References
Bjerge, K., Alison, J., Dyrmann, M., Frigaard, C.E., Mann, H.M.R., Høye,
T.T., 2023. Accurate detection and identification of insects from camera
trap images with deep learning. PLOS Sustainability and Transformation
2, e0000051. https://doi.org/10.1371/journal.pstr.0000051
Bolker, B., 2022. Getting started with the glmmTMB package. 8pp.
<https://cran.r-project.org/web/packages/glmmTMB/vignettes/glmmTMB.pdf>
Brooks, M.E., Kristensen, K., Benthem, K.J. van, Magnusson, A., Berg,
C.W., Nielsen, A., Skaug, H.J., Mächler, M., Bolker, B.M., 2017. glmmTMB
Balances Speed and Flexibility Among Packages for Zero-inflated
Generalized Linear Mixed Modeling. The R Journal 9, 378–400.
Burton, A.C., Neilson, E., Moreira, D., Ladle, A., Steenweg, R., Fisher,
J.T., Bayne, E., Boutin, S., 2015. REVIEW: Wildlife camera trapping: a
review and recommendations for linking surveys to ecological processes.
J Appl Ecol 52, 675–685. https://doi.org/10.1111/1365-2664.12432
CAFF, 2018. A Global Audit of the Status and Trends of Arctic and
Northern Hemisphere Goose Populations. Conservation of Arctic Flora and
Fauna International Secretariat, Akureyri, Iceland.
Caravaggi, A., Banks, P.B., Burton, A.C., Finlay, C.M.V., Haswell, P.M.,
Hayward, M.W., Rowcliffe, M.J., Wood, M.D., 2017. A review of camera
trapping for conservation behaviour research. Remote Sens Ecol Conserv
3, 109–122. https://doi.org/10.1002/rse2.48
Firth, A.G., Baker, B.H., Gibbs, M.-L., Brooks, J.P., Smith, R., Iglay,
R.B., Davis, J.B., 2020. Using cameras to index waterfowl abundance in
winter-flooded rice fields. MethodsX 7, 101036.
https://doi.org/10.1016/j.mex.2020.101036
Fox, A.D., Ebbinge, B.S., Mitchell, C., Heinicke, T., Aarvak, T.,
Colhoun, K., Clausen, P., Dereliev, S., Faragó, S., Koffijberg, K.,
Kruckenberg, H., Loonen, M.J.J.E., Madsen, J., Mooij, J., Musil, P.,
Nilsson, L., Pihl, S., Van der Jeugd, H., 2010. Current estimates of
goose population sizes in western Europe, a gap analysis and an
assessment of trends. Ornis Svecica 20, 115–127.
https://doi.org/10.34080/os.v20.19922
Gracanin, A., Mikac, K.M., 2022. Camera traps reveal overlap and
seasonal variation in the diel activity of arboreal and semi-arboreal
mammals. Mamm Biol 102, 341–355.
https://doi.org/10.1007/s42991-021-00218-y
Hardin, J.W., Hilbe, J.M., 2018. Generalized linear models and
extensions, Fourth edition. ed. Stata Press, College Station, Texas. 598
pp.
Hartig, F., 2022. DHARMa: Residual Diagnostics for Hierarchical
(Multi-Level / Mixed) Regression Models.
<https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html>
Hilton, M.L., Goessling, J.M., Knezevich, L.M., Downer, J.M., 2022.
Utility of machine learning for segmenting camera trap time-lapse
recordings. Wildlife Society Bulletin 46, e1342.
https://doi.org/10.1002/wsb.1342
Jacobs, C.E., Ausband, D.E., 2018. An evaluation of camera trap
performance – What are we missing and does deployment height matter?
Remote Sensing in Ecology and Conservation 4, 352–360.
https://doi.org/10.1002/rse2.81
Kahle, D., Wickham, H., 2013. ggmap: Spatial Visualization with ggplot2.
The R Journal 5, 144–161.
Kanka, P., Sukmasuang, R., Duengkae, P., Siripattaranukul, K., 2023.
Abundance and physical factors affecting the appearance of selected
terrestrial birds in Khao Yai National Park using camera trapping.
Biodiversitas 24. https://doi.org/10.13057/biodiv/d240127
Kear, J. (Ed.), 2005. Ducks, geese, and swans: Bird families of the
world. Oxford University Press, Oxford; New York. 930pp.
Laux, A., Waltert, M., Gottschalk, E., 2022. Camera trap data suggest
uneven predation risk across vegetation types in a mixed farmland
landscape. Ecology and Evolution 12. https://doi.org/10.1002/ece3.9027
Lehikoinen, A., Jukarainen, A., Mikkola-Roos, M., Below, A., Lehtiniemi,
T., Pessa, J., Rajasärkkä, A., Rintala, J., Rusanen, P., Sirkiä, P.,
Tiainen, J., Valkama, J., 2019. Birds, in: Hyvärinen, E., Juslén, A.,
Kemppainen, E., Uddström, A., Liukko, U.-M. (Eds.), The 2019 Red List of
Finnish Species. Ministry of the Environment & Finnish Environment
Institute, Helsinki, Finland, pp. 560–570.
