
Received <day> <Month>, <year>; Revised <day> <Month>, <year>; Accepted <day> <Month>, <year>

DOI: xxx/xxxx

RESEARCH ARTICLE

An autonomous UAV system based on adaptive LiDAR Inertial
Odometry for practical exploration in complex environments

Boseong Kim | Maulana Bisyir Azhari | Jaeyong Park | David Hyunchul Shim

1Department of Electrical Engineering,
Korea Advanced Institute of Science
and Technology (KAIST), Daejeon,
Republic of Korea

Correspondence
Boseong Kim, KAIST. Email:
brian.kim@kaist.ac.kr

Funding Information
This research was supported by the
Institute of Civil Military Technology
Cooperation funded by the Defense
Acquisition Program Administration and
Ministry of Trade, Industry and Energy
of Korean government, Grant/Award
Number: UM22206RD2

Abstract

Unmanned aerial vehicles (UAVs) offer many advantages over ground vehicles, including

quadruped robots, based on high maneuverability when performing exploration in complex

and unknown environments. However, due to their limited computational capability, UAVs

require light-weight but accurate state estimation algorithms for reliable exploration. In this

paper, we propose an segmented map based exploration system based on LiDAR-based state

estimation for UAVs. The proposed system includes capabilities such as exploration, obsta-

cle avoidance, and object detection with localization using 3D dense maps generated by

tightly coupled LiDAR Inertial Odometry (LIO). Our proposed system is a hybrid system

that can switch between guided and exploration modes, making it practical for search and

rescue missions in disaster scenarios. The proposed LIO algorithm adapts to its surround-

ings, allowing for fast and accurate state estimation in complex environments. The proposed

exploration algorithm is designed to cover specific regions in the 3D dense map generated

by proposed LIO, with the UAV determining if map points are included within the coverage

area. We tested the proposed system in both simulation and real-world environments and

validated that proposed system outperforms state-of-the-art algorithms in various aspects

such as localization accuracy and exploration efficiency in complex environments.

KEYWORDS:

Collision avoidance, exploration, LiDAR inertial odometry, perception, UAV

1 INTRODUCTION

Exploration using uncrewed platforms is a critical area of research in
field robotics. This practical application has a great potential to signifi-
cantly reduce casualties and property damage by acquiring information
on various risks that exist in unknown environments before human
intervention. In particular, exploration includes missions such as res-
cue, search, and geometric information acquisition, which are essential
elements in disaster environments or unknown spaces. The emergence
of interest in exploration in the field robotics community has been
largely influenced by the DARPA Subterranean Challenge1, where vari-
ous unmanned platforms, including UAVs, UGVs, and quadruped robots,

1https://www.subtchallenge.com/

were utilized for navigation in unknown spaces in the underground envi-
ronment with the objective of finding specific objects and reporting
their locations. The competition has demonstrated that unmanned plat-
forms can be effectively used for exploration through the application
of reliable state estimation using various sensors such as LiDAR, vision,
and IMU in GPS-denied environments.

In the field of robotics, the utilization of UAVs has demonstrated
significant capabilities due to their high maneuverability compared to
other platforms such as UGVs and quadruped robots. UAVs can be oper-
ated reliably in various environments, including stairs, cliffs. However,
designing unmanned systems using UAVs presents several challenges.
The platform has significant weight and size constraints, leading to lim-
ited computational power, sensor configuration, and operating time.
Therefore, to operate UAVs efficiently within these constraints, it is
crucial to design reliable algorithms with low computational cost.

2 Kim et al

Safe and reliable exploration requires basic navigation components,
such as robust and stable state estimation algorithms. Additionally,
Given that UAVs are operated in 3D space, it is essential to design
light-weight 3D-based algorithms (e.g., localization, path planning). The
Simultaneous Localization and Mapping (SLAM) algorithm has devel-
oped remarkably in the last decade, relying on various sensors such
as LiDAR, vision, and IMU, particularly in GPS-denied environments.
Typically, SLAM consists of a front-end module that estimates LiDAR
odometry and a back-end module that detects loops and optimizes
the states. However, in disaster environments where the UAV might
not be operated in a loop area, precise and accurate LiDAR odometry
estimation becomes one of the most important factors for exploration
missions. To achieve accurate state estimation without a loop closure
algorithm, we propose a kNN-based sub-map generation to optimize
the state of UAVs. Additionally, the proposed LIO algorithm adapts
to the surroundings, which enables reliable state estimation in various
complex environments, such asmulti-floor and large cave environments.

Another critical component for exploration is path planning and col-
lision avoidance. It is usually divided into grid search-based and motion
primitive-based approaches, which require a balance between compu-
tational cost and path planning performance. For a light-weight and
reliable path planning, we propose a method that represents a 3D envi-
ronment as several 2D planes and selects the best path among the
results of the A* algorithm for each grid map. This method is combined
with amotion primitive-based path planning algorithm to enable reliable
obstacle avoidance for fast exploration of UAVswithin limited operation
time. The proposed method can significantly improve the exploration
capabilities of UAVs, reducing the risk of collisions and improving the
efficiency of exploration missions.

The exploration algorithm, which serves as the primary mission plan-
ner in the system proposed in this paper, is designed to ensure that
the UAV includes map points generated only within a specific cover-
age. Existing exploration algorithms have primarily developed based
on either motion primitive-based or Rapidly-exploring Random Tree
(RRT)-based path planning methods in unknown areas. However, these
methods are limited in terms of computational cost and exploration effi-
ciency and are challenging to use within a specific area. The proposed
method in this paper aims for efficient and fast exploration only within
a specific area with a limited time. Also, the UAV can be operated in
a hybrid mode of guided mode and exploration mode, allowing it to
explore only within the desired area by the operator, resulting in the
practicality of the proposed system. Additionally, during exploration,
object detection and localization are performed for specific objects,
allowing the operator to verify the location of specific objects in the
map generated by the proposed LIO.

In this paper, we propose a fast and accurate LIO based autonomous
exploration system that can be practically implemented on a UAV in a
real-world environment, as shown in Fig. 1 . To the best of the authors’
knowledge, this paper represents a pioneering effort in validating the
realistic operation of UAV within disaster scenarios. It involves launch-
ing the UAV from the outside, navigating it inside buildings, performing

exploration, and escaping to specific locations. Additionally, it includes
conducting object detection and localization to provide the operator
not only with a precise 3D map but also with the positions and types of
objects. Our proposed system comprises several subsystems including
exploration, LIO, collision avoidance, and object detection and localiza-
tion. Through a series of flight tests in both simulation and real-world
environments, we validated that the proposed system outperforms
existing LIO algorithms in terms of computational cost and accuracy,
and is more efficient and faster than existing exploration algorithm.

The main contributions of this paper are highlighted below:
• We propose a tightly-coupled LIO that can adapt to the sur-

roundings. The proposed LIO analyzes the geometric conditions
of the surroundings by analyzing the current scan data and
setting the registration parameters accordingly. Moreover, we
optimize the UAV’s state through kNN-based sub-map genera-
tion and matching, enabling robust and reliable real-time state
estimation even in challenging environments.

• We propose a fast and efficient exploration algorithm based
on Euclidean distance clustering. The proposed exploration
algorithm transforms the 3D map generated from proposed LIO
into several segmented regions. The priority of the regions to be
explored will be determined by the exit-aided exploration score,
improving the practicality and efficiency of the algorithm.

• We propose a computationally-efficient object detection and
localization pipeline using EfficientDet-Lite, which runs on the
Google Coral Edge TPU, alongwith Euclidean distance clustering
to estimate their 3D position.

• We implemented the proposed system on a real drone, con-
ducted exploration missions in various environments, and
reported the locations of the target objects detected in the 3D
map generated by the proposed LIO. Through this, we demon-
strated the practicality of the proposed system.

The structure of this paper is as follows. Section 2 provides an intro-
duction to various previous studies related to the proposed system.
Section 3 presents an overview of the proposed system. In Section
4, each sub-system that makes up the proposed system is elaborated
upon. Section 5 analyzes and verifies the performance of the pro-
posed system in both simulation and real-world environments. Finally,
in Section 6, the study concludes.

