References
- Doshi-Velez, F. and Kim, B. Towards a rigorous science of
interpretable machine learning. arXiv :1702.08608, 2017.
- Lisboa, P.J.G., Saralajew, S., Vellido, A., Fernández-Domenech, R. and
Villmann, T. The coming of age of interpretable and explainable
machine learning models, Neurocomputing , Volume 535: 25-39,
2023.
- Vellido, A. The importance of interpretability and visualization in
machine learning for applications in medicine and health
care. Neural Comput & Applications , Volume 32: 18069–18083,
2020.
- Huang, W., Suominen, H., Liu, T., Rice, G., Salomon, C. and Barnard,
A.S. Explainable discovery of disease biomarkers: The case of ovarian
cancer to illustrate the best practice in machine learning and Shapley
analysis, Journal of Biomedical Informatics , Volume 141, 2023.
- Palatnik de Sousa I, Vellasco MMBR, Costa da Silva E. Explainable
Artificial Intelligence for Bias Detection in COVID CT-Scan
Classifiers. Sensors . Volume 21(16):5657, 2021.
- Rudin, C. Stop Explaining Black Box Machine Learning Models for High
Stakes Decisions and Use Interpretable Models Instead. Nat Mach
Intelligence , 1 : 206–215, 2019.
- Timmerman D, Van Calster B, et al. Predicting the risk of malignancy
in adnexal masses based on the Simple Rules from the International
Ovarian Tumor Analysis group, Am J Obstet Gynecol , Volume
214:424-437, 2016.
- Chan T, Bleszynski MS, Buczkowski AK. Evaluation of APACHE-IV
Predictive Scoring in Surgical Abdominal Sepsis: A Retrospective
Cohort Study. J Clin Diagn Res. Volume 10(3), 2016.
- Christodoulou, E.; Ma, J.; Collins, G.S.; Steyerberg, E.W.; Verbakel,
J.Y.; van Calster, B. A Systematic Review Shows No Performance Benefit
of Machine Learning over Logistic Regression for Clinical Prediction
Models. J. Clin. Epidemiol., 110:12–22, 2019.
- Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors
in multiple regression: a bad idea. Stat Med. , Volume
25(1):127-41, 2006.
- Hastie, T.J. Generalized Additive Models (1st ed.). Routledge, 1990.
- Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F.
and Pedreschi, D. A Survey of Methods for Explaining Black Box Models.ACM Comput Surv , Volume 51 , 2018.
- Sarle, W.S. Neural Networks and Statistical Models. In Proceedings of
the Proceedings of the Nineteenth Annual SAS Users Group International
Conference; Cary, NC, 1538–1550, 1994.
- Nori, H., Jenkins, S., Koch, P. and Caruana, R. InterpretML: A Unified
Framework for Machine Learning Interpretability.arXiv: 1909.09223, 2019.
- Agarwal, R., Melnick, L., Frosst, N., Zhang, X., Lengerich, B.
Caruana, R. and Hinton, G.E. Neural Additive Models: Interpretable
Machine Learning with Neural Nets. Adv Neural Inf Process Syst ,
Volume 6 :4699–4711, 2020.
- Jiang, E., Guo, H., Yang, B., Li, P., Mishra, P., Yang, T., Li, Y,
Wang, H and Jiang, Y. Predicting and comparing postoperative
infections in different stratification following PCNL based on
nomograms. Sci Rep Volume 10, 11337, 2020.
- Jalali, A., Alvarez-Iglesias, A., Roshan, D. and Newell, J.
Visualising statistical models using dynamic nomograms. PLoS
ONE Volume 14(11): e0225253, 2019.
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting
Machine. Ann Stat Volume 29(5): 1189-1232, 2001.
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R.
Statist. Soc. B 58(1), 267–288, 1996.
- Walters, B., Ortega-Martorell, S., Olier, I. and Lisboa, P.J.G. How to
open a black box classifier for tabular data. Algorithms ,
Volume 16, 181, 2023.
- Lisboa, P.J.G., Jayabalan, M., Ortega-Martorell, S., Olier, I.,
Medved, D. and Nilsson, J. Enhanced Survival Prediction Using
Explainable Artificial Intelligence in Heart Transplantation.Sci Rep , Volume 12, 2022.