References
Adolfi, A., Poulton, B., Anthousi, A., Macilwee, S., Ranson, H., &
Lycett, G. J. (2019). Functional genetic validation of key genes
conferring insecticide resistance in the major African malaria vector,
Anopheles gambiae. Proceedings of the National Academy of Sciences
of the United States of America , 116 (51), 25764–25772.
https://doi.org/10.1073/pnas.1914633116
Alonge, M., Wang, X., Benoit, M., Knaap, E. Van Der, Schatz, M. C., &
Lippman, Z. B. (2020). Article Major Impacts of Widespread Structural
Variation on Gene Expression and Crop Improvement in Tomato ll ll
Article Major Impacts of Widespread Structural Variation on Gene
Expression and Crop Improvement in Tomato. Cell , 182 (1),
145-161.e23. https://doi.org/10.1016/j.cell.2020.05.021
Balabanidou, V., Kampouraki, A., Maclean, M., Blomquist, G. J.,
Tittiger, C., Juárez, M. P., Mijailovsky, S. J., Chalepakis, G.,
Anthousi, A., Lynd, A., Antoine, S., Hemingway, J., Ranson, H., Lycett,
G. J., & Vontas, J. (2016). Cytochrome P450 associated with insecticide
resistance catalyses cuticular hydrocarbon production in Anopheles
gambiae. Proceedings of the National Academy of Sciences of the
United States of America , 113 (33), 9268–9273.
https://doi.org/10.1073/pnas.1608295113
Barnes, K. G., Irving, H., Chiumia, M., Mzilahowa, T., Coleman, M.,
Hemingway, J., & Wondji, C. S. (2017). Restriction to gene flow is
associated with changes in the molecular basis of pyrethroid resistance
in the malaria vector Anopheles funestus. Proceedings of the
National Academy of Sciences , 114 (2), 286–291.
Bass, C., Nikou, D., Blagborough, A. M., Vontas, J., Sinden, R. E.,
Williamson, M. S., & Field, L. M. (2008). PCR-based detection of
Plasmodium in Anopheles mosquitoes: A comparison of a new
high-throughput assay with existing methods. Malaria Journal ,7 , 1–9. https://doi.org/10.1186/1475-2875-7-177
Bhatt, S., Weiss, D. J., Cameron, E., Bisanzio, D., Mappin, B.,
Dalrymple, U., Battle, K. E., Moyes, C. L., Henry, A., Eckhoff, P. A.,
Wenger, E. A., Briët, O., Penny, M. A., Smith, T. A., Bennett, A.,
Yukich, J., Eisele, T. P., Griffin, J. T., Fergus, C. A., …
Gething, P. W. (2015). The effect of malaria control on Plasmodium
falciparum in Africa between 2000 and 2015. Nature ,526 (7572), 207–211. https://doi.org/10.1038/nature15535
Brookfield, J. F. Y. (2004). Evolutionary genetics: Mobile DNAs as
sources of adaptive change? Current Biology , 14 (9),
344–345. https://doi.org/10.1016/j.cub.2004.04.021
Catania, F., Kauer, M. O., Daborn, P. J., Yen, J. L., Ffrench-Constant,
R. H., & Schlötterer, C. (2004). World-wide survey of an Accord
insertion and its association with DDT resistance in Drosophila
melanogaster. Molecular Ecology , 13 (8), 2491–2504.
https://doi.org/10.1111/j.1365-294X.2004.02263.x
Chen, S., & Li, X. (2007). Transposable elements are enriched within or
in close proximity to xenobiotic-metabolising cytochrome P450 genes.BMC Evolutionary Biology , 7 , 1–13.
https://doi.org/10.1186/1471-2148-7-46
Chung, H., Bogwitz, M. R., McCart, C., Andrianopoulos, A.,
Ffrench-Constant, R. H., Batterham, P., & Daborn, P. J. (2007).