2 RELATED WORK

2.1 Localization

Localization is the most critical component for a robot to operate in an
unknown environment. LiDAR odometry, which involves using a LiDAR
sensor to estimate a robot’s motion over time, is a well-established
research area in the field of robotics and computer vision. Several meth-
ods have been proposed in the literature to accurately and efficiently

Kim et al 3

FIGURE 1 Snapshots of the proposed fast and accurate LIO-based exploration system in a time sequence. 1) At the starting point, the entrance
and exit are set to use the guided mode, and the area to be explored is selected. 2) After flying in guided mode to the entrance, the UAV switches
to exploration mode. 3-7) The UAV explores by including map points in a specific coverage, as shown by the transparent gray sphere. The colorful
voxels represent the area to be explored, and their colors indicate different regions based on Euclidean distance-based clustering of map points.
8)After exploring within the pre-defined area, the UAV switches back to guided mode towards the exit, and then performs auto-homing to the
starting point. The white dots represent the UAV trajectory.

determine the robot’s pose. One popular approach for LiDAR odometry
is the use of feature-based methods, such as LOAM [49], LeGO-LOAM
[31], and Fast-LOAM [42]. These methods extract features such as
edges or corners from LiDAR data and track them over time to esti-
mate the translation between LiDAR scans. Another recent approach is
PLC-LiSLAM [52], which utilizes geometric information about planes,
lines, and cylinders in the point cloud features and checks the cost in
the back-end to minimize the errors introduced by data association.
By coupling LiDAR with an inertial measurement unit (IMU) using the
pre-integration method [11], the estimation accuracy and speed are
improved, as demonstrated by methods like LIO-SAM [32]. Fast-LIO
[45] and Fast-LIO2 [44] combine LiDARpointswith IMU through an iter-
ated extended Kalman filter, enabling robust estimation in a fast-moving
vehicle.

Several matching algorithms have been developed to estimate the
translation and rotation between two consecutive LiDAR scans. These
methods include Iterative Closest Point (ICP) [1, 6], Generalized ICP
(GICP) [30], Voxelized GICP (VGICP) [20], and Normal Distribution
Transform (NDT) [2]. HDL-graph-SLAM [19] can utilize NDT, ICP and
GICP for high definition mapping in real-time. LiTAMIN [47] employs a

stabilized ICP with a normalized Frobenius norm cost function. Loop-
closure algorithms are also utilized in many SLAM algorithms to refine
odometry drift and global map inaccuracies when a robot revisits
a place. Specialized loop-closure detection methods, such as Scan-
Context [17, 16], perform well in urban environments.

However, conventional LIO approaches suffer from a lack of state
compensation at the global scale, without loop closure, which can
lead to inaccuracies in long-term state estimation. Furthermore, fixed
keyframe generation interval can fail to align common geometrical fea-
tures in complex and narrow environments such as multi-floor and
subterranean environments, limiting state estimation performance. Our
method addresses these issues by adaptively generating keyframes and
updating correspondingmatching parameters through an analysis of the
surrounding environment.

This paper is an extended version of our conference paper [15]. The
contribution is to enable fast and accurate state estimation in various
environments using scan matching parameters that adapt to the sur-
roundings. Furthermore, this journal version integrates the methodwith

4 Kim et al

exploration, path planning, and object detection & localization algo-
rithms, enabling UAVs to perform efficient and practical exploration for
missions such as search and rescue in disaster environments.

2.2 Path Planning & Exploration Algorithm

Aerial exploration has garnered significant attention in recent years, and
a multitude of researchers have focused on addressing this challeng-
ing problem. Initially, frontier-based exploration was proposed in [46],
which involves identifying regions at the boundary between explored
and unexplored areas. Subsequently, Rapid-exploration [8] extended
this approach to aerial vehicles by leveraging the velocity of Unmanned
Aerial Vehicles (UAVs) to choose the next frontier to visit. Researchers
have made further advancements in frontier-based exploration, with
FUEL [51] introducing a fast and agile replanning strategy to maximize
UAV velocity. In addition, several studies such as [5, 4, 51] have inte-
grated path planning and exploration using traveling-salesman-problem,
leading to agility and robustness in large and complex areas.

Sampling-based methods have been proposed as another solution
for exploration. These methods utilize Rapidly-exploring Random Tree
(RRT) or Rapidly-exploring Random Graph (RRG) [14] to search for
traversable paths in the environment and select a branch as the explo-
ration path. The "next-best-view" planner (NBVP) proposed by [3]
employs RRT and selects the best branch based on the volume of the
unexplored space in the corresponding branch. In [9], RRG is extended
to find paths that optimize the exploration gain within a local area while
incrementally constructing a global graph to anticipate dead-end areas
and perform return-to-home using the constructed graph. Fast and agile
sampling-based exploration has also been proposed by [10], which con-
structs RRT together with motion primitives resulting in a smoother
trajectory for faster exploration.

However, the methods mentioned earlier assume that the robot
starts exploration from the center of the area to be explored, which is
not applicable in some scenarios. For example, in a search and rescue
mission in a disaster-struck building, the UAVwill start from outside the
building and enter through a specific entry point, provided by a human
operator. Furthermore, more specific information such as the area to
be explored and the exit route out of the building may be available.
Our proposed method integrates this information into the exploration
algorithm, resulting in a hybrid mode of guided mode and exploration
mode. We utilize the exit waypoint in the proposed exploration score,
and the motion primitive planning enables faster exploration while
ensuring safety in a constrained area inside the building.

2.3 Onboard Object Detection & Localization

Onboard object detection and localization of detected objects are
essential components of an exploration mission, but it can be challeng-
ing due to limited computational power, occlusion, and varying illumi-
nation. Recently, deep learning-based object detection methods have
gained popularity due to their exceptional performance and robustness

to environmental changes compared to classical methods. The state-of-
the-art object detectors on COCO dataset [22] are currently based on
ResNext, R-CNN, Transformer, YOLO, and FCOS [18, 26, 35, 36, 54, 23,
41, 39, 40, 53]. Although real-time object detectors are mainly based
on YOLO [39, 41, 40] and FCOS [35, 36], these methods usually require
powerful GPUs such as NVIDIA V100 or NVIDIA A100 that are not
available for most micro aerial vehicles. To address this limitation, var-
ious studies have developed deep learning-based object detectors for
edge or onboard computing. For instance, light-weight CNN backbones
like MobileNet [13, 29, 12], ShuffleNet [50, 24], and EfficientNet [33]
are designed to support single-CPU object detection [7, 34].

After detecting the target objects, the exploration mission typically
necessitates the robot to localize the target in 3D space. However, sim-
ply projecting the detection bounding boxes onto the camera and 3D
cloud map is not sufficient since the number of objects in the local area
must also be taken into account. Therefore, some form of detection
association or clustering is required to determine the actual number
of objects in the surrounding area. For example, CTU-CRAS-NORLAB
team [25] employed an artifact localization filter based on aKalman filter
developed in [38], to reduce false-positives and ensure spatio-temporal
consistency of the localized object. In a similar approach, Team Cer-
berus [37] used a binary Bayes filter that recursively updates after the
robot ray-casts all of the pixels in the detection bounding box to the
volumetric map.

In this paper, we present a simpler yet effective approach to cluster
and filter the detected objects using euclidean distance clustering in the
3D space.

3 SYSTEM OVERVIEW

An overview of the proposed system is presented in Fig. 2 . The system
comprises several sub-systems including localization, object detection
& localization, exploration, and 3D path planning. The first sub-system,
localization, is crucial and we propose a surrounding-adaptive LIO,
which adaptively defines registration parameters used for the scan
matching algorithm based on the surrounding geometric volume. The
inputs to this module are LiDAR scans and IMU data, while the out-
puts are UAV states, 3D map points, and keyframes related to the
surrounding. The outputs from the localization module are fed into the
exploration module. The proposed exploration strategy is to cover the
pre-defined area set by operator. In this step, several segmented areas
to be explored are generated by Euclidean distance clustering of the
3D map, and the priority is determined based on the exit-aided objec-
tive function. As we mentioned before, the proposed system is a hybrid
mode of guided and exploration, where in the guided mode, the way-
point set by the operator becomes a direct output, and the exploration
area is pre-defined by the operator.

The segmented area selected in the exploration module or the
waypoint set by the operator is passed to the 3D path planning mod-
ule, along with the outputs of the localization module. The proposed

Kim et al 5

FIGURE 2 Sub-system configuration of the proposed system. The 3D path planning module changes its goal point depending on the guided or
exploration mode. The onboard detection and localization module is executed only in the exploration mode. The arrows’ color indicates the flow
of output data from each module.

