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Summary

This paper handles the identification of nonlinear systems through linear time-
varying (LTV) approximation. The mathematical form of the nonlinear system
is unknown and regenerated through an experiment followed by LTV and linear
parameter-varying (LPV) estimation and integration. By employing a well-designed
experiment the linearized model of the nonlinear system around a time-varying tra-
jectory is obtained. The result is an LTV approximation of the nonlinear system
around that trajectory. Having estimated the LTV model, an LPV model is identified.
It is shown that the parameter-varying (PV) coefficients of this LPV model are par-
tial derivatives of the nonlinear system evaluated at the trajectory. In this paper, we
will show that there exists a relation between the LPV coefficients. This structural
relation in the LPV model ensures the integrability of PV coefficients for nonlin-
ear reconstruction. Indeed, the vector of the LPV coefficients is the gradient of the
nonlinear system evaluated at the trajectory. Then, the nonlinear system is recon-
structed through symbolic integration of the coefficients. The proposed method is
a data-driven scheme that can reconstruct an estimate of the nonlinear system and
its mathematical form using input-output measurements. Finally, the use of the pro-
posed method is illustrated via a simulation example.
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1 INTRODUCTION

Obtaining a sufficiently accurate model is the first step in the design, analysis, and control of dynamical systems. For many

applications modeling based on the first principles is difficult or leads to very complex models which are computationally

expensive with limited applicability. For such applications, data-driven methods could provide more compact and interpretable
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models. In this paper, we investigate the data-driven nonlinear system identification through LTV approximations around a

time-varying trajectory.

Depending on the characteristics of the system and the underlying problem, various methods for identifying nonlinear systems

have been developed. The nonlinear autoregressive moving average with exogenous input (NARMAX) method1,2, block-

oriented methods3,4, nonlinear subspace identification5 and neural networks6,7 are just a few to name. While methods based

on a NARMAX structure have been applied successfully for the identification of nonlinear systems, the main limitation in their

use is prior knowledge about the form and structure of nonlinear equations governing the system. Neural networks require a

large data set for training due to their large parameter space, and selecting the structure of the neural networks is also chal-

lenging. Volterra series are very general tools to approximate nonlinear systems but they are cumbersome to handle and suffer

from the curse of dimensionality. The Restoring Force Surface (RFS) method8 provides satisfactory results for the identifica-

tion of structured second-order systems with multiple degrees of freedom while extending this method to higher-order systems

is challenging. In conclusion, the best choice for the identification method depends on the application at hand and associated

assumptions. However, large parameter space, high-order systems, and prior knowledge of system structure are important issues

in identifying nonlinear systems. The aim of this paper is to present a unified and systematic method to identify a class of contin-

uous time nonlinear systems through linearization. The linearization approach in the identification of nonlinear systems leads to

breaking the problem of identifying the nonlinear system into smaller sub-problems like LTV and LTI models, for which there

exist systematic and optimal tools for estimation (see e.g.9,10,11,12).

In the Jacobian linearization framework, the linearized model around a single or family of equilibrium points corresponds to the

Jacobian of the nonlinear system evaluated at the corresponding point (see for example13,14). These local approximations are

the basis for the local LPV modeling15,16, which is basically the interpolation of a collection of local LTI approximations of the

nonlinear system. Local LPV modeling is one existing approach for modeling the nonlinear system through linearization. While

the validity of the model is confined to the neighborhood of the isolated points. Instead of considering the equilibrium working

points, linearization can be done on a time-varying trajectory. In many applications, this trajectory can be chosen to cover the

envelope of the operational region of the system or the transition between equilibrium working points. In this case, the resulting

system is a global LPV (17,9), where the scheduling variable is the trajectory, and the validity of the model is extended to all the

points along the trajectory and a neighborhood around it. However, since the equations of the nonlinear system are not available,

analytical linearization of the system is not possible. Therefore, we use a data-driven method to identify the linearized system.

In this paper, the experiment is designed in such a way that the nonlinear system can be approximated by an LTV system around

a large trajectory. In18,19 a small deviation of the nonlinear system from a periodic orbit is used to approximate the system by a

linear time-periodic (LTP) system around this limit cycle. Then, by identifying this LTP system, one can reconstruct a nonlinear

model through symbolic integration20. While the form of the nonlinear equations of the system is unknown, with this method,
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the nonlinear system is reconstructed through the identification of the linear system20. In fact, the perturbation data is used to

identify the linear approximation of the system around the trajectory. In the present work, the more general case of an arbitrarily

time-varying trajectory is considered21,22. The nonlinear system is forced on this large slow (stable) trajectory, then we devi-

ate the trajectory slightly via small input perturbations. The perturbation data around the trajectory is used to identify the local

linear approximation of the system. Indeed, this is the nonlinear system linearized around the trajectory. In this paper, we show

that this linear approximation is a trajectory-scheduled LPV system. Since the scheduling variable is a time-varying signal, the

LPV has an LTV representation, so the optimal and systematic LTV estimators can be used (e.g.23,24). Then the associated LPV

model will be obtained from the estimated LTV model. We will show that the vector of the LPV coefficients is the gradient of the

nonlinear system evaluated at the trajectory. Then, we will introduce a model structure for the corresponding LPV. This model

ensures that the vector of the LPV coefficients is always the gradient of an unknown nonlinear system25. Hence, the proposed

LPV parametrization ensures the integration of the LPV coefficients is path independence. Indeed, these coefficients are partial

derivatives of the nonlinear system evaluated at the trajectory. Therefore, by having these coefficients one can regenerate the

nonlinear system equations by symbolic integration. The main contribution of this paper is the proposed nonlinear identification

approach. A new LPV parametrization and formal integration for nonlinear reconstruction are presented. In Section 2, the for-

mulation of the problem is discussed. As a first step in Section 3.1, an experiment is designed so that the nonlinear system can

be approximated around a large slow trajectory by an LTV system. Then the LTV system is identified from input-output mea-

surements using the proposed method in23. In23 a frequency domain kernel-based estimator is proposed for the identification of

continuous-time LTV systems. This method is briefly summarized in Section 3.2. In Section 3.3 using the estimated LTV model,

the corresponding LPV model is built. It is guaranteed that the coefficients of the LPV model is the gradient of an unknown non-

linear differential equation. Finally, the nonlinear differential equation is reconstructed through integration of the LPV model in

Section 3.4. The proposed LPV parametrization ensures that the integration is unique in terms of path independence. Section 4

illustrates the method on a simulation example. The conclusions from this study are summarized in Section 5.

