REFERENCES
[1] Suen N-T, Hung S-F, Quan Q, Zhang N, Xu Y-J, Chen HM. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews . 2017 ,46 , 337-365.
[2] Wang T, Xie H, Chen M, D’Aloia A, Cho J, Wu G, Li Q. Precious metal-free approach to hydrogen electrocatalysis for energy conversion: From mechanism understanding to catalyst design. Nano Energy .2017 , 42 , 69-89.
[3] Zhang K, Zou R. Advanced Transition Metal-Based OER Electrocatalysts: Current Status, Opportunities, and Challenges.Small . 2021 , 17 , 2100129.
[4] Faisal SN, Haque E, Noorbehesht N, Zhang W, Harris AT, Church Tamara L, Minett AI. Pyridinic and graphitic nitrogen-rich graphene for high-performance supercapacitors and metal-free bifunctional electrocatalysts for ORR and OER. RSC Advances . 2017 ,7 , 17950-17958.
[5] Chen H, Shi L, Sun K, Zhang K, Liu Q, Ge J, Liang X, Tian B, Huang Y, Shi Z. Protonated Iridate Nanosheets with a Highly Active and Stable Layered Perovskite Framework for Acidic Oxygen Evolution.ACS Catalysis . 2022 , 12 , 8658-8666.
[6] Samanta R, Panda P, Mishra R, Barman S. IrO2-Modified RuO2Nanowires/Nitrogen-Doped Carbon Composite for Effective Overall Water Splitting in All pH. Energy & Fuels . 2022 , 36 , 1015-1026.
[7] Cherevko S, Geiger S, Kasian O, Kulyk N, Mayrhofer K. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability.Catalysis Today . 2016 , 262 , 170-180.
[8] Liu J-L, Li X-S, Zhu X, Li K, Shi C, Zhu A-M. Renewable and high-concentration syngas production from oxidative reforming of simulated biogas with low energy cost in a plasma shade. Chemical engineering journal . 2013 , 234 , 240-246.
[9] Peng Y, Liao Y, Ye D, Meng Z, Wang R, Zhao S, Tian T, Tang H. Recent Advances Regarding Precious Metal-Based Electrocatalysts for Acidic Water Splitting. Nanomaterials . 2022 , 12 , 2618.
[10] Shi X, Peng H-J, Hersbach TJ, Jiang Y, Zeng Y, Baek J, Winther KT, Sokaras D, Zheng X, Bajdich M. Efficient and Stable Acidic Water Oxidation Enabled by Low-Concentration, High-Valence Iridium Sites.ACS Energy Letters . 2022 , 7 , 2228-2235.
[11] Pan S, Li H, Liu D, Huang R, Pan X, Ren D, Li J, Shakouri M, Zhang Q, Wang M. Efficient and stable noble-metal-free catalyst for acidic water oxidation. Nature Communications . 2022 ,13 , 1-10.
[12] Zhu W, Huang Z, Zhao M, Huang R, Wang Z, Liang H. Hydrogen production by electrocatalysis using the reaction of acidic oxygen evolution: a review. Environmental Chemistry Letters .2022 , 1-24.
[13] Luo F, Guo L, Xie Y, Xu J, Qu K, Yang Z. Iridium nanorods as a robust and stable bifunctional electrocatalyst for pH-universal water splitting. Applied Catalysis B: Environmental . 2020 ,279 , 119394.
[14] Zhang L, Jang H, Liu H, Kim MG, Yang D, Liu S, Liu X, Cho J. Sodium‐Decorated Amorphous/Crystalline RuO2 with Rich Oxygen Vacancies: A Robust pH‐Universal Oxygen Evolution Electrocatalyst. Angewandte Chemie International Edition .2021 , 60 , 18821-18829.
[15] Park H, Bae JW, Lee TH, Park IJ, Kim C, Lee MG, Lee SA, Yang JW, Choi MJ, Hong SH, Kim SY, Ahn SH, Kim JY, Kim HS, Jang HW. Surface‐Tailored Medium Entropy Alloys as Radically Low Overpotential Oxygen Evolution Electrocatalysts. Small . 2022 ,18 , 2105611.