3D path planning module combines grid search-based and motion
primitive-based path planning. For real-time computation of grid search-
based path planning in a 3D complex environment, we represent the
3D environment as 2D grids rotated in the roll direction. For the motion
primitives, we generate path candidates in advance and choose the
group with the minimum cost through collision check with 3D map
points from the proposed LIO. Finally, the output of the 3D path
planningmodule is a control command, which is passed to the flight con-
troller. The object detection & localizationmodule is an optional module
that is executed only in the exploration mode and saves the informa-
tion of detected objects such as type and position. More details of each
sub-system are described in Section 4.

4 METHODS

In this section, we present detailed information about each sub-system
of the proposed system, including localization, exploration, path plan-
ning, and object detection & localization. It should be noted that the
main focus of the proposed system is to ensure reliable and practi-
cal exploration in various environments by utilizing fast and accurate
localization system for UAV.

4.1 Localization

3D LiDAR-based localization is a critical component for unmanned
vehicles navigating in a GPS-denied environment. LIO has the advan-
tage of providing accurate state estimation results and generating maps
that can be implemented in various environments, making it pop-
ular in unmanned platforms. However, LIO typically demands high
computational resources, necessitating a powerful computer. UAVs,
which are limited by size and weight, require reliable state estimation
results in complex 3D environments with limited computational power.
To address this, we propose a low-cost, high-accuracy adaptive LIO
algorithm, as illustrated in Fig. 3 . Our proposed LIO employs down-
sampled scans for low computational cost, and its down-sampling and
registration parameters are defined using the spatial volume based on
the current scan.

4.1.1 Spatial volume based parameter adjustment

The proposed adaptive LIO algorithm defines all registration param-
eters based on the spatial volume identified from the voxelization of
the current scan, using a pre-defined parameter. To achieve reliable
state estimation in various environments, the proposed method uses

6 Kim et al

FIGURE 3 The system structure of the proposed surrounding-adaptive LIO. The system performs two types of scan matching registration: scan
to scan matching to estimate the relative transformation between two consecutive LiDAR frames, and scan to sub-map matching to optimize the
UAV state for each keyframe. The sub-map used for scan to sub-mapmatching is generated using the k-Nearest Neighbors (kNN) algorithm, which
takes the keyframes saved in the keyframe management module and the current UAV state as inputs.

spatial volume that is not utilized by conventional SLAM or LIO algo-
rithms that rely on fixed parameters. The performance of scan matching
registration can be divided into two categories, namely computation
speed and accuracy. In terms of computational speed, voxelization of
the current scan is essential for real-time processing within the limited
computational capacity of the onboard computer. While several exist-
ing LIO algorithms perform feature extraction to reduce computation
cost, this has a significant impact on accuracy in environments with
relatively scarce geometric features, such as corridors, narrow areas,
and stairs. Therefore, the proposed LIO algorithm uses down-sampled
points through voxelization for registration. However, fixed voxelization
parameters cannot cover various environments, and therefore the pro-
posed LIO analyzes the geometric volume through the current scan to
define the voxelization parameter V proportionally. In terms of accu-
racy, to optimize the UAV state in the global scale, the proposed LIO
uses scan to sub-map matching registration when the new keyframe is
generated.

The proposed surrounding-adaptive LIO algorithm takes into account
various factors affecting accuracy, including keyframe generation inter-
val dkey and maximum correspondence distance dcor. Existing LIO algo-
rithms use fixed values for dkey and dcor, which can result in reduced
accuracy or high computation cost. To address this issue, the proposed
LIO analyzes the surrounding spatial volume and adjusts the values of
dkey and dcor accordingly. Specifically, a large dkey is used in a large area

FIGURE 4 Scan to sub-map matching performance according to dcor in
a multi-floor environment. Yellow scan, white scan, and red dotted cir-
cle represent sub-map, aligned scan, and aligned areas, respectively.
Because a large dcor tries to align the current scan to the sub-map
as accurate as possible, reliable state estimation is difficult in narrow
environments such as stair area.

to reduce computation cost, while a small dkey is used in a small area to
increase accuracy. Similarly, a large dcor is used in a large area to align the
current scan with the sub-map as accurately as possible, while a small
dcor is used in a narrow area to align the current scan with the limited
area in the sub-map. The results of scan to sub-mapmatching according
to dcor are shown in Fig. 4 . To determine the surrounding spatial vol-
ume, the proposed algorithm uses voxelization of the current scan with
a pre-defined parameter Venv = 10m. The voxelization parameter V is

Kim et al 7

Algorithm 1 Spatial volume based parameter adjustment
Input: Current LiDAR scan Ẑt, voxel size Venv = 10m, maximum vox-

elization size V maxscan , maximum keyframe generation distance dmaxkey ,maximum correspondence distance dmaxcor , exponential decay value
α, β, and γ.

Output: Surrounding information S={V , dkey, dcor} as shown in Fig. 3
′Ẑt ← Outlier filtering(Ẑt) . Initialization
′ẐVenv

t ← Voxelization(′Ẑt) with Venv
. Surrounding voxelization

NVenv
t ← Number of points(′ẐVenv

t)

. Spatial volume
ifNVenv

t ≥ 100 then . Tier 1
V = V maxscan , dkey = dmaxkey and dcor = dmaxcor

else ifNVenv
t ≥ 60 then . Tier 2

V = αV maxscan , dkey = βdmaxkey and dcor = γdmaxcor
else ifNVenv

t ≥ 35 then . Tier 3
V = α2V maxscan , dkey = β2dmaxkey and dcor = γ2dmaxcor

else ifNVenv
t ≥ 20 then . Tier 4

V = α3V maxscan , dkey = β3dmaxkey and dcor = γ3dmaxcor
else . Tier 5

V = α4V maxscan , dkey = β4dmaxkey and dcor = γ4dmaxcor
end if
return S = {V, dkey, dcor}

defined proportionally to the surrounding geometric volume, allowing
the algorithm to adapt to various environments.

The parameter definition according to the spatial volume is described
in Algorithm 1, and the results are shown in Fig. 5 . It should be noted
that the pre-defined parameters in Algorithm 1 are based on Ouster
32-channel LiDAR and can be adjusted for other sensors.

4.1.2 IMU pre-integration

Compared to wheeled or quadruped robots, unmanned aerial vehicles
(UAVs) have ability to rotate in all three directions of roll, pitch, and
yaw. However, this can lead to missed opportunities to detect com-
mon features along the vertical axis due to a limited Vertical Field
of View (VFOV), especially when using LiDAR-based localization algo-
rithms. To mitigate this problem, an initial guess value integrated with
Inertial Measurement Unit (IMU) data is crucial when performing scan
matching registration between two consecutive LiDAR frames. IMU
pre-integration is a widely used method for this purpose in SLAM and
LIO algorithms [11]. For a given measured angular velocity ω̂B and
acceleration âB, the IMU raw measurement model can be defined as:

ω̂B(t) = ωB(t) + bω(t) + ηω(t) (1)
âB(t) = R>WB(t)(aW(t)− gW) + ba(t) + ηa(t), (2)

whereωB(t) and aW(t) are actual states in body andworld frame at time
t and g is the gravity vector inW respectively. bω(t) and ba(t) are biases
of the gyroscope and accelerometer respectively that can be modeled
by random walk. Also, ηω(t) and ηa(t) are modeled as Gaussian white

FIGURE 5 Keyframe generation interval according to the surround-
ing spatial volume. White dots and green voxels represent generated
keyframes and ′ẐVenv

t in Algorithm 1, respectively. Area A is Tier 4 with
NVenv

t = 20 and has a small dkey, while Area B is Tier 2 with NVenv
t = 65

and has a large dkey.

noise of the gyroscope and accelerometer. Note that, RWB is the rota-
tion matrix from B to W and R>WB = RBW. Using IMU measurement,
the relative motion between t and t+ δt can be expressed as a discrete
time system. Using properties such as ṘWB = RWBωB, v̇W = aW, and
ṗW = vW, relative rotation R, velocity v, and position p can be defined
as follows.