2 PROBLEM FORMULATION

The class of the nonlinear systems that we are interested in is defined as below:

Definition 1 (System under test). We consider a single-input single-output (SISO), continuous in time, nonlinear system which

is defined by the following equation:

𝑓 (𝑦(𝑡),… , 𝑦(𝑛𝑦)(𝑡), 𝑢(𝑡),… , 𝑢(𝑛𝑢)(𝑡)) = 0 (1)



4 Ghasem Sharabiany, Ebrahimkhani, and Lataire

Where 𝑢(𝑡) and 𝑦(𝑡) denote the time domain input and output of the system respectively and 𝑛𝑢 and 𝑛𝑦 are known positive integers.

Also, ∙(𝑛) denotes the 𝑛𝑡ℎ order derivative of ∙. By convention, ∙(0) = ∙. Also, 𝑓 ∶ 𝔻 ←→ ℝ is a static nonlinear function where

𝔻 ⊂ ℝ𝑛𝑢+𝑛𝑦+2.

The aim is to model the system (1) along an arbitrary, smooth system trajectory in a finite time interval. The modeling

procedure involves the linearization of the system along a system trajectory which is called large trajectory, as defined next.

Definition 2 (Large trajectory). Any output of the system (1) with its derivatives up to the order 𝑛𝑦 along with the correspond-

ing input 𝑢(𝑡) with its derivatives up to the order 𝑛𝑢 within the time interval [𝑡𝑖, 𝑡𝑓 ] form a vector function which is called large

trajectory 𝑅(𝑡), as below:

𝑅(𝑡) = [𝑦(𝑡),… , 𝑦(𝑛𝑦)(𝑡), 𝑢(𝑡),… , 𝑢(𝑛𝑢)(𝑡)]𝑇 , 𝑡 ∈ [𝑡𝑖, 𝑡𝑓 ] (2)

The specific large trajectory that the system is linearized around is denoted by 𝑅𝐿(𝑡).

We would like to estimate (1) along 𝑅𝐿(𝑡). For this purpose, another large trajectory other than 𝑅𝐿(𝑡) is required which is

called 𝑅(𝑡). To this end, the following assumptions are made on the system and the domain of large trajectories.

Assumption 1. The domain 𝔻 where the system trajectory 𝑅𝐿(𝑡) and 𝑅(𝑡) lie in, is a simply connected domain. This means that

this domain is an open set containing 𝑅𝐿(𝑡), 𝑅(𝑡) and neighbouring trajectories of the nonlinear system without a hole within it.

More precisely:

𝑅𝐿(𝑡) ∈ 𝔻 ⊂ ℝ𝑛𝑢+𝑛𝑦+2

𝑅(𝑡) ∈ 𝔻 ⊂ ℝ𝑛𝑢+𝑛𝑦+2
(3)

Assumption 2. 𝑓 has continuous second order partial derivatives in 𝔻.

Considering Assumption 2, it is possible to obtain Taylor’s representation of 𝑓 (𝑅(𝑡)) along 𝑅𝐿(𝑡):

𝑓 (𝑅(𝑡)) = 𝑓 (𝑅𝐿(𝑡)) +
𝑛𝑦
∑

𝑛=0

𝜕𝑓
𝜕𝑦(𝑛)

|

|

|

|𝑅𝐿(𝑡)
(𝑦(𝑛)(𝑡) − 𝑦(𝑛)𝐿 (𝑡)) +

𝑛𝑢
∑

𝑚=0

𝜕𝑓
𝜕𝑢(𝑚))

|

|

|

|𝑅𝐿(𝑡)
(𝑢(𝑚)(𝑡) − 𝑢(𝑚)𝐿 (𝑡))+

1
2
(𝑅(𝑡) − 𝑅𝐿(𝑡))𝑇𝐻

|

|

|

|(1−𝑘)𝑅𝐿(𝑡)+𝑘𝑅(𝑡)
(𝑅(𝑡) − 𝑅𝐿(𝑡))

(4)

Where 𝐻 stands for the Hessian matrix and ∙𝐿 are components of the 𝑅𝐿(𝑡). 𝑘 ∈ [0, 1] is a real number.

𝑅𝐿(𝑡) can be the result of an excitation experiment with an arbitrary input 𝑢𝐿(𝑡) or simply measurements of a system in

operation. Here, we don’t assume anything about how 𝑅𝐿(𝑡) is acquired.
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Taylor’s theorem is valid for all 𝑡 ∈ [𝑡𝑖, 𝑡𝑓 ] because both 𝑅𝐿(𝑡) and 𝑅(𝑡) are in 𝔻. Equation (1) enforces 𝑓 (𝑅𝐿(𝑡)) = 𝑓 (𝑅(𝑡)) = 0.

So, we can deduce the below equation:
𝑛𝑦
∑

𝑛=0

𝜕𝑓
𝜕𝑦(𝑛)

|

|

|

|𝑅𝐿(𝑡)
(𝑦(𝑛)(𝑡) − 𝑦(𝑛)𝐿 (𝑡)) +

𝑛𝑢
∑

𝑚=0

𝜕𝑓
𝜕𝑢(𝑚))

|

|

|

|𝑅𝐿(𝑡)
(𝑢(𝑚)(𝑡) − 𝑢(𝑚)𝐿 (𝑡)) + 1

2
(𝑅(𝑡) − 𝑅𝐿(𝑡))𝑇𝐻

|

|

|

|(1−𝑘)𝑅𝐿(𝑡)+𝑘𝑅(𝑡)
(𝑅(𝑡) − 𝑅𝐿(𝑡)) = 0

(5)

The goal is to obtain a linear model around 𝑅𝐿(𝑡). But, second order terms are detrimental here. Therefore, second order term

in (5) must be as small as possible such that it is possible to assume that this term is negligible.

Assumption 3. It is assumed that second order terms are negligible compared to the linear part

‖

‖

‖

‖

‖

1
2
(𝑅(𝑡) − 𝑅𝐿(𝑡))𝑇𝐻

|

|

|

|(1−𝑘)𝑅𝐿(𝑡)+𝑘𝑅(𝑡)
(𝑅(𝑡) − 𝑅𝐿(𝑡))

‖

‖

‖

‖

‖

≪
|

|

|

|

|

|

|

|

|

|

𝑛𝑦
∑

𝑛=0

𝜕𝑓
𝜕𝑦(𝑛)

|

|

|

|𝑅𝐿(𝑡)
(𝑦(𝑛)(𝑡) − 𝑦(𝑛)𝐿 (𝑡)) +

𝑛𝑢
∑

𝑚=0

𝜕𝑓
𝜕𝑢(𝑚))

|

|

|

|𝑅𝐿(𝑡)
(𝑢(𝑚)(𝑡) − 𝑢(𝑚)𝐿 (𝑡))

|

|

|

|

|

|

|

|

|

|

Definition 3 (slightly perturbed large trajectory). A large trajectory 𝑅(𝑡) that fullfils assumption (3) is a slightly perturbed large

trajectory.