Cis-regulatory elements in the accord retrotransposon result in
tissue-specific expression of the Drosophila melanogaster insecticide
resistance gene Cyp6g1. Genetics , 175 (3), 1071–1077.
https://doi.org/10.1534/genetics.106.066597
Daborn, P., Boundy, S., Yen, J., Pittendrigh, B., & Ffrench-Constant,
R. (2001). DDT resistance in Drosophila correlates with Cyp6g1
over-expression and confers cross-resistance to the neonicotinoid
imidacloprid. Molecular Genetics and Genomics , 266 (4),
556–563. https://doi.org/10.1007/s004380100531
David, J. P., Strode, C., Vontas, J., Nikou, D., Vaughan, A.,
Pignatelli, P. M., Louis, C., Hemingway, J., & Ranson, H. (2005). The
Anopheles gambiae detoxification chip: A highly specific microarray to
study metabolic-based insecticide resistance in malaria vectors.Proceedings of the National Academy of Sciences of the United
States of America , 102 (11), 4080–4084.
https://doi.org/10.1073/pnas.0409348102
De Coster, W., De Rijk, P., De Roeck, A., De Pooter, T., D’Hert, S.,
Strazisar, M., Sleegers, K., & Van Broeckhoven, C. (2019). Structural
variants identified by Oxford Nanopore PromethION sequencing of the
human genome. Genome Research , 29 (7), 1178–1187.
https://doi.org/10.1101/gr.244939.118
Duneau. (2018). Signatures of insecticide selection in the genome of
Drosophila melanogaster. G3: Genes, Genomes, Genetics ,8 (11), 3469–3480. https://doi.org/10.1534/g3.118.200537
Félix, R. C., Müller, P., Ribeiro, V., Ranson, H., & Silveira, H.
(2010). Plasmodium infection alters Anopheles gambiae. BMC
Genomics , 11 (312), 14139–14144.
https://doi.org/10.1073/pnas.2036262100
Ferretti, L., Ramos-Onsins, S. E., & Pérez-Enciso, M. (2013).
Population genomics from pool sequencing. Molecular Ecology ,22 (22), 5561–5576.
García, G. P., Flores, A. E., Fernández-Salas, I., Saavedra-Rodríguez,
K., Reyes-Solis, G., Lozano-Fuentes, S., Bond, J. G., Casas-Martínez,
M., Ramsey, J. M., García-Rejón, J., Domínguez-Galera, M., Ranson, H.,
Hemingway, J., Eisen, L., & Black IV, W. C. (2009). Recent rapid rise
of a permethrin knock down resistance allele in Aedes aegypti in México.PLoS Neglected Tropical Diseases , 3 (10).
https://doi.org/10.1371/journal.pntd.0000531
Ge, S. X., Son, E. W., & Yao, R. (2018). iDEP: an integrated web
application for differential expression and pathway analysis of RNA-Seq
data. BMC Bioinformatics , 19 (1), 1–24.
Gel, B., & Serra, E. (2017). karyoploteR: an R/Bioconductor package to
plot customisable genomes displaying arbitrary data.Bioinformatics , 33 (19), 3088–3090.
Ghurye, J., Koren, S., Small, S. T., Redmond, S., Howell, P., Phillippy,
A. M., & Besansky, N. J. (2019). A chromosome-scale assembly of the
major African malaria vector Anopheles funestus .GigaScience , 8 (6), giz063.
Guio, L., Barrõn, M. G., & González, J. (2014). The transposable
element Bari-Jheh mediates oxidative stress response in Drosophila.Molecular Ecology , 23 (8), 2020–2030.
https://doi.org/10.1111/mec.12711
Hall. (1999). BioEdit_a_user_friendly_biological_seque.pdf .
Han, Y. S., Thompson, J., Kafatos, F. C., & Barillas-Mury, C. (2000).
MC8 - Molecular interactions between Anopheles stephensi midgut cells
and Plasmodium berghei: The time bomb theory of ookinete invasion.Memorias Do Instituto Oswaldo Cruz , 95 (SUPPL. 2), 28–29.