R(t+ δt) = R(t)Exp((ω̂(t)− bω(t)− ηω(t))δt) (3)
v(t+ δt) = v(t) + gδt+R(t)(â(t)− ba(t)− ηa(t))δt, (4)
p(t+ δt) = p(t) + v(t)δt+

1

2
gδt2

+
1

2
R(t)(â(t)− ba(t)− ηa(t))δt2. (5)

Using (3), (4) and (5), we can define the IMU pre-integration mea-
surement δRij , δvij , and δpij between the ith and jth frames as
follows.

δRij
.
=

j−1∏
k=i

Exp((ω̂k − bωk − η
ω
k)δt

) (6)

δvij
.
=

j−1∑
k=i

δRik(âk − bak − η
a
k)δt, (7)

δpij
.
=

j−1∑
k=i

[
δvikδt+

1

2
δRik(âk − bak − η

a
k)δt

2
]
. (8)

We recommend the reader to refer to [11] for a thorough explanation
of equations (3) through (8). The final optimization of the UAV’s state
is accomplished by employing the IMU pre-integration measurements
δRij , δvij , and δpij in conjunction with the scan to sub-map match-
ing registration results, while simultaneously updating the IMU biases
bωk and bak . Notably, during the scan to scan matching registration stage,
only δRij is employed as the initial guess, and it is assumed that δpij is
negligible.

4.1.3 Scan matching via Generalized-ICP

The proposed surrounding-adaptive LIO incorporates two types of scan
matching registration. The first is the scan to scanmatching registration,
which estimates the UAV state between two consecutive keyframes.

8 Kim et al

The second is the scan to sub-map matching registration, which opti-
mizes theUAV state in the global scale.We employGeneralized Iterative
Closest Point (GICP) as a registration technique and the voxelization
parameters are determined according to the surrounding spatial volume,
as shown in Algorithm 1. This helps reduce the computational cost by
using a large V in large areas and increases the accuracy by using a small
V in narrower areas, balancing between accuracy and computational
cost.

TheGaussian distributionmodel for input LiDARpoints Ẑin = {Ẑin,i}
and target LiDAR points Ẑtar = {Ẑtar,i} can be expressed as:

Zin,i ∼ N (Ẑin,i, Cin,i), Ztar,i ∼ N (Ẑtar,i, Ctar,i), (9)
where Cin,i and Ctar,i are covariance matrices. If there is no error or
noise between the input points and the target points, we can express
the perfect transformation T∗ = [R|p] as follows.

Ẑin = T∗Ẑtar, T∗ ∈ SE(3) (10)
Using (10), we can express the distance error term dTi for arbitrary
transformation T as :

dTi = Zin,i −TZtar,i (11)
and we can define the Gaussian distribution model for dT∗

i as follows.
dT

∗
i ∼ N (Ẑin,i − (T∗)Ẑtar,i, Cin,i + (T∗)Ctar,i(T∗)>)

= N (0, Cin,i + (T∗)Ctar,i(T∗)>). (12)
Finally we can compute the T using the Maximum Likelihood Estima-
tion (MLE) from (12) as follows.

T = argmax
T

∏
i

p(dTi)

= argmax
T

∑
i

log(p(dTi))

= argmin
T

∑
i

d
(T)
i

>
(Cin,i +TCtar,i(T)>)dTi . (13)

As mentioned previously, the proposed LIO performs scan to scan
matching (indicated by the yellow line in Fig. 3) to estimate the UAV
state between two consecutive keyframes. In this process, the last
keyframe is used as the target, and the current LiDAR frame is used as
the input. The last keyframe is denoted as Ẑkey, the current distance
error term dTt with respect to the surrounding information S defined in
Algorithm 1 can be expressed as follows:

dTt,i =
′ẐV

t,i −T′ẐVkey,i
∼ N (0, Ct,i +TCkey,i(T)>). (14)

where Ct,i and Ckey,i are the covariance matrices. It should be noted
that the points used to compute the distance error term dTt,i are selectedbased on the distance threshold dcor specified in S. With this infor-
mation, the relative transformation δT obtained by the scan to scan
matching registration can be computed as follows:

δTt = argmin
T

∑
i

d
(T)
t,i

>
(Ct,i +TCkey,i(T)>)dTt,i. (15)

If the position vector of δTt is larger than the dkey in the S, the target
is updated with the newly generated keyframe as shown in Fig. 3 , and

Algorithm 2 GICP-based scan matching using surrounding information
Require: Ẑt, Ẑkey, Ct, Ckey, δRij , and S = {V, dkey, dcor}
Ensure: Tt, T∗, and δTt

1: Tt, T∗, δTt ← I . Initialization
2: if New LiDAR scan is obtained then
3: S= {dkey, dcor, V }← Algorithm 1(Ẑt)

4: ′ẐV
t , ′ẐVkey ← Voxelization(Ẑt, Ẑkey) with V

. Adaptive voxelization parameter
5: δTguess

t ← Initial Guess(δTt−1, δRt−1,t)

6: GICP.BuildSource(′ẐV
t , Ct)

7: GICP.BuildTarget(′ẐVkey, Ckey)
8: GICP.Align(δTguess

t , dcor)
. Adaptive correspondence distance parameter

9: δTt ← GICP.GetTransform()
10: Tt ← T∗δTt

11: if ‖p(δTt)‖ ≥ dkey then
. Adaptive keyframe generation interval

12: T∗ ← Optimization() . In Section. 4.1.4
13: Tt ← T∗ . UAV state update
14: Ẑkey ← Ẑt . Keyframe update
15: end if
16: t← t+ 1

17: end if
p(T) is the position vector p inT =

[
R | p

]

a scan to submap matching algorithm is performed to optimize the UAV
state. When T∗ represents the UAV state that was optimized from the
last keyframe, the current UAV state Tt can be expressed as follows:

Tt = T∗δTt. (16)
The proposedGICP-based scanmatching using surrounding information
S is described in Algorithm 2.

4.1.4 Optimization

Existing SLAM algorithms typically utilize loop closure algorithms to
optimize the state estimation when a robot revisits a previously
explored area. However, in practical UAV operations in real-world envi-
ronments, there is no guarantee that the UAV will return to its previous
location. Even if it does return, themissionmay fail due to the accumula-
tion of a large state estimation error. Therefore, our main objective is to
accurately estimate the UAV state in real-time without relying on loop
closure algorithms. In Section 4.1.3, we described a GICP-based scan
matching algorithm that utilizes surrounding information S. However,
relying solely on scan to scan matching for a prolonged period with-
out optimization can lead to the accumulation of errors and difficulty in
obtaining reliable results. To address this issue, we propose a method
for optimizing the UAV state in the global map perspective by gener-
ating a sub-map when a keyframe is generated. For optimization, we
perform scan to submap matching, and generate the sub-map using the
kNN algorithmwith the current UAV state in the keyframemanagement

Kim et al 9

FIGURE 6 The sub-map generation results of radius-based, history keyframes-based, and the proposed kNN-based methods. The yellow points,
red points, blue scan, white squares, and yellow squares denote the complete map points, sub-map points, the current scan, keyframe, and selected
k(=30) keyframes, respectively. Despite the robot revisiting an area, the sub-map generated by the radius-based and 30 history keyframes-based
methods fail to cover the entire current scan. The yellow circles indicate the non-overlapping current scan points in the sub-map.

FIGURE 7 Comparison of computation time for sub-map generation.
The radius-based method exhibits an increasing computational cost as
the map size grows, in contrast to the proposed method which main-
tains a low computational cost. The history keyframe-based method, on
the other hand, does not involve any specialized computation, but its
optimization performance suffers as it takes into account only the most
recently generated keyframes.

module, as shown in Fig. 3 . Note that we use the kNN algorithm based
on the Euclidean distance between T∗s and Tt, rather than between
map points and Tt. In existing SLAM algorithms, several sub-map gen-
eration methods have been proposed for global state optimization, such
as the radius-based sub-map generation method or the method using a
specific number of history keyframes. However, the radius-based sub-
map generation method suffers from insufficient overlapping points at
the edges of the current scan, which reduces scan matching perfor-
mance and incurs increasing computation cost over time, as shown in
Fig. 7 . The sub-map generation method using a specific number of his-
tory keyframes only considers recent keyframes, and therefore leads
to continuous degradation in state estimation performance due to the
assumption that errors accumulate. The sub-map generation results for
each technique are presented in Fig. 6 .