Definition 4 (Small trajectory). A small trajectory is a difference between a slightly perturbed large trajectory 𝑅(𝑡) and 𝑅𝐿(𝑡).

The small trajectory will be denoted by 𝑅̃(𝑡). More precisely:

𝑅̃(𝑡) = 𝑅(𝑡) − 𝑅𝐿(𝑡)

𝑅̃(𝑡) = [𝑦̃(𝑡),… , 𝑦̃(𝑛𝑦)(𝑡), 𝑢̃(𝑡),… , 𝑢̃(𝑛𝑢)(𝑡)]𝑇 , 𝑡 ∈ [𝑡𝑖, 𝑡𝑓 ]
(6)

where 𝑅(𝑡) is a “slightly perturbed large trajectory” according to definition 3.

In theory, it is possible to make the second order terms negligible by making 𝑅̃(𝑡) as small as possible. But, in practice,

this may lead to a poor SNR. So, there is a trade-off between SNR and nonlinear distortions. It is possible to tune this

trade-off by prior knowledge about the system, by gradually increasing the small trajectory in an iterative procedure to

check for nonlinear distortions (possibly via a non-parametric method like26) or simply by estimating the linear model

and validating it. Anyway, if it is not possible to maintain this trade-off, it is not possible to use this approach towards

nonlinear identification.

Considering assumption (3), we can proceed and deduce the below equation from (5):
𝑛𝑦
∑

𝑛=0

𝜕𝑓
𝜕𝑦(𝑛)

|

|

|

|𝑅𝐿(𝑡)
𝑦̃(𝑛)(𝑡) +

𝑛𝑢
∑

𝑚=0

𝜕𝑓
𝜕𝑢(𝑚))

|

|

|

|𝑅𝐿(𝑡)
𝑢̃(𝑚)(𝑡) = 0 (7)
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The main contribution of this paper is the estimation of the system (1) along 𝑅𝐿(𝑡). This goal is achieved in a sequential

procedure with (7) as its first step. As (7) is linear time-varying, it is also possible to express it explicitly as a linear time-varying

model as below :

Definition 5. The linear time-varying system which is constructed in a linearization procedure described as above is called

“true LTV system” from now on and is defined precisely as :
𝑛𝑦
∑

𝑛=0
𝑎𝑛(𝑡)𝑦̃(𝑛)(𝑡) +

𝑛𝑢
∑

𝑚=0
𝑏𝑚(𝑡)𝑢̃(𝑚)(𝑡) = 0

𝑎𝑛(𝑡) =
𝜕𝑓
𝜕𝑦(𝑛)

|

|

|

|𝑅𝐿(𝑡)
, 𝑏𝑚(𝑡) =

𝜕𝑓
𝜕𝑢(𝑚)

|

|

|

|𝑅𝐿(𝑡)

(8)

The model (8) will be estimated as an intermediate step towards model (7), which will in turn be used to reconstruct the full

nonlinear model (1).

3 PROPOSED APPROACH

In this section, the LTV and LPV models (8) and (7) are estimated in Sections 3.2 and 3.3 respectively, from which the nonlinear

model will be reconstructed in Section 3.4. First, the design of the experiment is considered.

3.1 Experiment Design

While the nonlinear function (1) is unknown, we use experimental data to obtain its linearized model. Consider a large trajectory

𝑅𝐿(𝑡) of the system in Definition 2. Then, 𝑅𝐿(𝑡) is perturbed by adding some small input signals 𝑢̃(𝑡), which leads to a slightly

perturbed large trajectory 𝑅(𝑡) under Definition 3. This input perturbation is typically a small-fast signal which leads to small

fast variations around 𝑅𝐿(𝑡). To identify the LTV system (8) we need to obtain the large trajectory 𝑅𝐿(𝑡) and small trajectory

𝑅̃(𝑡) separately. Therefore, we perform two experiments:

1. With only a large trajectory 𝑢𝐿(𝑡) as excitation, resulting in 𝑅𝐿(𝑡).

2. By adding some input perturbations, resulting in the slightly perturbed large trajectory 𝑅(𝑡).

Then the small trajectory 𝑅̃(𝑡) can be computed in (6).
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Assumption 4. The influence of input and output derivatives on LPV coefficients is negligible and the coefficients can be

approximated as follows

𝑎𝑛(𝑡) ≈
𝜕𝑓
𝜕𝑦(𝑛)

|

|

|

|[𝑦𝐿(𝑡),𝑢𝐿(𝑡)]

𝑏𝑚(𝑡) ≈
𝜕𝑓
𝜕𝑢(𝑚)

|

|

|

|[𝑦𝐿(𝑡),𝑢𝐿(𝑡)]
(9)

This assumption makes the scheduling vector of the LPV a measurable quantity. And (9) can be satisfied through experiment,

by making the large trajectory slow enough. However, if the trajectory of the system is directly measurable then this assumption

can be relaxed.

3.2 LTV Estimation

The obtained perturbation data around 𝑅𝐿(𝑡) satisfy the model structure (8) which is the LTV approximation of the system

around𝑅𝐿(𝑡). The goal of this section is to estimate the time-varying coefficients 𝑎𝑛(𝑡) and 𝑏𝑚(𝑡) in (8). This is mainly achieved by

parametrization of the LTV coefficients and minimizing an empirical cost function over the measurement time. Many estimators

have been proposed to identify LTV systems27,28,29, however, any LTV estimator for the model structure (8) is applicable.

Definition 6 (Estimated LTV coefficients). We define the estimation of time-varying coefficients of the LTV system (8) as 𝑎̂𝑛(𝑡),

𝑏̂𝑚(𝑡), respectively. Which are the result of any appropriate LTV estimation with the model structure (8).

For example, a consistent estimate of the coefficients is presented in24. And in23, a regularized weighted least squares method

is proposed to estimate the coefficients in a smooth reproducing kernel Hilbert space.

