References
  1. Doshi-Velez, F. and Kim, B. Towards a rigorous science of interpretable machine learning. arXiv :1702.08608, 2017.
  2. Lisboa, P.J.G., Saralajew, S., Vellido, A., Fernández-Domenech, R. and Villmann, T. The coming of age of interpretable and explainable machine learning models, Neurocomputing , Volume 535: 25-39, 2023.
  3. Vellido, A. The importance of interpretability and visualization in machine learning for applications in medicine and health care. Neural Comput & Applications , Volume 32: 18069–18083, 2020.
  4. Huang, W., Suominen, H., Liu, T., Rice, G., Salomon, C. and Barnard, A.S. Explainable discovery of disease biomarkers: The case of ovarian cancer to illustrate the best practice in machine learning and Shapley analysis, Journal of Biomedical Informatics , Volume 141, 2023.
  5. Palatnik de Sousa I, Vellasco MMBR, Costa da Silva E. Explainable Artificial Intelligence for Bias Detection in COVID CT-Scan Classifiers. Sensors . Volume 21(16):5657, 2021.
  6. Rudin, C. Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead. Nat Mach Intelligence , 1 : 206–215, 2019.
  7. Timmerman D, Van Calster B, et al. Predicting the risk of malignancy in adnexal masses based on the Simple Rules from the International Ovarian Tumor Analysis group, Am J Obstet Gynecol , Volume 214:424-437, 2016.
  8. Chan T, Bleszynski MS, Buczkowski AK. Evaluation of APACHE-IV Predictive Scoring in Surgical Abdominal Sepsis: A Retrospective Cohort Study. J Clin Diagn Res. Volume 10(3), 2016.
  9. Christodoulou, E.; Ma, J.; Collins, G.S.; Steyerberg, E.W.; Verbakel, J.Y.; van Calster, B. A Systematic Review Shows No Performance Benefit of Machine Learning over Logistic Regression for Clinical Prediction Models. J. Clin. Epidemiol., 110:12–22, 2019.
  10. Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regression: a bad idea. Stat Med. , Volume 25(1):127-41, 2006.
  11. Hastie, T.J. Generalized Additive Models (1st ed.). Routledge, 1990.
  12. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F. and Pedreschi, D. A Survey of Methods for Explaining Black Box Models.ACM Comput Surv , Volume 51 , 2018.
  13. Sarle, W.S. Neural Networks and Statistical Models. In Proceedings of the Proceedings of the Nineteenth Annual SAS Users Group International Conference; Cary, NC, 1538–1550, 1994.
  14. Nori, H., Jenkins, S., Koch, P. and Caruana, R. InterpretML: A Unified Framework for Machine Learning Interpretability.arXiv: 1909.09223, 2019.
  15. Agarwal, R., Melnick, L., Frosst, N., Zhang, X., Lengerich, B. Caruana, R. and Hinton, G.E. Neural Additive Models: Interpretable Machine Learning with Neural Nets. Adv Neural Inf Process Syst , Volume 6 :4699–4711, 2020.
  16. Jiang, E., Guo, H., Yang, B., Li, P., Mishra, P., Yang, T., Li, Y, Wang, H and Jiang, Y. Predicting and comparing postoperative infections in different stratification following PCNL based on nomograms. Sci Rep  Volume 10, 11337, 2020.
  17. Jalali, A., Alvarez-Iglesias, A., Roshan, D. and Newell, J. Visualising statistical models using dynamic nomograms. PLoS ONE Volume 14(11): e0225253, 2019.
  18. Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann Stat Volume 29(5): 1189-1232, 2001.
  19. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B 58(1), 267–288, 1996.
  20. Walters, B., Ortega-Martorell, S., Olier, I. and Lisboa, P.J.G. How to open a black box classifier for tabular data. Algorithms , Volume 16, 181, 2023.
  21. Lisboa, P.J.G., Jayabalan, M., Ortega-Martorell, S., Olier, I., Medved, D. and Nilsson, J. Enhanced Survival Prediction Using Explainable Artificial Intelligence in Heart Transplantation.Sci Rep , Volume 12, 2022.