Li, J., Xue, Y., Zhang, Y., Dong, W., Shan, G., Sun, R., Hacker, C., Wu,
B., Li, D., 2020. Spatial and temporal activity patterns of Golden takin
(Budorcas taxicolor bedfordi ) recorded by camera trapping. PeerJ
8, e10353. https://doi.org/10.7717/peerj.10353
Moeller, A.K., Waller, S.J., DeCesare, N.J., Chitwood, M.C., Lukacs,
P.M., 2023. Best practices to account for capture probability and
viewable area in camera-based abundance estimation. Remote Sensing in
Ecology and Conservation 9, 152–164. https://doi.org/10.1002/rse2.300
Nykänen, M., Pöysä, H., Hakkarainen, S., Rajala, T., Matala, J.,
Kunnasranta, M., 2021. Seasonal and diel activity patterns of the
endangered taiga bean goose (Anser fabalis fabalis ) during the
breeding season, monitored with camera traps. PLOS ONE 16, e0254254.
https://doi.org/10.1371/journal.pone.0254254
Palencia, P., Vicente, J., Soriguer, R.C., Acevedo, P., 2022. Towards a
best-practices guide for camera trapping: assessing differences among
camera trap models and settings under field conditions. Journal of
Zoology 316, 197–208. https://doi.org/10.1111/jzo.12945
Piironen, A., Fox, A.D., Kampe-Persson, H., Skyllberg, U., Therkildsen,
O.R., Laaksonen, T., 2023. When and where to count? Implications of
migratory connectivity and nonbreeding distribution to population
censuses in a migratory bird population. Population Ecology 65,
121–132. https://doi.org/10.1002/1438-390X.12143
Pirkola, M.K., Kalinainen, P., 1984. The status, habitats and
productivity of breeding populations of Bean Goose, Anser fabalis
fabalis , in Finland. Swedish Wildlife Research 13, 9–48.
Pomezanski, D., Bennett, L., 2018. Developing recommendations for
monitoring wildlife underpass usage using trail cameras. Environ Monit
Assess 190, 413. https://doi.org/10.1007/s10661-018-6794-0
Puffer, S.R., Tennant, L.A., Lovich, J.E., Agha, M., Smith, A.L.,
Delaney, D.K., Arundel, T.R., Fleckenstein, L.J., Briggs, J., Walde,
A.D., Ennen, J.R., 2021. Birds not in flight: using camera traps to
observe ground use of birds at a wind-energy facility. Wildlife Research
49, 283–294. https://doi.org/10.1071/WR21071
R Core Team, 2023. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria.
Rovero, F., Zimmermann, F., Berzi, D., Meek, P., 2013. “Which camera
trap type and how many do I need?” A review of camera features and
study designs for a range of wildlife research applications. Hystrix,
the Italian Journal of Mammalogy 24.
https://doi.org/10.4404/hystrix-24.2-8789
Salvatori, M., Oberosler, V., Rinaldi, M., Franceschini, A., Truschi,
S., Pedrini, P., Rovero, F., 2023. Crowded mountains: Long-term effects
of human outdoor recreation on a community of wild mammals monitored
with systematic camera trapping. Ambio.
https://doi.org/10.1007/s13280-022-01825-w
Santini, G., Abolaffio, M., Ossi, F., Franzetti, B., Cagnacci, F.,
Focardi, S., 2022. Population assessment without individual
identification using camera-traps: A comparison of four methods. Basic
and Applied Ecology 61, 68–81.
https://doi.org/10.1016/j.baae.2022.03.007
Scott, D.A., Rose, P.M., 1996. Atlas of the Anatidae populations in
Africa and western Eurasia. Wetlands International, Wageningen, The
Netherlands.
Sperry, J.H., O’Hearn, D., Drake, D.R., Hruska, A.M., Case, S.B.,
Vizentin-Bugoni, J., Arnett, C., Chambers, T., Tarwater, C.E., 2021.
Fruit and seed traits of native and invasive plant species in Hawai‘i:
implications for seed dispersal by non-native birds. Biol Invasions 23,
1819–1835. https://doi.org/10.1007/s10530-021-02473-z
Taylor, J.C., Bates, S.B., Whiting, J.C., McMillan, B.R., Larsen, R.T.,
2022. Using camera traps to estimate ungulate abundance: a comparison of
mark–resight methods. Remote Sensing in Ecology and Conservation 8,
32–44. https://doi.org/10.1002/rse2.226
Wearn, O.R., Glover-Kapfer, P., 2019. Snap happy: camera traps are an
effective sampling tool when compared with alternative methods. R. Soc.
open sci. 6, 181748. https://doi.org/10.1098/rsos.181748
Wei, W., Luo, G., Ran, J., Li, J., 2020. Zilong: A tool to identify
empty images in camera-trap data. Ecological Informatics 55, 101021.
https://doi.org/10.1016/j.ecoinf.2019.101021
Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis.
Springer-Verlag New York.