Hancock, P. A., Hendriks, C. J. M., Tangena, J. A., Gibson, H.,
Hemingway, J., Coleman, M., Gething, P. W., Cameron, E., Bhatt, S., &
Moyes, C. L. (2020). Mapping trends in insecticide resistance phenotypes
in African malaria vectors. PLoS Biology , 18 (6), 1–23.
https://doi.org/10.1371/journal.pbio.3000633
Hearn, J., Djoko Tagne, C. S., Ibrahim, S. S., Tene‐Fossog, B., Mugenzi,
L. M. J., Irving, H., Riveron, J. M., Weedall, G. D., & Wondji, C. S.
(2022). Multi‐omics analysis identifies a CYP9K1 haplotype conferring
pyrethroid resistance in the malaria vector Anopheles funestus in East
Africa. Molecular Ecology .
Hu, B., Huang, H., Hu, S., Ren, M., Wei, Q., Tian, X., Elzaki, M. E. A.,
Bass, C., Su, J., & Palli, S. R. (2021). Changes in both trans- And
cis-regulatory elements mediate insecticide resistance in a lepidopteron
pest, Spodoptera exigua. PLoS Genetics , 17 (3), 1–22.
https://doi.org/10.1371/journal.pgen.1009403
Hughes, A., Lissenden, N., Viana, M., Toé, K. H., & Ranson, H. (2020).
Anopheles gambiae populations from Burkina Faso show minimal delayed
mortality after exposure to insecticide-treated nets. Parasites
and Vectors , 13 (1), 1–11.
https://doi.org/10.1186/s13071-019-3872-2
Ibrahim, S. S., Riveron, J. M., Bibby, J., Irving, H., Yunta, C., Paine,
M. J. I., & Wondji, C. S. (2015). Allelic Variation of Cytochrome P450s
Drives Resistance to Bednet Insecticides in a Major Malaria Vector.PLoS Genetics , 11 (10), 1–25.
https://doi.org/10.1371/journal.pgen.1005618
Irving, H., & Wondji, C. S. (2017). Investigating knockdown resistance
(kdr) mechanism against pyrethroids/DDT in the malaria vector Anopheles
funestus across Africa. BMC Genetics , 18 (1), 1–11.
https://doi.org/10.1186/s12863-017-0539-x
Kahamba, N. F., Finda, M., Ngowo, H. S., Msugupakulya, B. J., Baldini,
F., Koekemoer, L. L., Ferguson, H. M., & Okumu, F. O. (2022). Using
ecological observations to improve malaria control in areas where
Anopheles funestus is the dominant vector. Malaria Journal ,21 (1), 158. https://doi.org/10.1186/s12936-022-04198-3
Killeen, G. F. (2014). Characterising, controlling and eliminating
residual malaria transmission . 1–22.
Kleinschmidt, I., Bradley, J., Knox, T. B., Mnzava, A. P., Kafy, H. T.,
Mbogo, C., Ismail, B. A., Bigoga, J. D., Adechoubou, A., Raghavendra,
K., Cook, J., Malik, E. M., Nkuni, Z. J., Macdonald, M., Bayoh, N.,
Ochomo, E., Fondjo, E., Awono-Ambene, H. P., Etang, J., …
Donnelly, M. J. (2018). Implications of insecticide resistance for
malaria vector control with long-lasting insecticidal nets: a
WHO-coordinated, prospective, international, observational cohort study.The Lancet Infectious Diseases , 18 (6), 640–649.
https://doi.org/10.1016/S1473-3099(18)30172-5
Koekemoer, L. L., Kamau, L., Hunt, R. H., & Coetzee, M. (2002). A
cocktail polymerase chain reaction assay to identify members of the
Anopheles funestus (Diptera: Culicidae) group. American Journal of
Tropical Medicine and Hygiene , 66 (6), 804–811.
https://doi.org/10.4269/ajtmh.2002.66.804
Kreppel, K. S., Viana, M., Main, B. J., Johnson, P. C. D., Govella, N.
J., Lee, Y., & Maliti, D. (2020). Emergence of behavioural avoidance
strategies of malaria vectors in areas of high LLIN coverage in
Tanzania. Scientific Reports , 1–11.
https://doi.org/10.1038/s41598-020-71187-4
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N.,
Marth, G., Abecasis, G., & Durbin, R. (2009). The sequence
alignment/map format and SAMtools. Bioinformatics , 25 (16),
2078–2079.
