhang Y, Wu J, Zhao W, Xu P. Low Ru
loading RuO2/(Co,Mn)3O4nanocomposite with modulated electronic structure for efficient oxygen
evolution reaction in acid. Applied Catalysis B: Environmental .2021 , 297 , 120442.
[49] Pei L, Ye Z, Yuan X, Peng X, Li D, Zheng Z. Three-dimensional
CoMoMg nanomesh based on the nanoscale Kirkendall effect for the
efficient hydrogen evolution reaction. Journal of Alloys and
Compounds . 2021 , 857 , 158086.
[50] Xie C, Wang Y, Hu K, Tao L, Huang X, Huo J, Wang S. In situ
confined synthesis of molybdenum oxide decorated nickel–iron alloy
nanosheets from MoO42− intercalated layered double
hydroxides for the oxygen evolution reaction. Journal of Materials
Chemistry A . 2017 , 5 , 87-91.
[51] Faisal SN, Haque E, Noorbehesht N, Zhang W, Harris AT, Church
T, Minett AI. Pyridinic and graphitic nitrogen-rich graphene for
high-performance supercapacitors and metal-free bifunctional
electrocatalysts for ORR and OER. RSC Advances . 2017 ,7 , 17950-17958.
[52] Sun L, Luo Y, Li M, Hu G, Xu Y, Tang T, Wen J, Li X, Wang L.
Role of Pyridinic-N for Nitrogen-doped graphene quantum dots in oxygen
reaction reduction. Journal of Colloid and Interface Science .2017 , 508 , 154-158.
[53] Wang S, Zhang J, Gharbi O, Vivier V, Gao M, Orazem ME.
Electrochemical impedance spectroscopy. Nature Reviews Methods
Primers . 2021 , 1 , 1-21.
[54] García-Osorio D, Jaimes R, Vazquez-Arenas J, Lara R,
Alvarez-Ramirez J. The kinetic parameters of the oxygen evolution
reaction (OER) calculated on inactive anodes via EIS transfer
functions:• OH formation. Journal of The Electrochemical Society .2017 , 164 , E3321.
[55] Friebel D, Louie MW, Bajdich M, Sanwald KE, Cai Y, Wise AM,
Cheng M-J, Sokaras D, Weng T-C, Alonso-Mori R, Davis RC, Bargar JR,
Nørskov JK, Nilsson A, Bell AT. Identification of Highly Active Fe Sites
in (Ni,Fe)OOH for Electrocatalytic Water Splitting. Journal of the
American Chemical Society . 2015 , 137 , 1305-1313.
[56] Li N, Cai L, Gao G, Lin Y, Wang C, Liu H, Liu Y, Duan H, Ji Q,
Hu W, Tan H, Qi Z, Wang L-W, Yan W. Operando Direct Observation of
Stable Water-Oxidation Intermediates on
Ca2–xIrO4 Nanocrystals for Efficient
Acidic Oxygen Evolution. Nano Letters . 2022 , 22 ,
6988-6996.
[57] Song CW, Lim J, Bae HB, Chung S-Y. Discovery of crystal
structure–stability correlation in iridates for oxygen evolution
electrocatalysis in acid. Energy & Environmental Science .2020 , 13 , 4178-4188.
[58] Zhao C, Li N, Zhang R, Zhu Z, Lin J, Zhang K, Zhao C. Surface
Reconstruction of
La0.8Sr0.2Co0.8Fe0.2O3−δ
for Superimposed OER Performance. ACS Applied Materials &
Interfaces . 2019 , 11 , 47858-47867.
[59] Schäfer H, Sadaf S, Walder L, Kuepper K, Dinklage S,
Wollschläger J, Schneider L, Steinhart M, Hardege J, Daum D. Stainless
steel made to rust: a robust water-splitting catalyst with benchmark
characteristics. Energy & Environmental Science . 2015 ,8 , 2685-2697.