REFERENCES
[1] V. Unsur, N. Chen, and A. Ebong, “A mathematical investigation
of the impact of gridline and busbar patterns on commercial silicon
solar cell performance,” Journal of Computational Electronics ,
vol. 19, pp. 854–865, 2020.
[2] A. D. Haigh, “Fired through Printed Contacts on Antireflection
Coated Silicon Solar Cells,” 1976.
[3] G. Schubert, F. Huster, and P. Fath, “Physical understanding of
printed thick-film front contacts of crystalline Si solar cells—Review
of existing models and recent developments,” Solar energy
materials and solar cells , vol. 90, no. 18–19, pp. 3399–3406, 2006.
[4] E. L. Ralph, “Recent advancements in low cost solar cell
processing,” in 11th Photovoltaic Specialists Conference , 1975,
p. 315.
[5] B. Hallam et al. , “The silver learning curve for
photovoltaics and projected silver demand for net-zero emissions by
2050,” Progress in Photovoltaics: Research and Applications ,
vol. n/a, no. n/a, doi: 10.1002/pip.3661.
[6] K. Branker, M. J. M. Pathak, and J. M. Pearce, “A review of
solar photovoltaic levelized cost of electricity,” Renewable and
sustainable energy reviews , vol. 15, no. 9, pp. 4470–4482, 2011.
[7] P. J. Verlinden, “Future challenges for photovoltaic
manufacturing at the terawatt level,” Journal of Renewable and
Sustainable Energy , vol. 12, no. 5, p. 053505, Sep. 2020, doi:
10.1063/5.0020380.
[8] G. Limodio et al. , “Copper-plating metallization with
alternative seed layers for c-Si solar cells embedding carrier-selective
passivating contacts,” IEEE journal of photovoltaics , vol. 10,
no. 2, pp. 372–382, 2019.
[9] A. Mette, P. L. Richter, M. Hörteis, and S. W. Glunz, “Metal
aerosol jet printing for solar cell metallization,” Progress in
Photovoltaics: Research and Applications , vol. 15, no. 7, pp. 621–627,
2007.
[10] S. Glunz, A. Mette, M. Alemán, P. Richter, A. Filipovic, and G.
Willeke, “New concepts for the front side metallization of silicon
solar cells,” in 21st European photovoltaic solar energy
conference and exhibition , 2006, p. 8.
[11] S. W. Glunz et al. , “Progress in advanced metallization
technology at Fraunhofer ISE,” in 2008 33rd IEEE Photovoltaic
Specialists Conference , May 2008, pp. 1–4. doi:
10.1109/PVSC.2008.4922746.
[12] A. U. Rehman and S. H. Lee, “Review of the potential of the
Ni/Cu plating technique for crystalline silicon solar cells,”Materials , vol. 7, no. 2, pp. 1318–1341, 2014.
[13] M. C. Raval and C. S. Solanki, “Review of Ni-Cu based front
side metallization for c-Si solar cells,” Journal of Solar
Energy , vol. 2013, p. 20, 2013.
[14] M. Yoshida, H. Tokuhisa, U. Itoh, T. Kamata, I. Sumita, and S.
Sekine, “Novel low-temperature-sintering type Cu-alloy pastes for
silicon solar cells,” Energy Procedia , vol. 21, pp. 66–74,
2012.
[15] D. Wood et al. , “Non-contacting busbars for advanced
cell structures using low temperature copper paste,” Energy
Procedia , vol. 67, pp. 101–107, 2015.
[16] K. Nakamura, T. Takahashi, and Y. Ohshita, “Novel silver and
copper pastes for n-type bi-facial PERT cell,” in 31st European
Photovoltaic Solar Energy Conference and Exhibition , 2015, pp.
536–539.
[17] S. Huneycutt, A. Ebong, K. Ankireddy, R. Dharmadasa, and T.
Druffel, “Understanding the Solar Cell Contacts With Atmospheric
Screen-printed Copper,” in 2022 IEEE 49th Photovoltaics
Specialists Conference (PVSC) , IEEE, 2022, pp. 0937–0940.
[18] N. Chen et al. , “Thermal Stable High-Efficiency Copper
Screen Printed Back Contact Solar Cells,” Solar RRL , vol. 7, no.
2, p. 2200874, 2023, doi: 10.1002/solr.202200874.
[19] D. Rudolph et al. , “Screen printable, non-fire-through
copper paste applied as busbar metallization for back contact solar
cells,” presented at the PROCEEDINGS OF THE 10TH WORKSHOP ON
METALLIZATION AND INTERCONNECTION FOR CRYSTALLINE SILICON SOLAR CELLS,
Genk, Belgium, 2022, p. 020006. doi: 10.1063/5.0127359.
[20] M. C. Raval and C. S. Solanki, “Characterization of
electroless nickel as a seed layer for silicon solar cell
metallization,” Bulletin of Materials Science , vol. 38, pp.
197–201, 2015.
[21] G. Limodio et al. , “Copper-Plating Metallization With
Alternative Seed Layers for c-Si Solar Cells Embedding Carrier-Selective
Passivating Contacts,” IEEE Journal of Photovoltaics , vol. 10,
no. 2, pp. 372–382, Mar. 2020, doi: 10.1109/JPHOTOV.2019.2957671.
[22] T. Fellmeth, A. Born, A. Kimmerle, F. Clement, D. Biro, and R.
Preu, “Recombination at Metal-Emitter Interfaces of Front Contact
Technologies for Highly Efficient Silicon Solar Cells,” Energy
Procedia , vol. 8, pp. 115–121, Jan. 2011, doi:
10.1016/j.egypro.2011.06.111.
[23] P. Padhamnath et al. , “Characterization of screen
printed and fire-through contacts on LPCVD based passivating contacts in
monoPolyTM solar cells,” Solar Energy , vol.
202, pp. 73–79, May 2020, doi: 10.1016/j.solener.2020.03.087.
[24] M. Li, J. Wong, N. Chen, A. G. Aberle, and R. Stangl,
“Determination of Metallization-Induced Recombination Losses of
Screen-Printed Silicon Solar Cell Contacts and Their Dependence on the
Doping Profile,” IEEE Journal of Photovoltaics , vol. 8, no. 6,
pp. 1470–1477, Nov. 2018, doi: 10.1109/JPHOTOV.2018.2866177.
[25] V. Unsur, T. Klein, M. F. van Hest, M. Al Jassim, and A. Ebong,
“Rapid thermal processing of cost-effective contacts for silicon solar
cells,” Progress in Photovoltaics: Research and Applications ,
vol. 27, no. 5, pp. 453–459, 2019.
[26] Y. Zhang, M. Kim, L. Wang, P. Verlinden, and B. Hallam,
“Design considerations for multi-terawatt scale manufacturing of
existing and future photovoltaic technologies: challenges and
opportunities related to silver, indium and bismuth consumption,”Energy & Environmental Science , vol. 14, no. 11, pp. 5587–5610,
2021, doi: 10.1039/D1EE01814K.
[27] D. Ray, “Lazard’s Levelized Cost of Energy Analysis—Version
16.0,” p. 21, 2023.