Since the considered nonlinear system is continuous and in the input-output form, we employ a frequency domain kernel-

based estimator23 to identify these LTV systems. This estimator adopts a mixed time and frequency domain formulation which

enables the identification of continuous-time LTV systems. The time-varying coefficients 𝑎𝑛(𝑡), 𝑏𝑚(𝑡) are estimated as minimizers

of a regularized weighted least squares cost function using input/output measurements in the frequency domain in order to

impose the smoothness of the time-varying coefficients. While the LTV approximation is based on the small perturbation of the

large trajectory, measurement noise could be an issue in the LTV identification. The estimator23 is used because it can provide

reliable results in the presence of input-output measurement noise. On the other hand, the model complexity selection of the

time-varying parameters can be formulated as an optimization problem with continuous variables.
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3.3 LPV Model

The LTV model (8) has an LPV representation. In the most general form, the time-varying coefficients 𝑎𝑛(𝑡), 𝑏𝑚(𝑡) are functions

of the large trajectory:

Definition 7 (Parameter-varying coefficients). We define the parameter-varying coefficients of the system (8) as follows

𝑎𝑛(𝑡) = 𝑎𝑛(𝑅𝐿(𝑡))

𝑏𝑚(𝑡) = 𝑏𝑚(𝑅𝐿(𝑡))
(10)

Then the LTV (8) can be seen as an LPV system (7) in which the scheduling vector is the large trajectory. The coefficients (10)

are the partial derivatives of the function 𝑓 (.) evaluated at the large trajectory (see (7)). Having these derivatives, the function 𝑓 (.)

can be reconstructed through symbolic integration. But modeling these coefficients as a combination of general basis functions

does not necessarily lead to an LPV with integrable coefficients25. In the following, we impose a set of constraints that ensure

that the vector of parameter-varying coefficients of the LPV model is always a gradient vector.

Definition 8. For the sake of clarity, we define the following two vectors:

C(𝑅𝐿(𝑡)) = [𝑎0(𝑅𝐿(𝑡)),… , 𝑎𝑛𝑦(𝑅𝐿(𝑡)), 𝑏0(𝑅𝐿(𝑡)),… , 𝑏𝑛𝑢(𝑅𝐿(𝑡))] = [𝑐1(𝑅𝐿(𝑡)), 𝑐2(𝑅𝐿(𝑡)),… , 𝑐𝑛𝑢+𝑛𝑦+2(𝑅𝐿(𝑡))] (11)

𝑅𝐿(𝑡) = [𝑟1(𝑡),… , 𝑟𝑛𝑢+𝑛𝑦+2(𝑡)] = [𝑦𝐿(𝑡),… , 𝑦(𝑛𝑦)𝐿 (𝑡), 𝑢𝐿(𝑡),… , 𝑢(𝑛𝑢)𝐿 (𝑡)] (12)

Definition 9 (Curl-free vector field). Consider a vector field 𝐶 ∈ 1 defined on 𝔻, then the Curl operator is defined as:

Curl(𝐶) = ∇ × 𝐶 (13)

where ∇ is the vector differential (gradient) operator and × is the cross product. Then, 𝐶 is curl-free when its curl is equal to

zero (see30, Section 16).

Since the integration of the gradient vector field is independent of the integration path30, Section 16, to reconstruct the NL system

from the LPV coefficients, the parameterization of the LPV coefficients must be in such a way that it is always a gradient.

Theorem 1. Consider the nonlinear system (1) and the LPV system (7). The vector of LPV coefficients (7) is the gradient of

an unknown function, if the large trajectory lies in a simply connected domain 𝔻 and the vector of PV coefficients are curl-free.

Then the parametrization of the LPV must satisfy the following constraint:

∇ × C(𝑅𝐿(𝑡)) = 0 (14)

which can be expanded as:
𝜕𝑐𝑖(𝑅𝐿(𝑡))

𝜕𝑟𝑗
=

𝜕𝑐𝑗(𝑅𝐿(𝑡))
𝜕𝑟𝑖

(15)
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with 𝑖, 𝑗 = 1, 2,… , (𝑛𝑢 + 𝑛𝑦 + 2), 𝑖 ≠ 𝑗, and under the Assumption 4 simplified to

𝜕𝑎0(𝑦𝐿(𝑡), 𝑢𝐿(𝑡))
𝜕𝑢𝐿

=
𝜕𝑏0(𝑦𝐿(𝑡), 𝑢𝐿(𝑡))

𝜕𝑦𝐿
. (16)

Proof. The parameter-varying coefficients 𝑎𝑛(𝑅𝐿(𝑡)) and 𝑏𝑚(𝑅𝐿(𝑡)) are partial derivatives of an unknown function 𝑓 (.). We put

all of these partial derivatives into a vector in (11). Then, we guarantee that this vector is always a gradient. The necessary and

sufficient condition for a vector field to be a gradient is that its curl is zero in a simply connected domain (see Section 1630).

This is obtained by satisfying the condition (15) in 𝔻.

Theorem 1 shows that the LPV coefficients are related, and relation (15) must be considered in the LPV estimation. Otherwise,

there is no guarantee that the coefficients are integrable in terms that the integration is unique and path independent.

We estimate the LPV model by having the estimated LTV coefficients in Definition 6. We start by parameterizing the LPV

coefficients by a linear combination of known/chosen basis functions so that the scheduling signal is the large trajectory 𝑅𝐿(𝑡).

It is possible to approximate the LPV coefficients (10) as follows:

𝑎𝑛(𝑅𝐿(𝑡)) =
𝑁𝑝
∑

𝑖=0
𝛼𝑛,𝑖𝜙𝑖(𝑅𝐿(𝑡))

𝑏̌𝑚(𝑅𝐿(𝑡)) =
𝑁𝑝
∑

𝑖=0
𝛽𝑚,𝑖𝜙𝑖(𝑅𝐿(𝑡))

(17)

where 𝛼𝑛,𝑖, 𝛽𝑚,𝑖 are unknown constants to be estimated, 𝜙𝑖(𝑅𝐿(𝑡)) are basis functions, and 𝑁𝑝 is the expansion order.

To estimate the LPV model, as a first step, we select the type of basis functions and the expansion order 𝑁𝑝 in (17). To guar-

antee the zero curl of the LPV model coefficients, condition (15) is applied to the parametrization (17). Note that applying (15)

to the LPV parametrization can change the expansion order 𝑁𝑝 for some coefficients (as shown in25).