[16] Huang J, Du K, Wang P, Yin H, Wang D. Electrochemical preparation and homogenization of face-centered FeCoNiCu medium entropy alloy electrodes enabling oxygen evolution reactions.Electrochimica Acta . 2021 , 378 , 138142.
[17] Huang K, Peng D, Yao Z, Xia J, Zhang B, Liu H, Chen Z, Wu F, Wu J, Huang Y. Cathodic plasma driven self-assembly of HEAs dendrites by pure single FCC FeCoNiMnCu nanoparticles as high efficient electrocatalysts for OER. Chemical Engineering Journal .2021 , 425 , 131533.
[18] Huang J, Wang P, Li P, Yin H, Wang D. Regulating electrolytic Fe0. 5CoNiCuZnx high entropy alloy electrodes for oxygen evolution reactions in alkaline solution. Journal of Materials Science & Technology . 2021 , 93 , 110-118.
[19] Zhang R, Zhao S, Ding J, Chong Y, Jia T, Ophus C, Asta M, Ritchie RO, Minor AM. Short-range order and its impact on the CrCoNi medium-entropy alloy. Nature . 2020 , 581 , 283-287.
[20] Luo H, Sohn SS, Lu W, Li L, Li X, Soundararajan CK, Krieger W, Li Z, Raabe D. A strong and ductile medium-entropy alloy resists hydrogen embrittlement and corrosion. Nature Communications .2020 , 11 , 3081.
[21] Han G, Li M, Liu H, Zhang W, He L, Tian F, Liu Y, Yu Y, Yang W, Guo S. Short‐Range Diffusion Enables General Synthesis of Medium‐Entropy Alloy Aerogels. Advanced Materials . 2022 , 34 , 2202943.
[22] Arumugam K, Renock D, Becker U. The basis for reevaluating the reactivity of pyrite surfaces: spin states and crystal field d-orbital splitting energies of bulk, terrace, edge, and corner Fe(II) ions.Physical Chemistry Chemical Physics . 2019 , 21 , 6415-6431.
[23] Zhang T, Nellist MR, Enman LJ, Xiang J, Boettcher SW. Modes of Fe Incorporation in Co–Fe (Oxy)hydroxide Oxygen Evolution Electrocatalysts. ChemSusChem . 2019 , 12 , 2015-2021.
[24] Hu F, Zhu S, Chen S, Li Y, Ma L, Wu T, Zhang Y, Wang C, Liu C, Yang X, Song L, Yang X, Xiong Y. Amorphous Metallic NiFeP: A Conductive Bulk Material Achieving High Activity for Oxygen Evolution Reaction in Both Alkaline and Acidic Media. Advanced Materials .2017 , 29 , 1606570.
[25] Louie MW, Bell AT. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J Am Chem Soc . 2013 , 135 , 12329-12337.
[26] Lee S, Banjac K, Lingenfelder M, Hu X. Oxygen Isotope Labeling Experiments Reveal Different Reaction Sites for the Oxygen Evolution Reaction on Nickel and Nickel Iron Oxides. Angewandte Chemie International Edition . 2019 , 58 , 10295-10299.
[27] Burke MS, Kast MG, Trotochaud L, Smith AM, Boettcher SW. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism.J Am Chem Soc . 2015 , 137 , 3638-3648.
[28] Smith RD, Pasquini C, Loos S, Chernev P, Klingan K, Kubella P, Mohammadi MR, Gonzalez-Flores D, Dau H. Spectroscopic identification of active sites for the oxygen evolution reaction on iron-cobalt oxides.Nature communications . 2017 , 8 , 1-8.
[29] Jing T, Zhang N, Zhang C, Mourdikoudis S, Sofer Z, Li W, Li P, Li T, Zuo Y, Rao D. Improving C–N–FeOx Oxygen Evolution Electrocatalysts through Hydroxyl-Modulated Local Coordination Environment. ACS Catalysis . 2022 , 12 , 7443-7452.
[30] Fang W, Wang J, Hu Y, Cui X, Li Z. Metal-organic framework derived Fe-Co-CN/reduced graphene oxide for efficient HER and OER.Electrochimica Acta . 2021 , 365 , 137384.
[31] Tian D, Denny SR, Li K, Wang H, Kattel S, Chen JG. Density functional theory studies of transition metal carbides and nitrides as electrocatalysts. Chemical Society Reviews . 2021 ,50 , 12338-12376.