FIGURE 8 Optimized state via kNN-based sub-map generation in a
multi-floor environment. The yellow points, red points, blue scan, white
squares, and yellow squares represent ′M̂A, ′M̂, (T∗′ẐV

t), K, and
KK in Algorithm. 3, respectively. The proposed LIO utilizes a keyframe
generation interval and parameters for scan matching that adapt to
the surrounding spatial volume. By optimizing from a global perspec-
tive in wide areas and from a local perspective in narrow areas, the
proposed LIO ensures reliable localization performance in challenging
environments.

In the proposed kNN-based sub-map generation method, k

keyframes are selected based on their Euclidean distance from the cur-
rent UAV state, without considering the order in which they were gen-
erated. This approach increases the likelihood of selecting keyframes
with less accumulated error and improves the overall optimization per-
formance in the global map perspective. When ′M̂ = {′M̂i} is the
sub-map generated by the proposed kNN-based method, the optimized
UAV stateT∗ can be expressed as follows using equations (14) and (15).

dT
∗

t,i = ′ẐV
t,i −T∗′M̂V

i

∼ N (0, Ct,i +T∗CM,i(T
∗)>) (17)

T∗ = argmin
T∗

∑
i

d
(T∗)
t,i

>
(Ct,i +T∗CM,i(T

∗)>)dT
∗

t,i . (18)

10 Kim et al

FIGURE 9 An overview of the proposed path planning algorithm. The rolling grid search-based method divides the 3D map into 2D maps rotated
in the roll axis, and performs the A∗ algorithm in each 2D map. In the rolling grid search method, the color of each path planning result represents
the result of the A∗ algorithm in each plane shown in Fig. 10 . Among a total of 6 paths, the best path (white bold line) is selected according to the
cost function, and motion primitive-based obstacle avoidance is performed along the best path.

Finally, the optimized UAV state T∗ is passed to the GICP-based
scan matching module to compute Tt using scan to scan matching
registration. The proposed kNN-based sub-map generation method is
described in Algorithm 3, and its results are shown in Fig. 8 .

4.2 Path Planner

Reliable 3D obstacle avoidance and safe path planning to the destina-
tion are essential for performing various missions such as exploration
and guided flight in 3D complex environments. However, the 3D obsta-
cle avoidance algorithm requires high computation cost for collision
check with 3Dmap points or path planning to the destination, which is a
challenging problem within the on-board computer. Therefore, we pro-
pose an algorithm that combines the motion primitive-based method
and the grid search-based method for 3D path planning with low com-
putation cost. In particular, for grid search-based path planning, we
proposed a method of composing 3D map points into 2D grids rotated
along the roll direction, which greatly reduced the computation cost
compared to conventional 3D grid search-based methods. In addition,
as a motion primitive-based method, we propose an approach from the
perspective of the map points rather than the perspective of the path
candidates to perform the collision check between more than 40,000
path candidates and 3D map points. This can greatly reduce the com-
putation cost compared to the existing motion primitive-based method
that perform point-by-point collision checks between map points and
path candidates, and can generate as many path candidates as possi-
ble. An overview of the proposed path planning algorithm combining
the grid search-based method and the motion primitive-based method
is shown in Fig. 9 .

4.2.1 Rolling grid search-based planning

The A∗ algorithm is a widely used grid search-based path planning
method that is commonly used in unmanned platforms due to its reliable
results. However, the 3D version of the A∗ algorithm has an exponen-
tially higher computation cost than its 2D counterpart. This presents a

FIGURE 10 Rolling grid costmap generation result. We propose a novel
approach to represent a 3D map by decomposing it into 2D maps
rotated along the roll direction. Specifically, we divide the 3D map into
n planes with an interval of r degrees in the roll direction. The size and
resolution of each plane are determined based on the priority of flying
in the horizontal plane. Moreover, we incorporate a safety distance that
is proportional to the slope, i.e., the steeper the slope, the larger the
safety distance.

challenge for practical operation, as reducing the search space or grid
resolution can lead to issues such as the local minima problem or the
algorithm becoming unable to operate in narrow areas. To effectively
reduce computational cost, we propose a method of expressing a 3D
map as 2D maps rotated in the roll direction, as depicted in Fig. 10 .
From ′M̂ generated by the kNN-based sub-map generation method in
Algorithm 3, we can express the 2D maps Gr(⊂ ′M̂) = {Gr

i } rotated
by r degree in the roll direction as:

Gr
i = zlimdz (R

−1
xir

T−1
t
′M̂), i = {0, 1, · · · ,

π

r
− 1}. (19)

where ()−1, Rxir and zlimdz () are the matrix inversion, roll rotation
matrix with ir degree, and filtering function for points where the abso-
lute value of z is less than dz , respectively and the results are shown
in Fig. 11 . Among the paths Lr = {Lri } generated by using the A∗
algorithm in Gr as shown in Fig. 12 , the best path Lribest = {L

r
i,j} can

Kim et al 11

Algorithm 3 Optimization via KNN-based sub-map generation
Require: All keyframes K = {Ki}, δTt, Ẑt, δRij , and S =

{V, dkey, dcor}
Ensure: Entire map points ′M̂A = {′M̂A

i }, k-nearest neighbor
keyframesKK(⊂ K), T∗, and ′M̂

1: T∗ ← I , K,KK ← ∅ . Initialization
2: K0 = p(T∗) and ′M̂A

0 = T∗′ẐV
0 . Algorithm. 1

3: if ‖p(δTt)‖ ≥ dkey then . Optimization()
4: KDtree.Build(K)

5: KDtree.Search(Tt, k)

6: {k0, k1, · · · , kk−1} ← KDtree.ExtractIndex
7: KK ← {Kk0

,Kk1
, · · · ,Kkk−1

}
8: ′M̂← {′M̂A

k0
, ′M̂A

k1
, · · · , ′M̂A

kk−1
} . Sub-map

9: Tguess
t ← Initial Guess(Tt−1, δRt−1,t)

10: GICP.BuildSource(′ẐV
t , Ct)

11: GICP.BuildTarget(′M̂V , CM) . Target update
12: GICP.Align(Tguess

t , dcor) . Scan to sub-map
13: T∗ ← GICP.GetTransform()
14: New area = true

15: for j = 0 to i− 1 do
16: if ‖p(T∗)−Kj‖ ≤ dkey then
17: New area = false . Visited area
18: Break
19: end if
20: end for
21: if New area then
22: K.PushBack (p(T∗)) . New keyframe
23: ′M̂A.PushBack (T∗′ẐV

t) .Map update
24: end if
25: end if

p(T) is the position vector p inT =
[
R | p

]

be obtained using the following object function.
ibest = argmin

i

∑
j

wr sin (ir + εi)‖Lr
i,j − Lr

i,j−1‖

+ wg(i− iprev), Lr
i,j ∈ R3. (20)

Note that, wr , wg , iprev, and ε represent the roll weight, group weight,
previous best group, and roll bias along the plane, respectively. The pro-
posed object function is divided into a path length term considering the
rotation angle of each plane and a group term to prevent abrupt change
of the selected plane that generates the path.

Once selected, Lribest is maintained until the UAV reaches its destina-
tion or there is a collision in the newly updated ′M̂, and is integrated
with motion primitive-based methods.

4.2.2 Motion primitive-based planning

The motion primitive-based obstacle avoidance algorithm selects the
path with the minimum cost among collision-free paths through a col-
lision check between path candidates generated offline and 3D map

FIGURE 11 Results of generating the proposed 2D maps in world
frame. Yellow map points and pink grids represent ′M̂ and Gr

i , respec-
tively. Here, we use dz = 0.2 and r = 30, and each Gr

i has a different
map size and resolution for the safe and reliable path generation.

FIGURE 12 Lri results generated using the A∗ algorithm at each Gr
i .

Among Lri , the best path is selected through the proposed object
function.

points. This method offers the advantage of being relatively simple com-
pared to grid search-based and RRT algorithms, with small uncertainty
in the path planning result. However, the computation cost of colli-
sion check with 3D map points increases exponentially as the number
of motion primitive path candidates for a complex 3D environment
increases, making it challenging to implement on a UAV with limited
computational power. To solve this problem, we utilize an approach to
the collision check algorithm from the perspective of 3D map points
rather than the perspective of path candidates.