Then, the parameters 𝛼𝑛,𝑖, 𝛽𝑚,𝑖 in (17) are obtained using linear regression by considering the estimated LTV coefficients in

Definition 6 as the output of the regression problem.

Definition 10 (Estimated LPV coefficients). We define the estimates of the parameter-varying coefficients of the LPV

representation of (7) as 𝑎𝑛(𝑅𝐿(𝑡)), 𝑏̌𝑚(𝑅𝐿(𝑡)), respectively. These are the solutions of the following problem:

argmin
𝛼𝑛,𝑖,𝛽𝑚,𝑖


⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎝

𝑎𝑛(𝑅𝐿(𝑡))

𝑏̌𝑚(𝑅𝐿(𝑡))

⎞

⎟

⎟

⎟

⎠

−

⎛

⎜

⎜

⎜

⎝

𝑎̂𝑛(𝑡)

𝑏̂𝑚(𝑡)

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

(18)

Where (.) is an empirical cost function aiming to obtain coefficients through data fit (e.g. least squares).

Since the LPV coefficients are dependent (through (15)), the regression problem (18) is a multi-input multi-output problem

that must be solved simultaneously for all coefficients. The LPV estimation procedure is summarized as follows:

1. Consider LPV coefficients (17) and fix the order of expansions for a chosen/known combination of basis functions.
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2. Apply the curl-free constraint (15) to the LPV coefficients.

3. Having the estimated LTV coefficients in Definition 6, and LPV parametrization of step (2), the parameters of the LPV

coefficients are obtained through (18).

The vector (11) is the gradient of an unknown function and once this vector is obtained , the nonlinear map can be reconstructed

by integration. This is elaborated in the following part.

3.4 Nonlinear Reconstruction

As a final step, the nonlinear model reconstruction from the LPV model is provided. The main idea here is to use the fact that the

LPV model coefficients are the gradient of the scalar multivariable function 𝑓 in (1), and that it is possible to recover the function

𝑓 by the techniques for retrieving a potential function from a conservative field. To this purpose, equation (7) is re-written in

the following form:

∇𝑓 (𝑡) ⋅ 𝑅̃ = ∇𝑓 (𝑅𝐿(𝑡)) ⋅ 𝑅̃ = 0 (19)

Where ∇𝑓 and 𝑅̃ denote the gradient of 𝑓 and the small trajectory respectively, and “⋅” denotes the standard inner product. Also,

∇𝑓 (𝑡) = [𝑎0(𝑡),… , 𝑎𝑛𝑦(𝑡), 𝑏0(𝑡),… , 𝑏𝑛𝑢(𝑡)]

∇𝑓 (𝑅𝐿(𝑡)) = C(𝑅𝐿(𝑡)) = [𝑎0(𝑅𝐿(𝑡)),… , 𝑎𝑛𝑦(𝑅𝐿(𝑡)), 𝑏0(𝑅𝐿(𝑡)),… , 𝑏𝑛𝑢(𝑅𝐿(𝑡))].
(20)

Where∇𝑓 (𝑡) is the true vector of LTV system coefficients and∇𝑓 (𝑅𝐿(𝑡)) is the true vector of LPV system coefficients. Similarly,

𝑓 (𝑡) describes 𝑓 as a function of time and 𝑓 (𝑅𝐿(𝑡)) describes 𝑓 as a function of the large signal elements. Provided that ∇𝑓 (𝑡)

is known exactly everywhere in 𝔻, the “fundamental theorem of line integrals” or “gradient theorem”31 allows to obtain 𝑓 as:

∫
𝑅𝐿(𝑡)

∇𝑓.𝑑𝑟 = 𝑓 (𝑅𝐿(𝑡)) − 𝑓 (𝑅𝐿(𝑡𝑖))

𝑡 ∈ [𝑡𝑖, 𝑡𝑓 ]

(21)

Where 𝑡 is any general arbitrary time between 𝑡𝑖 and 𝑡𝑓 .

𝑅𝐿(𝑡) is a function of time and the standard way to calculate this integral is to calculate ∇𝑓 (𝑡) on 𝑅𝐿(𝑡) and the derivative of

𝑅𝐿(𝑡). (𝑑𝑟 = 𝑑𝑅𝐿(𝑡) = 𝑅̇𝐿(𝑡)𝑑𝑡). Now, everything is a function of time and it can be calculated as a single integral of time 𝑡.

The result will be a function of time (𝑓 (𝑡)) for an arbitrary 𝑡. For our problem, this procedure leads to an absolute 0 as we know

that 𝑓 (𝑅𝐿(𝑡)) = 𝑓 (𝑡) = 0. Even if it was possible to obtain 𝑓 as a function of time, it could not be useful as we want 𝑓 (𝑅𝐿(𝑡))

not 𝑓 (𝑡). So, we have to find a way to calculate the integration (21) which leads to 𝑓 (𝑅𝐿(𝑡)).

Fortunately, there is a standard way to retrieve a potential field from a known static conservative field via integration along

a sequence of orthogonal paths which relies on the path independency of the integration of a gradient field. Inspired by this
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algorithm, we come up with a technique to calculate the 𝑓 (𝑅𝐿(𝑡)) properly. In the remainder of this section, we elaborate this

technique in more details. First, some auxiliary functions will be introduced.

Definition 11 (Points). Define 𝑛𝑦 + 𝑛𝑢 + 3 functions called “points” 𝑃𝑙(𝑅𝐿(𝑡)) ∈ 𝔻, 𝑙 = 0, 1,… , 𝑛𝑦 + 𝑛𝑢 + 2, as below:

𝑃𝑙𝑗(𝑅𝐿(𝑡)) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑟𝑗(𝑡) 𝑗 ≤ 𝑙

𝑟𝑗(𝑡𝑖) 𝑗 > 𝑙,

With 𝑃𝑙𝑗(𝑅𝐿(𝑡)) being the j-th component of 𝑃𝑙(𝑅𝐿(𝑡)) and 𝑟𝑗(𝑡) are as (12).

Using definition (11), a line segment is defined as follows.

Definition 12 (Line segment). define 𝐿𝑙, 𝑙 = 1, 2,… , 𝑛𝑦 + 𝑛𝑢 + 2 as a line segment that connects 𝑃𝑙−1 to 𝑃𝑙 and lies in 𝔻. More

specifically:

𝐿𝑙(𝜉, 𝑅𝐿(𝑡)) = 𝜉𝑃𝑙 + (1 − 𝜉)𝑃𝑙−1 , 0 ≤ 𝜉 ≤ 1

Where 𝑃𝑙 are points, from Definition 11.