Liao, Y., Smyth, G. K., & Shi, W. (2014). featureCounts: an efficient
general purpose program for assigning sequence reads to genomic
features. Bioinformatics , 30 (7), 923–930.
Lucas, E. R., Miles, A., Harding, N. J., Clarkson, C. S., Lawniczak, M.
K. N., Kwiatkowski, D. P., Weetman, D., & Donnelly, M. J. (2019).
Whole-genome sequencing reveals high complexity of copy number variation
at insecticide resistance loci in malaria mosquitoes. Genome
Research , 29 (8), 1250–1261.
https://doi.org/10.1101/gr.245795.118
Luckhart, S., Vodovotz, Y., Ciu, L., & Rosenberg, R. (1998). The
mosquito Anopheles stephensi limits malaria parasite development with
inducible synthesis of nitric oxide. Proceedings of the National
Academy of Sciences of the United States of America , 95 (10),
5700–5705. https://doi.org/10.1073/pnas.95.10.5700
Lynd, A., Weetman, D., Barbosa, S., Egyir Yawson, A., Mitchell, S.,
Pinto, J., Hastings, I., & Donnelly, M. J. (2010). Field, genetic, and
modeling approaches show strong positive selection acting upon an
insecticide resistance mutation in anopheles gambiae s.s.Molecular Biology and Evolution , 27 (5), 1117–1125.
https://doi.org/10.1093/molbev/msq002
Martinez-Torres, D., Chandre, F., Williamson, M. S., Darriet, F., Bergé,
J. B., Devonshire, A. L., Guillet, P., Pasteur, N., & Pauron, D.
(1998). Molecular characterisation of pyrethroid knockdown resistance
(kdr) in the major malaria vector Anopheles gambiae s.s. Insect
Molecular Biology , 7 (2), 179–184.
https://doi.org/10.1046/j.1365-2583.1998.72062.x
Menze, B. D., Wondji, M. J., Tchapga, W., Tchoupo, M., Riveron, J. M.,
& Wondji, C. S. (2018). Bionomics and insecticides resistance profiling
of malaria vectors at a selected site for experimental hut trials in
central Cameroon. Malaria Journal , 17 (1), 1–10.
https://doi.org/10.1186/s12936-018-2467-2
Mosha, J. F., Kulkarni, M. A., Lukole, E., Matowo, N. S., Pitt, C.,
Messenger, L. A., Mallya, E., Jumanne, M., Aziz, T., Kaaya, R., Shirima,
B. A., Isaya, G., Taljaard, M., Martin, J., Hashim, R., Thickstun, C.,
Manjurano, A., Kleinschmidt, I., Mosha, F. W., … Protopopoff, N.
(2022). Effectiveness and cost-effectiveness against malaria of three
types of dual-active-ingredient long-lasting insecticidal nets (LLINs)
compared with pyrethroid-only LLINs in Tanzania: a four-arm,
cluster-randomised trial. The Lancet , 399 (10331),
1227–1241. https://doi.org/10.1016/S0140-6736(21)02499-5
Mugenzi, L. M. J., Menze, B. D., Tchouakui, M., Wondji, M. J., Irving,
H., Tchoupo, M., Hearn, J., Weedall, G. D., Riveron, J. M., Cho-Ngwa,
F., & Wondji, C. S. (2020). A 6.5-kb intergenic structural variation
enhances P450-mediated resistance to pyrethroids in malaria vectors
lowering bed net efficacy. Molecular Ecology , 29 (22),
4395–4411. https://doi.org/10.1111/mec.15645
Mugenzi, L. M. J., Menze, B. D., Tchouakui, M., Wondji, M. J., Irving,
H., Tchoupo, M., Hearn, J., Weedall, G. D., Riveron, J. M., & Wondji,
C. S. (2019). Cis-regulatory CYP6P9b P450 variants associated with loss
of insecticide-treated bed net efficacy against Anopheles funestus.Nature Communications , 10 (1), 1–11.
https://doi.org/10.1038/s41467-019-12686-5
Müller, P., Donnelly, M. J., & Ranson, H. (2007). Transcription
profiling of a recently colonised pyrethroid resistant Anopheles gambiae
strain from Ghana . 12 , 1–12.