[32] Wang Y, Nian Y, Biswas AN, Li W, Han Y, Chen JG. Challenges and Opportunities in Utilizing MXenes of Carbides and Nitrides as Electrocatalysts. Advanced Energy Materials . 2021 ,11 , 2002967.
[33] Huang Y, Pei F, Ma G, Ye Z, Peng X, Li D, Jin Z. Bicontinuous Nanoporous Nitrogen/Carbon-Codoped FeCoNiMg Alloy as a High-Performance Electrode for the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces . 2022 , 14 , 784-793.
[34] Yu K, Li S, Sun X, Kang Y. Maintaining the ratio of hydrosoluble carbon and hydrosoluble nitrogen within the optimal range to accelerate green waste composting. Waste Management .2020 , 105 , 405-413.
[35] Wang D, Wei G, Nie M, Chen J. Effects of nitrogen source and carbon/nitrogen ratio on batch fermentation of glutathione by Candida utilis. Korean Journal of Chemical Engineering . 2010 ,27 , 551-559.
[36] Hao B, Ye Z, Xu J, Li L, Huang J, Peng X, Li D, Jin Z, Ma G. A high-performance oxygen evolution electrode of nanoporous Ni-based solid solution by simulating natural meteorites. Chemical Engineering Journal . 2021 , 410 , 128340.
[37] Xu JL, Tao SC, Bao LZ, Luo JM, Zheng YF. Effects of Mo contents on the microstructure, properties and cytocompatibility of the microwave sintered porous Ti-Mo alloys. Materials Science & Engineering C .2019 , 97 , 156-165.
[38] Pan F, Li B, Sarnello E, Fei Y, Gang Y, Xiang X, Du Z, Zhang P, Wang G, Nguyen HT, Li T, Hu YH, Zhou HC, Li Y. Atomically Dispersed Iron-Nitrogen Sites on Hierarchically Mesoporous Carbon Nanotube and Graphene Nanoribbon Networks for CO2 Reduction.ACS Nano . 2020 , 14 , 5506-5516.
[39] Wen Q, Chen H, Wei J, Chen Y, Ma D, Li J, Xie Y, Sun X, Shen J. Preparation of nitrogen-doped porous carbon by urea–formaldehyde resin for the construction of membrane adsorption reactor to remove refractory pollutant. Separation and Purification Technology . 2022 ,282 , 120105.
[40] Wei G, Shen Y, Zhao X, Wang Y, Zhang W, An C. Hexagonal Phase Ni3Fe Nanosheets toward High-Performance Water Splitting by a Room-Temperature Methane Plasma Method. Advanced Functional Materials . 2022 , 32 , 2109709.
[41] Jayaraman TV, Thotakura GV, Rathi A. Phase evolution, structure, and magnetic characterization of mechanosynthesized Ni40Fe30Co30medium-entropy alloy. Journal of Magnetism and Magnetic Materials . 2019 , 489 , 165466.
[42] Billington D, James ADN, Harris-Lee EI, Lagos DA, O’Neill D, Tsuda N, Toyoki K, Kotani Y, Nakamura T, Bei H, Mu S, Samolyuk GD, Stocks GM, Duffy JA, Taylor JW, Giblin SR, Dugdale SB. Bulk and element-specific magnetism of medium-entropy and high-entropy Cantor-Wu alloys. Physical Review B . 2020 , 102 , 174405.
[43] Biesinger MC, Payne BP, Lau LWM, Gerson A, Smart RSC. X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surface and Interface Analysis . 2009 , 41 , 324-332.
[44] Zhou Y, Li Y, Zhang L, Zhang L, Li L, Tian J, Wang M, Xu J, Dai B, Li Y. Fe-leaching induced surface reconstruction of Ni-Fe alloy on N-doped carbon to boost oxygen evolution reaction. Chemical Engineering Journal . 2020 , 394 , 124977.
[45] Liu Z, Tang B, Gu X, Liu H, Feng L. Selective structure transformation for NiFe/NiFe2O4 embedded porous nitrogen-doped carbon nanosphere with improved oxygen evolution reaction activity. Chemical Engineering Journal . 2020 ,395 , 125170.