The elementwise equivalence of Definition 12 is given by

𝐿𝑙 =(𝑟1(𝑡),… , 𝑟𝑙−1(𝑡), 𝜉𝑟𝑙(𝑡) + (1 − 𝜉)𝑟𝑙(𝑡𝑖), 𝑟𝑙+1(𝑡𝑖),

… , 𝑟𝑛𝑢+𝑛𝑦+2(𝑡𝑖)), for 0 ≤ 𝜉 ≤ 1

Obviously, 𝐿𝑙 evolves only along the 𝑙𝑡ℎ component of ∇𝑓 (𝑅𝐿(𝑡)) (i.e. 𝜕𝑓
𝜕𝑟𝑙(𝑡)

) when 𝜉 varies.) So, integration along 𝐿𝑙 (when 𝜉

varies from 0 to 1) turns into a single integral where just 𝜕𝑓
𝜕𝑟𝑙(𝑡)

(or 𝑐𝑙(𝑅𝐿(𝑡))) involves and just 𝜉 (or 𝑟𝑙(𝑡)) takes part in integration.

(See Fig. 1.) More specifically :

∫
𝐿𝑙

𝐶(𝑅𝐿(𝑡)).𝑑𝑟 = ∫
𝜉𝑃𝑙+(1−𝜉)𝑃𝑙−1

𝐶(𝑅𝐿(𝑡)).𝑑𝑟 =

1

∫
0

𝑐𝑙(𝐿𝑙)𝑟𝑙(𝑡)𝑑𝜉

where

𝑑𝑟 = 𝑑𝐿𝑙 = (0,… , 0, (𝑟𝑙(𝑡) − 𝑟𝑙(𝑡𝑖))𝑑𝜉, 0,… , 0)

and

𝐶(𝑅𝐿(𝑡)).𝑑𝑟 =
𝜕𝑓 (𝑅𝐿(𝑡))
𝜕𝑟𝑙(𝑡)

|

|

|

|𝐿𝑙

(𝑟𝑙(𝑡) − 𝑟𝑙(𝑡𝑖))𝑑𝜉

By changing the variable 𝑟𝑙𝑙 = 𝜉𝑟𝑙(𝑡) + (1 − 𝜉)𝑟𝑙(𝑡𝑖), which leads to 𝑑𝑟𝑙𝑙 = (𝑟𝑙(𝑡) − 𝑟𝑙(𝑡𝑖))𝑑𝜉, we have:

1

∫
0

𝜕𝑓 (𝑅𝐿(𝑡))
𝜕𝑟𝑙(𝑡)

|

|

|

|𝐿𝑙

𝑟𝑙(𝑡)𝑑𝜉 =

𝑟𝑙(𝑡)

∫
𝑟𝑙(𝑡𝑖)

𝜕𝑓 (𝑅𝐿(𝑡))
𝜕𝑟𝑙(𝑡)

|

|

|

|𝐿𝑙

𝑑𝑟𝑙𝑙
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- 𝑟1

6𝑟2

𝑃0 𝑃1

𝑃2

t t

t

𝑟1(𝑡𝑖)
𝑟1(𝑡)

𝑟2(𝑡𝑖)

𝑟2(𝑡)

𝐿2

𝐿1

𝑅𝐿(𝑡)

Figure 1 Integration path 𝑅𝐿(𝑡) with alternative path 𝐿(𝑡)

where 𝐿𝑙 is defined as before, except that 𝜉𝑟𝑙(𝑡) + (1 − 𝜉)𝑟𝑙(𝑡𝑖) is replaced with 𝑟𝑙𝑙(𝑡). This integral can be calculated by fixing

all the components, except the 𝑙𝑡ℎ one along which the integration is performed and the lower and upper bounds of integration

are 𝑃𝑙−1 and 𝑃𝑙 respectively.

Next, we have to show how to calculate the integral in (21) as 𝑓 (𝑅𝐿(𝑡)). The next theorem answers this question.

Theorem 2. : With the line segments 𝐿𝑙 from definition 12, define the path 𝐿 as (see Fig. 1)

𝐿(𝜉, 𝑅𝐿(𝑡)) =
𝑛𝑢+𝑛𝑦+2
⋃

𝑙=1
𝐿𝑙(𝜉, 𝑅𝐿(𝑡)). (22)

Where L is the concatenation of all 𝐿𝑙. In other words, 𝐿 is constructed by joining all 𝐿𝑙.

Then,

∫
𝑅𝐿

∇𝑓.𝑑𝑟 = ∫
𝐿

∇𝑓.𝑑𝑟 = 𝑓 (𝑅𝐿(𝑡)) − 𝑓 (𝑅𝐿(𝑡𝑖))

𝑡 ∈ [𝑡𝑖, 𝑡𝑓 ]

(23)

Proof. Given that

∇𝑓 =
[

𝜕𝑓
𝜕𝑦
,… , 𝜕𝑓

𝜕𝑦(𝑛𝑦)
, 𝜕𝑓
𝜕𝑢
,… , 𝜕𝑓

𝜕𝑢(𝑛𝑢)

]𝑇

,
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we have

∫
𝐿

∇𝑓.𝑑𝑟 =
𝑛𝑢+𝑛𝑦+2
∑

𝑙=1
∫
𝐿𝑙

∇𝑓.𝑑𝑟 =
𝑛𝑢+𝑛𝑦+2
∑

𝑙=1

𝑃𝑙

∫
𝑃𝑙−1

∇𝑓.𝑑𝑟

=
𝑛𝑢+𝑛𝑦+2
∑

𝑙=1
𝑓 (𝑃𝑙) −

𝑛𝑢+𝑛𝑦+1
∑

𝑙=0
𝑓 (𝑃𝑙) = 𝑓 (𝑃𝑛𝑢+𝑛𝑦+2) − 𝑓 (𝑃0) = 𝑓 (𝑅𝐿(𝑡)) − 𝑓 (𝑅𝐿(𝑡𝑖))

(24)

Where the third line is derived from the gradient theorem.

𝑅𝐿(𝑡𝑖) is a constant term and from (1) we know that 𝑓 (𝑅𝐿(𝑡𝑖)) = 0. Eliminating this term in the final line concludes the proof.

Theorem 2 provides us with a practical way of calculating 𝑓 (𝑅𝐿(𝑡)). It is shown before how to calculate ∫ 𝑃𝑙
𝑃𝑙−1

∇𝑓.𝑑𝑟.