https://doi.org/10.1186/1471-2164-8-36
Nkemngo, F. N., Mugenzi, L. M. J., Tchouakui, M., Nguiffo-Nguete, D.,
Wondji, M. J., Mbakam, B., Tchoupo, M., Ndo, C., Wanji, S., & Wondji,
C. S. (2022). Xeno-monitoring of molecular drivers of artemisinin and
partner drug resistance in P. falciparum populations in malaria vectors
across Cameroon. Gene , 821 , 146339.
https://doi.org/10.1016/j.gene.2022.146339
Nkemngo, F. N., Mugenzi, L. M. J., Terence, E., Niang, A., Wondji, M.
J., Tchoupo, M., Nguete, N. D., Tchapga, W., Irving, H., Ntabi, J. D.
M., Agonhossou, R., Boussougou-Sambe, T. S., Akoton, R. B.,
Koukouikila-Koussounda, F., Pinilla, Y. T., Ntoumi, F., Djogbenou, L.
S., Ghogomu, S. M., Ndo, C., … Wondji, C. S. (2020). Elevated
Plasmodium sporozoite infection and multiple insecticide resistance in
the principal malaria vectors Anopheles funestus and Anopheles gambiae
in a forested locality close to the Yaoundé airport, Cameroon [version
1; peer review: 1 approved, 1 app. Wellcome Open Research ,5 , 1–28. https://doi.org/10.12688/WELLCOMEOPENRES.15818.1
Picard toolkit. (2019). In Broad Institute, GitHub repository .
Broad Institute.
Pinda, P. G., Eichenberger, C., Ngowo, H. S., Msaky, D. S., Abbasi, S.,
Kihonda, J., Bwanaly, H., & Okumu, F. O. (2020). Comparative assessment
of insecticide resistance phenotypes in two major malaria vectors,
Anopheles funestus and Anopheles arabiensis in south-eastern Tanzania.Malaria Journal , 19 (1), 408.
https://doi.org/10.1186/s12936-020-03483-3
Rajaby, R., & Sung, W.-K. (2018). TranSurVeyor: an improved
database-free algorithm for finding non-reference transpositions in
high-throughput sequencing data. Nucleic Acids Research ,46 (20), e122. https://doi.org/10.1093/nar/gky685
Riveron, J. M., Huijben, S., Tchapga, W., Tchouakui, M., Wondji, M. J.,
Tchoupo, M., Irving, H., Cuamba, N., Maquina, M., Paaijmans, K., &
Wondji, C. S. (2019). Escalation of Pyrethroid Resistance in the Malaria
Vector Anopheles funestus Induces a Loss of Efficacy of Piperonyl
Butoxide–Based Insecticide-Treated Nets in Mozambique. The
Journal of Infectious Diseases , 220 (3), 467–475.
https://doi.org/10.1093/infdis/jiz139
Riveron, J. M., Irving, H., Ndula, M., Barnes, K. G., Ibrahim, S. S.,
Paine, M. J. I., & Wondji, C. S. (2013). Directionally selected
cytochrome P450 alleles are driving the spread of pyrethroid resistance
in the major malaria vector Anopheles funestus. Proceedings of the
National Academy of Sciences of the United States of America ,110 (1), 252–257. https://doi.org/10.1073/pnas.1216705110
Riveron, J. M., Yunta, C., Ibrahim, S. S., Djouaka, R., Irving, H.,
Menze, B. D., Ismail, H. M., Hemingway, J., Ranson, H., Albert, A., &
Wondji, C. S. (2014). A single mutation in the GSTe2 gene allows
tracking of metabolically based insecticide resistance in a major
malaria vector. Genome Biology , 15 (2), R27.
https://doi.org/10.1186/gb-2014-15-2-r27
Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data
by the comparative CT method. Nature Protocols , 3 (6),
1101–1108. https://doi.org/10.1038/nprot.2008.73
Snounou, G., Viriyakosol, S., Xin Ping Zhu, Jarra, W., Pinheiro, L., do
Rosario, V. E., Thaithong, S., & Brown, K. N. (1993). High sensitivity
of detection of human malaria parasites by the use of nested polymerase
chain reaction. Molecular and Biochemical Parasitology ,61 (2), 315–320. https://doi.org/10.1016/0166-6851(93)90077-B
Staedke, S. G., Gonahasa, S., Dorsey, G., Kamya, M. R.,
Maiteki-Sebuguzi, C., Lynd, A., Katureebe, A., Kyohere, M., Mutungi, P.,
Kigozi, S. P., Opigo, J., Hemingway, J., & Donnelly, M. J. (2020).