[46] Feng JX, Ye SH, Xu H, Tong YX, Li GR. Design and Synthesis of FeOOH/CeO2 Heterolayered Nanotube Electrocatalysts for the Oxygen Evolution Reaction. Adv Mater . 2016 ,28 , 4698-4703.
[47] Xue JY, Li FL, Zhao ZY, Li C, Ni CY, Gu HW, Young DJ, Lang JP. In Situ Generation of Bifunctional Fe-Doped MoS2Nanocanopies for Efficient Electrocatalytic Water Splitting. Inorg Chem . 2019 , 58 , 11202-11209.
[48] Niu S, Kong X-P, Li S, Zhang Y, Wu J, Zhao W, Xu P. Low Ru loading RuO2/(Co,Mn)3O4nanocomposite with modulated electronic structure for efficient oxygen evolution reaction in acid. Applied Catalysis B: Environmental .2021 , 297 , 120442.
[49] Pei L, Ye Z, Yuan X, Peng X, Li D, Zheng Z. Three-dimensional CoMoMg nanomesh based on the nanoscale Kirkendall effect for the efficient hydrogen evolution reaction. Journal of Alloys and Compounds . 2021 , 857 , 158086.
[50] Xie C, Wang Y, Hu K, Tao L, Huang X, Huo J, Wang S. In situ confined synthesis of molybdenum oxide decorated nickel–iron alloy nanosheets from MoO42− intercalated layered double hydroxides for the oxygen evolution reaction. Journal of Materials Chemistry A . 2017 , 5 , 87-91.
[51] Faisal SN, Haque E, Noorbehesht N, Zhang W, Harris AT, Church T, Minett AI. Pyridinic and graphitic nitrogen-rich graphene for high-performance supercapacitors and metal-free bifunctional electrocatalysts for ORR and OER. RSC Advances . 2017 ,7 , 17950-17958.
[52] Sun L, Luo Y, Li M, Hu G, Xu Y, Tang T, Wen J, Li X, Wang L. Role of Pyridinic-N for Nitrogen-doped graphene quantum dots in oxygen reaction reduction. Journal of Colloid and Interface Science .2017 , 508 , 154-158.
[53] Wang S, Zhang J, Gharbi O, Vivier V, Gao M, Orazem ME. Electrochemical impedance spectroscopy. Nature Reviews Methods Primers . 2021 , 1 , 1-21.
[54] García-Osorio D, Jaimes R, Vazquez-Arenas J, Lara R, Alvarez-Ramirez J. The kinetic parameters of the oxygen evolution reaction (OER) calculated on inactive anodes via EIS transfer functions:• OH formation. Journal of The Electrochemical Society .2017 , 164 , E3321.
[55] Friebel D, Louie MW, Bajdich M, Sanwald KE, Cai Y, Wise AM, Cheng M-J, Sokaras D, Weng T-C, Alonso-Mori R, Davis RC, Bargar JR, Nørskov JK, Nilsson A, Bell AT. Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting. Journal of the American Chemical Society . 2015 , 137 , 1305-1313.
[56] Li N, Cai L, Gao G, Lin Y, Wang C, Liu H, Liu Y, Duan H, Ji Q, Hu W, Tan H, Qi Z, Wang L-W, Yan W. Operando Direct Observation of Stable Water-Oxidation Intermediates on Ca2–xIrO4 Nanocrystals for Efficient Acidic Oxygen Evolution. Nano Letters . 2022 , 22 , 6988-6996.
[57] Song CW, Lim J, Bae HB, Chung S-Y. Discovery of crystal structure–stability correlation in iridates for oxygen evolution electrocatalysis in acid. Energy & Environmental Science .2020 , 13 , 4178-4188.
[58] Zhao C, Li N, Zhang R, Zhu Z, Lin J, Zhang K, Zhao C. Surface Reconstruction of La0.8Sr0.2Co0.8Fe0.2O3−δ for Superimposed OER Performance. ACS Applied Materials & Interfaces . 2019 , 11 , 47858-47867.
[59] Schäfer H, Sadaf S, Walder L, Kuepper K, Dinklage S, Wollschläger J, Schneider L, Steinhart M, Hardege J, Daum D. Stainless steel made to rust: a robust water-splitting catalyst with benchmark characteristics. Energy & Environmental Science . 2015 ,8 , 2685-2697.