Note that 𝑃𝑙 ∈ 𝔻 is an extremely restricting condition. It is relaxed by the following theorem.

Theorem 3. Assume ∃𝑡𝑚 ∈ [𝑡𝑖, 𝑡𝑓 ] 𝑠.𝑡. 𝐿(𝜉, 𝑅𝐿(𝑡◦)) ⊂ 𝔻,∀𝑡◦ ∈ [𝑡𝑖, 𝑡𝑚]. Define 𝑃𝑙(𝑅𝐿(𝑡◦)) as in Definition (11). Then:

∫
𝑅𝐿

∇𝑓.𝑑𝑟 = ∫
𝐿(𝑅𝐿(𝑡))

∇𝑓.𝑑𝑟 = ∫
𝐿(𝑅𝐿(𝑡◦))

∇𝑓.𝑑𝑟 = 𝑓 (𝑅𝐿(𝑡))

𝑡 ∈ [𝑡𝑖, 𝑡𝑓 ]

(25)

Proof. The upper bound evaluation is done in a symbolic way and so the expression for the two evaluations must be the same.

Thus, replacing terms related to 𝑡◦ with terms related to 𝑡 doesn’t change 𝑓 .

Theorem 3 tells us that 𝐿 may or may not lie in 𝔻 and in any case, the 𝑓 can be calculated precisely along all points of the

𝑅𝐿(𝑡).

As 𝑅𝐿(𝑡𝑖) is generally unknown, it is easier to consider point (0,0,...,0) as the lower bound of integral in (23). Change of

the lower bound will add a bias term to our calculation of 𝑓 (𝑅𝐿(𝑡)). As 𝑓 (𝑅𝐿(𝑡)) = 0 at ∀𝑡 ∈ [𝑡𝑖, 𝑡𝑓 ], this bias term can

be calculated by forcing 𝑓 (𝑅𝐿(𝑡)) = 0 at an arbitrary 𝑡 ∈ [𝑡𝑖, 𝑡𝑓 ].

Until now, it is assumed that ∇𝑓 is known everywhere in 𝔻 which is not realistic. It is possible to relax this assumption such

that ∇𝑓 needs only to be known on 𝑅𝐿(𝑡). This is elaborated in the following theorem:

Theorem 4. ∇𝑓 and its estimate ∇̌𝑓 are defined in 𝔻 which contains 𝑅𝐿(𝑡). It is assumed that ∇𝑓 = ∇̌𝑓 on 𝑅𝐿(𝑡) and ∇̌𝑓 is

arbitrary elsewhere. Then, provided that ∇̌𝑓 itself is a gradient of a scalar function then :
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𝑓 (𝑅𝐿(𝑡)) = 𝑓 (𝑅𝐿(𝑡))

Proof.

𝑓 (𝑅𝐿(𝑡)) = ∫
𝑅𝐿(𝑡)

∇𝑓.𝑑𝑟 = ∫
𝑅𝐿(𝑡)

∇̌𝑓.𝑑𝑟 = ∫
𝐿(𝜉,𝑅𝐿(𝑡))

∇̌𝑓.𝑑𝑟 = 𝑓 (𝑅𝐿(𝑡)) (26)

The above equations are deduced based on the fact that the integrals are path independent. 𝐿 is defined as in definition 12.

As a result, we need an accurate estimate of ∇𝑓 just on 𝑅𝐿 to obtain an exact estimate of 𝑓 .

But, as we know, it is impossible to have ∇𝑓 exact, even on a path 𝑅𝐿(𝑡) because of various uncertainties including measurement

noise. In this regard, it is important to ensure that smaller variations on∇𝑓 will lead to a smaller variation on 𝑓 and, consequently,

a consistent estimate of∇𝑓 will result in a consistent estimate of 𝑓 itself. In other words, it is desirable to show that the estimation

error of 𝑓 decreases as the error on the estimate of ∇𝑓 decreases and in the ideal case, it will converge to zero as the uncertainty

on the LPV estimate converges to zero.

Theorem 5. Let ∇𝑓 be the true gradient of the system (1) and let ∇̌𝑓 be its estimate on 𝑅𝐿(𝑡). Denote:

△
𝜕𝑓
𝜕𝑦(𝑗)

=
𝜕𝑓
𝜕𝑦(𝑗)

−
𝜕̌𝑓
𝜕𝑦(𝑗)

△
𝜕𝑓
𝜕𝑢(𝑗)

=
𝜕𝑓
𝜕𝑢(𝑗)

−
𝜕̌𝑓
𝜕𝑢(𝑗)

(27)

Then,

|

|

|

|

∫
𝐿(𝑅𝐿(𝑡))

(∇𝑓 − ∇̌𝑓 ).𝑑𝑟
|

|

|

|

≤
𝑛𝑦
∑

𝑗=0

‖

‖

‖

‖

△
𝜕𝑓
𝜕𝑦(𝑗)

‖

‖

‖

‖∞
(𝑦(𝑗)|𝑡𝑓 ) +

𝑛𝑢
∑

𝑗=0

‖

‖

‖

‖

△
𝜕𝑓
𝜕𝑢(𝑗)

‖

‖

‖

‖∞
(𝑢(𝑗)|𝑡𝑓 )

(28)
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Proof.

|

|

|

|

∫
𝐿(𝑅𝐿(𝑡))

(∇𝑓 − ∇̌𝑓 ).𝑑𝑟
|

|

|

|

=
|

|

|

|

𝑛𝑦
∑

𝑗=0
∫

𝐿𝑗+1

(∇𝑓 − ∇̌𝑓 ).𝑑𝑟 +
𝑛𝑦+𝑛𝑢+2
∑

𝑗=𝑛𝑦+1
∫

𝐿𝑗+1

(∇𝑓 − ∇̌𝑓 ).𝑑𝑟
|

|

|

|

=
|

|

|

|

𝑛𝑦
∑

𝑗=0
∫

𝐿𝑗+1

(△
𝜕𝑓
𝜕𝑦(𝑗)

).𝑑𝑦(𝑗) +
𝑛𝑦+𝑛𝑢+2
∑

𝑗=𝑛𝑦+1
∫

𝐿𝑗+1
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(29)

Where the last inequality comes from the triangle inequality for line integrals.

Inequality (29) might seem too conservative but it is sufficient for our purpose. It clearly shows that a more accurate ∇̌𝑓 will

result in a more accurate 𝑓 . Now, we have the adequate theoretical tools to estimate 𝑓 from an estimate of ∇𝑓 .