To generate paths offline, we refer to [48] and slightly modify the
cost function to select the group with the minimum cost. The forward
distance, maximum horizontal angle, maximum vertical angle, horizontal
angle interval, and vertical angle interval for generating offline paths are
denoted by df , HORmax, VERmax, dHOR, and dVER, respectively. The total
number of paths Npath is Npath=(2 ‖HORmax‖

dHOR + 1)3(2
‖VERmax‖

dVER + 1)3, and
the maximum forward distance dmax

f is 3df . When paths are generated,
corresponding group list ζlist is also generated in the same order. From
the path list U = {Ui}, we can obtain the voxel grid list Vlist = {Vlist

j }
containing paths belonging to the grid, as shown in Algorithm 4.

UsingU and Vlist obtained from the offline processing, we can deter-
mine the collision-free pathUfree that exists within ′M̂, the 3D obstacle

12 Kim et al

FIGURE 13 The proposed motion primitive-based obstacle avoidance
results. The yellow map points, white paths, and red paths correspond
to ′M̂,Ufree, and the executed path of oBest, respectively.

Algorithm 4 Offline processing to obtain voxel grid list Vlist
Require: U, maximum x,y, and z value of all paths xmax, ymax, zmax, voxel

grid resolution vres, and searching radius ds
Ensure: Vlist and path index list {Kp}
1: j = 0 . Initialization
2: for i = 0 to xmax/vres − 1 do
3: x = xmax − i ∗ vres
4: for ii = 0 to 2ymax/vres − 1 do
5: y = ymax − ii ∗ vres
6: for iii = 0 to 2zmax/vres − 1 do
7: z = zmax − iii ∗ vres
8: {Kp} = Rangesearch(U, {x, y, z}, ds)
9: Vlist

j = {Kp}
10: j = j + 1

11: end for
12: end for
13: end for

Rangesearch(U, {x, y, z}, ds) returns indices of U within the
Euclidean distance ds betweenU and {x, y, z}.

map. To find the corresponding voxel index j for a given point x, y, z
within ′M̂, we can use the reverse order of Algorithm 4, which is as
follows:

xind =
xmax + vres

2
− x

vres , yind =
ymax + vres

2
− y

vres
zind =

zmax + vres
2
− z

vres , (21)

j = (
2ymax
vres + 1)(

2zmax
vres + 1)xind + (

2zmax
vres + 1)yindzind. (22)

Now, we can select the group with the minimum cost using collision
free paths and the proposed cost function with j obtained in (22). The
online process for selecting the group oBest in ′M̂, a 3D obstacle map, is
described in Algorithm 5 and its results are shown in Fig. 13 .

4.3 Autonomous Exploration

Numerous exploration algorithms have been proposed recently for
carrying out multiple missions in unknown areas. However, a crucial

Algorithm 5 Online processing to obtain oBest
Require: ′M̂,U, Vlist, ζ list, group score listO, and number of group k
Ensure: Ufree, oBest, and collision pathsUcollision
1: O← 01×k , k=(2 ‖HORmax‖

dHOR + 1)(2
‖VERmax‖

dVER + 1)

2: for All {x, y, z} points in ′M̂ do
3: if ‖x‖ ≤ xmax and ‖y‖ ≤ ymax and ‖z‖ ≤ zmax then
4: j ← from (21) and (22)
5: Ucollision.PushBack(U[Vlist

j])
6: end if
7: end for
8: Ufree ← U−Ucollision
9: for All path index i inUfree do
10: O[ζi]+ = Endpitch(Ui) ∗ Endyaw(Ui)

11: end for
12: oBest ← argmin

o

(
wsO[o] + wg(o− oprev)

)
Endpitch(Ui) and Endyaw(Ui) returns pitch and yaw value of end
point of Ui, respectively. Note that,ws, wg , and oprev are state weight
values, group weight value, and previous selected group, respectively.

limitation of these studies is the lack of defined entry and exit points,
rendering them impractical in real disaster scenarios. Therefore, the
proposed exploration algorithm aims to overcome this limitation by
introducing a hybrid operation that combines guided mode and explo-
ration mode for practical search and rescue using UAVs. Furthermore,
the algorithm is designed to conduct exploration only within a specific
area designated by the operator. It is a low-computation cost approach
that relies on the 3D map generated by the localization module and
uses Euclidean distance-based clustering to segment the exploration
area. An overview of the proposed exploration algorithm is shown in
Fig. 15 . The exploration area’s voxel map ′M̂E, which is classified using
the voxlization parameter V E, can be obtained for the entire map ′M̂A
generated by the localization module. The segmented exploration area
′M̂S(⊂ ′M̂E) = {′M̂S

i} can be obtained through Euclidean distance-
based clustering, as described in Algorithm 6. The results are presented
in Fig. 14 . Using the segmented exploration area ′M̂S, we can define
local goal points gi corresponding to each ′M̂S

i = {′M̂S
i,j} as follows:

gi =
∑
j

′M̂S
i,j

n
, j = {0, 1, 2, · · · .n− 1}, ′M̂S

i,j ∈ R3 (23)
As previously stated, the proposed exploration algorithm is operated as
a hybrid with the guided mode, and the UAV first flies in the guided
mode to the entrance set by the operator. The exploration score, con-
sidering the exit locationXexit set by the operator as prior information,
can be defined as follows:

ExplorationScore(gi) =

Volume(′M̂S
i)
wexit‖gi −Xexit‖
‖gi − p(Tt)‖

(24)
Note that Volume(′M̂S

i) represents the number of elements (j in (23))
in ′M̂S

i , andwexit denotes the weight for the distance to the exit. Finally,
we pass gi with the highest exploration score to our 3D path planning

Kim et al 13

FIGURE 14 The result of segmented exploration area generation. The colored voxel represents segmented area ′M̂S to be explored, the yellow
map points represent entire map ′M̂A, and the gray circles indicate coverage dcover. Note that, flight trajectories (white line) are used to identify
uncovered areas based on the Euclidean distance.

Algorithm 6 Generate segmented exploration area ′M̂S
Require: ′M̂A,K, V E, coverage dcover, and exploration area boundaryB
Ensure: Voxel map ′M̂E and segmented exploration area ′M̂S
1: ′M̂V E ← Voxelization(′M̂A) with V E
2: for All {x, y, z} points in ′M̂V E do
3: if {x, y, z} is outsideB then
4: Continue
5: else
6: Cover = false
7: for AllK do
8: if ‖Ki − {x, y, z}‖ ≤ dcover then
9: Cover = true . Covered voxel
10: Break
11: end if
12: end for
13: if Cover= false then . Uncovered voxel
14: ′M̂E.Pushback({x, y, z}) . Voxel map
15: end if
16: end if
17: end for
18: ′M̂S ← EuclideanClustering(′M̂E)

module (discussed in Section 4.2), and the UAV explores the area while
following the planned path.

4.4 Onboard Object Detection and Localization

During the exploration mission, the target objects or artifacts within the
area are visually detected by the UAV’s front-facing camera. To ana-
lyze the objects, we utilized an EfficientDet-Lite2 model [34], which
is trained incrementally using a manually collected dataset. The infer-
ence for detection is executed by leveraging the Google Edge TPU. The
detected objects are then projected into the LiDAR scan, nearby objects

FIGURE 15 An overview of the proposed exploration algorithm. The
UAV performs exploration only within the exploration area (orange box)
set by the operator. Voxelization is performed on map points exclud-
ing the covered area (gray circle) corresponding to the UAV’s trajectory,
and areas to be explored are segmented through Euclidean distance-
based clustering (colored voxel). The middle points (colored points) of
each segmented area are designated as the UAV’s local goal points, and
the priority is determined according to the proposed exploration score

are clustered together to get the unique location per object. The pro-
posed method provides efficient and low computation onboard object
detection & localization pipeline.

4.4.1 Object Detection

The object detection module in our UAV system utilizes the front-
facing camera, and due to the absence of a dedicated GPU, we rely
on the Google Edge TPU to perform inferencing on incoming images.
Table 1 presents a comparison of various detection models supported
by the Edge TPU. To select the model, we consider a maximum infer-
ence time of 100ms with the highest possible accuracy. We opt for
the lightweight EfficientDet-Lite2 model [34], which has a low mem-
ory footprint, acceptable inference time, and is fully compatible with
the Edge TPU. Utilizing the Edge TPU only requires one CPU from the
onboard computer, freeing up the remaining CPUs for other modules
such as SLAM and Planner. While the inference speed is usually 15-
20 Hz, we limit it to 10 Hz as a faster inference rate is not necessary

14 Kim et al

given the assumption that the UAV is notmoving very fast. This way, the
UAV can detect the same object multiple times in one sweep, thereby
reducing false-positive detections.