Effect of long-lasting insecticidal nets with and without piperonyl
butoxide on malaria indicators in Uganda (LLINEUP): a pragmatic,
cluster-randomised trial embedded in a national LLIN distribution
campaign. The Lancet , 395 (10232), 1292–1303.
https://doi.org/10.1016/S0140-6736(20)30214-2
Wamba, A. N. R., Ibrahim, S. S., Kusimo, M. O., Muhammad, A., Mugenzi,
L. M. J., Irving, H., Wondji, M. J., Hearn, J., Bigoga, J. D., &
Wondji, C. S. (2021). The cytochrome P450 CYP325A is a major driver of
pyrethroid resistance in the major malaria vector Anopheles funestus in
Central Africa. Insect Biochemistry and Molecular Biology ,138 , 103647. https://doi.org/10.1016/j.ibmb.2021.103647
Weedall, G. D., Mugenzi, L. M. J., Menze, B. D., Tchouakui, M., Ibrahim,
S. S., Amvongo-Adjia, N., Irving, H., Wondji, M. J., Tchoupo, M.,
Djouaka, R., Riveron, J. M., & Wondji, C. S. (2019). A cytochrome P450
allele confers pyrethroid resistance on a major African malaria vector,
reducing insecticide-treated bednet efficacy. Sci. Transl. Med ,11 (March), 7386. http://stm.sciencemag.org/
Weedall, G. D., Riveron, J. M., Hearn, J., Irving, H., Kamdem, C.,
Fouet, C., White, B. J., & Wondji, C. S. (2020). An Africa-wide genomic
evolution of insecticide resistance in the malaria vector Anopheles
funestus involves selective sweeps, copy number variations, gene
conversion and transposons. PLoS Genetics , 16 (6), 1–29.
https://doi.org/10.1371/journal.pgen.1008822
Weetman. (2018). Candidate-gene based GWAS identifies reproducible DNA
markers for metabolic pyrethroid resistance from standing genetic
variation in East African Anopheles gambiae. Scientific Reports ,8 (1), 1–12. https://doi.org/10.1038/s41598-018-21265-5
Weill, M., Malcolm, C., Chandre, F., Mogensen, K., Berthomieu, A.,
Marquine, M., & Raymond, M. (2004). The unique mutation in ace-1 giving
high insecticide resistance is easily detectable in mosquito vectors.Insect Molecular Biology , 13 (1), 1–7.
https://doi.org/10.1111/j.1365-2583.2004.00452.x
Weischenfeldt, J., Symmons, O.-4. 3k. S. data/manuscript/proof
reading/1-combined/articles/weischenfeldt2013. pdfrsoly., Spitz, F., &
Korbel, J. O. (2013). Phenotypic impact of genomic structural variation:
insights from and for human disease. Nature Reviews Genetics ,14 (2), 125–138. https://doi.org/10.1038/nrg3373
WHO. (2013). for Laboratory and . 102.
WHO. (2016). Test procedures for insecticide resistance monitoring
in malaria vector mosquitoes Second edition .
WHO. (2021). World Malaria Report 2021 .
https://apps.who.int/iris/handle/10665/350147
Wipf, N. C., Duchemin, W., Kouadio, F.-P. A., Fodjo, B. K., Sadia, C.
G., Mouhamadou, C. S., Vavassori, L., Mäser, P., Mavridis, K., Vontas,
J., & Müller, P. (2022). Multi-insecticide resistant malaria vectors in
the field remain susceptible to malathion, despite the presence of Ace1
point mutations. PLoS Genetics , 18 (2), e1009963.
https://doi.org/10.1371/journal.pgen.1009963