Since the symbolic integral can recover the nonlinear function up to a constant term, this unknown constant should be obtained

to prevent bias in the nonlinear response. We obtain this constant value so that the response of the reconstructed system matches

the actual response of the system. This DC value only adjusts the response of the system to match the large trajectory and

does not have any influence on the dynamics around the large trajectory 𝑅𝐿(𝑡). Indeed, it can be recovered by evaluating the

reconstructed system at the large trajectory through simulation. But due to the modeling error, this will not be a constant term

for all sample times, and an averaging method can recover the DC value.

3.5 Procedure summary

In this short subsection, we summarize the steps of our proposed framework for nonlinear identification of continuous time

systems. The steps can be summarized as below :

1. Excite the system twice with and without small trajectory as described in Section 3.1.

2. Estimate the LTV model in (8) by the proposed algorithm in Section 3.2.

3. Having estimated the LTV model in the previous step and the large trajectory, estimate the LPV model (17) subject to the

curl-free condition.

4. Reconstruct the nonlinear part from the LPV model by the algorithm as elaborated in Section 3.4.
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4 SIMULATION RESULTS

In this section, the proposed identification algorithm is evaluated on a second-order simulation example. The nonlinear system

is given as follows:

𝑦̈ =0.5𝑢 − 0.1𝑦𝑦̇𝑢 − 0.981 sin(𝑦) − 0.8𝑦̇

+ 0.2(−2𝑦2 + 2) cos(0.286𝑢 − 𝜋∕4)
(30)

System dynamics include nonlinear terms of the input and system states. A large slow reference signal is applied to the system,

the large input and the corresponding large output are shown in Fig. 2 (top). The nonlinear system is stable around this trajectory.

A small fast signal is used to perturb this stable trajectory slightly (See Fig. 2 (bottom)). For this example, we use a periodic

signal as input perturbations: a zero-mean multisine with period time 𝑇𝑝 = 50 s. This multisine excites 190 harmonics in the

band [0.02, 3.8]Hz with RMS (root-mean-square) value of 0.15. The measured data in the time interval [50, 450] s are used

to identify the nonlinear system. Both the input and output are measured with additive filtered noise, with the signal-to-noise

ratio (SNR) 50 dB for both input and output. Fig. 3 shows the input-output and noise in the frequency domain. According to

Section 3.1 two experiments are performed to obtain input/output small and large trajectory. One experiment with only a large

input, and a second experiment with the sum of small and large inputs are applied to the system. As a result, input, and output

small trajectory are retrieved.

In the identification setup, the LTV system is modeled as follows

𝑦̈ =
2
∑

𝑛=0
𝑎𝑛(𝑡)𝑦̃(𝑛)(𝑡) +

2
∑

𝑚=0
𝑏𝑚(𝑡)𝑢̃(𝑚)(𝑡) (31)

and in the LTV estimator23 the order of the transient term is chosen 𝑁tr = 7. This transient term is an additive term modeled

by an expansion of Legendre polynomials of 𝑗𝜔 (with 𝜔 = 2𝜋𝑓 ) to capture the sum of transient response and high-order terms

in the Taylor series expansion (4). In practice, selecting the orders 𝑁𝑎, 𝑁𝑏 and 𝑁tr is a model order selection problem. The

estimated time-varying coefficients are shown in Fig. 4. The other three time-varying coefficients are estimated to be zero, so

we neglect them for the LPV modeling. Fig. 5 shows the performance of the LTV estimator in the frequency band of interest.

The parameter-varying coefficients are modeled by bivariate monomials. For 𝑎0(𝑅𝐿(𝑡)), 𝑏0(𝑅𝐿(𝑡)) two sets of 3rd order bivariate

monomials of 𝑅𝐿(𝑡) = [𝑦𝐿(𝑡), 𝑢𝐿(𝑡)] with the constraint (16) are used and for the 𝑎1(𝑅𝐿(𝑡)) a second-order bivariate monomial

is chosen. The LPV system is obtained by fitting these polynomials to the estimated time-varying coefficients 𝑎0(𝑡), 𝑎1(𝑡), and

𝑏0(𝑡). In Fig. 6 the reconstructed nonlinear terms are obtained by symbolic integration of the parameter-varying coefficients.

Finally, the performance of the reconstructed nonlinear system is shown in Fig. 7, which presents the validation of the recon-

structed nonlinear system for large trajectory and broadband small input. Therefore an initial estimate of the nonlinear terms of

the system are reconstructed uniquely based on LTV estimations.
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Figure 2 Two performed experiments. Top: The first experiment with the only large trajectory. Bottom: The second experiment
with the same large input as the first experiment and some added input perturbations.
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Figure 3 Large, small and noise contribution of input (Top) and output (Bottom).

5 CONCLUSION

In this paper, we introduce a novel modeling procedure to model a broad class of continuous-time nonlinear SISO systems

under mild assumptions on the system (specifically assumptions (1), (2) and (4)). In particular, there is greater flexibility in

choosing the structure of the nonlinear model compared to other methods. The main part of the identification process is done by

linear tools that are more established than their nonlinear counterparts. In addition, the LTV modeling procedure is not bound

to a specific LTV estimator and the estimation procedure can be done by any appropriate LTV estimator. The following LPV
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Figure 5 Performance of the frequency domain LTV estimator.

modeling is done according to the condition (16). This condition guarantees the uniqueness of the reconstruction result. The

core part of the post processing step is the nonlinear reconstruction which relies on the gradient theorem in calculus to convert

a linear model to a nonlinear model. In (29), it is shown that the quality of the final nonlinear model highly depends on the

quality of the estimated linear model. At the end, the proposed algorithm is tested on a simulation example. It is shown that the

estimated nonlinear system mimics the system output to an acceptable level. In addition, not only did the algorithm reproduce

the output of the nonlinear system, but it also successfully rebuilt the nonlinear parts of the system in spite of the fact that there
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Figure 6 Reconstructed nonlinear terms. Top: NL1 = −0.8𝑦̇ − 0.1𝑦𝑦̇𝑢. Bottom: NL2 = 0.5𝑢 − 0.981 sin(𝑦) + 0.2(−2𝑦2 +
2) cos(0.286𝑢 − 𝜋∕4).
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Figure 7 Performance of the reconstructed nonlinear system. Top: response to Large+small signal. Bottom: Contribution of the
Small signal.

are multiple approximations during the modeling. In conclusion, this framework of algorithms can be used to model a broad

class of nonlinear continuous-time systems with mild conditions.
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