TABLE 1 Inference time comparison

Model COCO Dataset Building A Dataset Building B Dataset
Inference Time [ms] mAP Inference Time [ms] Inference Time [ms]

EfficientDet-Lite0 [34] 54.4 30.4% 30.9 28.4
EfficientDet-Lite1 [34] 72.6 34.3% 42.4 40.2
EfficientDet-Lite2 [34] 123.3 36.0% 61.3 68.4
EfficientDet-Lite3* [34] 144.8 39.4% - -
SSD Moblinet V2 [7] 10.5 25.6% - -

SSDLite MobileDet [43] 12.7 32.9% - -
*requires two TPUs

4.4.2 Object 3D Position Estimation

The positions of the detected objects are estimated by projecting their
bounding boxes onto the current scan of the LiDAR sensor or the global
point-cloud map generated by the localization module. In general, pro-
jecting the bounding box to the LiDAR scan is preferred due to its
lower computational demand. However, if the bounding box is located
outside the LiDAR’s vertical field of view, the global map becomes nec-
essary. The projection formula of the standard pinhole camera model
fproj : R3 → R2 can be presented as follows:

k


u

v

1

 =


fu 0 u0

0 fv v0

0 0 1



x

y

z

 (25)

where the fu, fv , u0, v0 are the camera model parameters, [x, y, z]T
is the 3D point in the camera coordinate frame C, and u, v are the
undistorted pixel coordinates in the image frame I. We assume that
the transformation between the LiDAR coordinate frame L or world
coordinate frameW to the camera coordinate frame C is known.

The input LiDAR scan is represented as a set of 3D points S = {si}
expressed in the camera coordinate frame C. Let us define a new set
Sp containing 3D points whose projection sI = [su, sv]T = fproj(s)

lies inside a certain pixel-radius rp from the middle of the bounding box
b0 = [bu, bv]T . The set can be representated as follows:
Sp = {s | ||sI − b0||2 ≤ rp, s ∈ S} (26)
The 3D position of the detected object can be determined by select-

ing the nearest point from the camera in the z-direction from the set
Sp.

ŝ = si,

where i = argmin{zs | s ∈ Sp}
(27)

where ŝ is the selected 3D point of the detection, si is the i-th item
of Sp and zs is the z component of s. Choosing the point that lies in rp
circle is based on our observation that the center of the bounding box
usually corresponds to the object while the bounding box corners cor-
respond to the background. However, we do not select the exact center

point of the bounding box because in some cases, such as when the
object has a hollow center, the bounding box center may correspond
to the background. Instead, we select the point in Sp with the low-
est z-distance. Figure 16 provides a visualization of the 3D position
estimation process.

(a) (b)
FIGURE 16 3D position estimation by projecting bounding box to the
LiDAR point-cloud. (a) shows the LiDAR points inside the bounding box
in blue, inside circle rp in green, bounding box center in yellow, and
the selected 3D point in red. (b) shows the reprojection of (a) in the 3D
coordinate.

4.4.3 Detection Association via Euclidean Clustering

To associate the detections with each other, we perform clustering of
the detection points in 3D space using Euclidean distance. This is an
intuitive and straightforward technique where points in close proximity
are typically assumed to belong to the same object. We base this sub-
section mostly on the work of Rusu et al. [28], and for completeness,
we will explain this method in detail.

Given the detection points set D = {Dc | c ∈ C} in the world frame
W , where C is the set of object classes and Dc is the detection points
for class c, we want to cluster the neighboring objects with the same
class into the same cluster. First, we need to differentiate a detection
point from another cluster. Let Oi = {di ∈ Dc} be a distinct cluster
from Oj = {dj ∈ Dc} if and only if the following condition is met:

min||di − dj ||2 ≥ dth,c (28)
where dth,c is the maximum distance threshold for class c, which is typ-
ically based on the size of the object. Additionally, we apply a filter to
report a detected object only if it is based on a minimum number of

Kim et al 15

FIGURE 17 2D visualization of Algorithm 7. left image: detection
bounding boxes and its reprojection point using method explained in
4.4.2. right image: Algorithm 7 result, the large red and yellow circles
represent different clusters which will be reported as two objects, the
small blue points will be filtered out due to lack of neighbours n < nc

in the radius dth,c.

detections nc in a cluster Oc. The value of nc can vary across differ-
ent object categories and is usually determined through an analysis of
detection performance. A good rule of thumb for nc is 5, which corre-
sponds to detecting an object repeatedly over a period of 0.5 seconds.
The complete process of estimating and reporting the 3D position of
objects is presented in Algorithm 7.

5 EXPERIMENTS

In order to evaluate the performance of our proposed exploration
system, we conducted comprehensive analyses of each sub-system,
including LIO, path planning, and exploration, in both simulated and
real-world environments. To compare the accuracy and computation
cost of the proposed LIO, we used ground truth values provided by
ROS Gazebo in simulation environments. Furthermore, to evaluate the
performance of the proposed exploration algorithm, we compared the
exploration volume over time and exploration efficiency with GBPlan-
ner2 [21], the current state-of-the-art algorithm. Exploration efficiency
was defined as the median value of exploration ratio, and we defined
exploration efficiency through the statistics of exploration ratio. In real-
world environments, due to the lack of ground truth information, we
measured the end-to-end (e2e) error by marking the start and end point
of the UAV. To benchmark and analyze the proposed LIO, we compared
it with state-of-the-art algorithms, including HDL-NDT [19], HDL-Fast
GICP [19], LINS [27], LIO-SAM [32], and Fast-LIO2 [44]. Finally, we ana-
lyzed the exploration volume over time and exploration efficiency in the
same manner as in the simulation environments.

Algorithm 7 Detection association via euclidean clustering
Input: Detection labels C, detection 3D points D = {Dc | c ∈ C},
distance threshold for each class dth,c, minimum object per cluster
for each class nc

Output: Detection cluster for each class O = {Oc | c ∈ C}
O ← ∅
for c ∈ C do
Oc ← ∅ . list of clusters of class c
Qc ← ∅ . a queue of detection points of class c
for di ∈ Dc do
Qc.PushBack(di)

for di ∈ Qc do
search for neighbors set Dk

c of di in Dc

with radius r ≤ dth,c
for dk

i ∈ Dk
c do

if dk
i is not processed then
Qc.PushBack(dk

i)

end if
end for

end for
ifQc.Size() ≥ nc then
Oc.PushBack(Qc)

end if
end for
O.PushBack(Oc)

end for
return O

TABLE 2 List of parameters used in simulation environments

Parameter Value Within Parameter Value Within
V maxscan 1 Alg. 1 vres 0.2 Alg. 4
dmaxkey 10 Alg. 1 HORmax 27◦ Alg. 5
dmaxcor 5 Alg. 1 VERmax 27◦ Alg. 5
α 0.6 Alg. 1 dHOR 9◦ Alg. 5
β 0.4 Alg. 1 dVER 13.5◦ Alg. 5
γ 0.4 Alg. 1 V E 5 Alg. 6
k 30 Alg. 3 dcover 10 Alg. 6
r 30 (19)

5.1 Simulation based evaluation

In this section, we present an analysis of the performance of the pro-
posed system in simulation environments. Our system was tested in
two simulated subterranean environments, Cave 01 and Cave 02, pro-
vided by the DARPA Subterranean Virtual Competition, and operated
in ROS Gazebo. The simulation utilized a 64-channel LiDAR sensor with
a Horizontal Field of View (HFOV) of 360◦ and a Vertical Field of View
(VFOV) of 30◦, with IMU measurements provided by ROS Gazebo. We

16 Kim et al

FIGURE 18 Results of the proposed UAV exploration system in the Cave 01 simulation environment. The green path, red path, and white map
points are the trajectory using the proposed system, the trajectory using GB planner 2, and ′M̂A, respectively. The colorful boxes in the sub-figure
mean the segmented exploration area ′M̂S according to time. What is interesting is that the proposed method utilizes a map generated using the
proposed LIO rather than a current scan, so as shown in the side view, reliable exploration is possible even within a environment with vertical
features.

FIGURE 19 Comparison of state estimation results between the pro-
posed LIO and ground truth in the Cave 01 environment.

FIGURE 20 RMSE over time in a Cave 01 environment.

compared the performance of the proposed LIO with the ground truth
provided by ROS Gazebo, and the proposed exploration algorithm with

FIGURE 21 Comparison of exploration efficiency between the pro-
posed exploration algorithm and GBPlanner2 in the Cave 01 environ-
ment.

GBPlanner2. The maximum speed of the UAV was set to 2m/s, and the
exploration area was defined as all areas where x ≥ 10. The entrance
and exit positions in both simulation environments were set to the
entrance of the cave. The parameters used for operating the proposed
system in simulation environments are summarized in Table 2 .

The results of the proposed exploration system in the Cave 01 simu-
lation environment is shown in Fig. 18 and the performances are shown
in Fig. 19 , Fig. 20 , and Fig. 21 . As shown in Fig. 21 , the performance
of the proposed exploration algorithm in the Cave 01 simulation envi-
ronment achieved higher exploration volume and exploration efficiency
than GBPlanner2. In particular, in terms of exploration efficiency, the
proposed algorithm was 90 m3/s, and the GBPlanner2 was 42 m3/s,

Kim et al 17

FIGURE 22 Results of the proposed UAV exploration system in the Cave 02 simulation environment. The green path, red path, and white map
points are the trajectory using the proposed system, the trajectory using GB planner 2, and ′M̂A, respectively. The colorful boxes in the sub-figure
mean the segmented exploration area ′M̂S according to time. In this case, the proposed exploration algorithm showed high exploration efficiency
with fewer back-and-forth maneuvers than GB planner2 due to the exit term defined in the proposed exploration score.

FIGURE 23 Comparison of state estimation results between the pro-
posed LIO algorithm and ground truth in the Cave 02 environment

FIGURE 24 RMSE over time in a Cave 02 environment.

showing about twice as high efficiency. We also analyzed the perfor-
mance of the proposed system in the Cave 02 environment, which has
higher complexity (many branches) than the Cave 01 environment, and

FIGURE 25 Comparison of exploration efficiency between the pro-
posed exploration algorithm and GBPlanner2 in the Cave 02 environ-
ment

TABLE 3 The performance of the proposed LiDAR Inertial Odometry
(LIO) in simulation environments

World ATE [m] RMSE [m] Computation time [ms] CPU [%]max min std
Cave 01 0.79 0.07 0.26 0.27 15.12 12.01
Cave 02 0.97 0.14 0.17 0.39 14.98 12.13

the exploration results are shown in Fig. 22 and the performance is
shown in Fig. 23 , Fig. 24 , and Fig. 25 . Similar to Cave 01, in the Cave
02 environment, the exploration volume over time and exploration effi-
ciency of the proposed exploration algorithm were higher than those of
GBPlanner2, and the proposed algorithm achieved 108m3/s, compared

18 Kim et al

FIGURE 26 The results of the proposed UAV exploration system in Building A environment. The white squares and yellow map points in the figure
representK and ′M̂A, respectively. The colorful boxes in the sub-figures show the segmented exploration area ′M̂S according to time. Additionally,
the UAV thumbnails in the sub-figures depict the drone flight scenes at each location. In this environment, the entrance was set as a room on the
second floor, and the drone was operated in guided mode until it reached the entrance. The exit was designated as a window on the second floor,
and after completing the exploration within the designated exploration area, the drone escaped the building through the window and returned to
the starting point.

FIGURE 27 The configuration of aerial robot deployed in real-world
experiments

to 72 m3/s for GBPlanner2. Also, as mentioned before, when operat-
ing the proposed exploration algorithm in simulation environments, we
used the proposed LIO, and the results of the proposed LIO showed
accurate state estimation peformance, as shown in Fig. 20 and Fig. 24 .
The quantitative analysis of our LIO algorithm used while exploration in
the Cave 01 and Cave 02 environments is shown in Table 3 . The Abso-
lute Trajectory Error (ATE) between the ground truth provided by ROS
Gazebo and the proposed LIO was a maximum of 0.79m, a minimum of

FIGURE 28 The hardware components of aerial robot deployed in real-
world experiments

0.07m, and a standard deviation of 0.26 in the Cave 01 environment,
and a maximum of 0.97m, minimum 0.14m, and standard deviation of
0.17 in the Cave 02 environment. In addition, the Root Mean Square
Error (RMSE) was 0.27m and 0.39m in Cave 01 and Cave 02 environ-
ments, respectively, and the average state computation time per one
LiDAR scan was 15.12ms and 14.98ms, respectively. Finally, the aver-
age CPU usage (with respect to one CPU) was 12.01% and 12.13%,
respectively, and it was verified that the proposed LIO algorithm had
high accuracy and low computation cost.

Kim et al 19

FIGURE 29 The results of the proposed UAV exploration system in Building B environment. The white squares and yellow map points in the figure
representK and ′M̂A, respectively. The colorful boxes in the sub-figures show the segmented exploration area ′M̂S according to time. Additionally,
the UAV thumbnails in the sub-figures depict the drone flight scenes at each location. In this environment, the entrancewas designated as a second-
floor window, and it was operated in guided mode until before. The exit was designated as another second-floor window, and after completing the
exploration within the exploration area set by the operator, the drone escaped the building through the window and returned to the starting point.

FIGURE 30 Exploration performances of the proposed exploration
algorithm in the Building A environment

5.2 Experimental Evaluation

To verify the practicality of the proposed system and conduct further
analysis, we conducted a real-world field test using a quadrotor aerial
robot. The field test was conducted in two different buildings, Build-
ing A and Building B, with distinct characteristics. The drone platform
used in the field test is shown in Fig. 27 . The drone is equipped with
an Ouster 32-channel LiDAR, which provides a 360° horizontal field of
view (HFOV) and a 45° vertical field of view (VFOV). The other com-
ponents include Pixracer, a flight controller, and an Intel NUC computer
with a 6-core i7-10710U CPU. The IMU measurements were provided
by Pixracer, andwe used the RealSenseD435i camera for artifact detec-
tion and localization. The hardware components comprising the aerial
robot are shown in Fig. 28 . All subsystems of the proposed system

TABLE 4 List of parameters used in real-world environments

Parameter Value Within Parameter Value Within
V maxscan 1 Alg. 1 vres 0.2 Alg. 4
dmaxkey 10 Alg. 1 HORmax 27◦ Alg. 5
dmaxcor 5 Alg. 1 VERmax 27◦ Alg. 5
α 0.6 Alg. 1 dHOR 9◦ Alg. 5
β 0.4 Alg. 1 dVER 13.5◦ Alg. 5
γ 0.4 Alg. 1 V E 0.5 Alg. 6
k 30 Alg. 3 dcover 5 Alg. 6
r 30 (19)

were performed in real-time on the onboard computer, and all flight
tests were conducted in autonomous mode, without manual control by
the operator.

Building A consists of stairs and narrow rooms, and was selected to
validate the performance of LIO, exploration algorithm, and obstacle
avoidance algorithm proposed in a multi-floor environment. Building B
was selected to validate the practicality of the system proposed in a
general building, as it is accessible only through the second-floor win-
dow and consists of a narrow and long corridor and complex rooms. In
all field tests, the UAVwas launched from outside a building, assuming a
disaster environment, and was set to automatically return to its starting

20 Kim et al

TABLE 5 LiDAR Inertial Odometry (LIO) comparison results. (Red: Best, Blue: Second best)

Method Building A Building B
e2e Error[m] Computation Time[s] CPU[%] e2e Error[m] Computation Time[s] CPU[%]

Proposed 0.08 11.89 12.14 0.06 13.32 12.82
HDL-NDT [19] 5.23 23.15 14.15 3.58 23.90 14.28

HDL-Fast GICP [19] 1.15 22.55 14.48 1.51 20.13 14.43
LINS [27] 0.85 12.28 13.13 8.57 14.71 11.58

LIO-SAM [32] 0.32 13.04 13.71 - - -
Fast-LIO2 [44] 0.12 10.49 11.02 0.13 10.03 13.11

FIGURE 31 Exploration performances of the proposed exploration
algorithm in the Building B environment

point using a flight trajectory after exploration. The exploration results
using the proposed system in Building A and Building B are shown in
Fig. 26 and Fig. 29 , and the parameters of the proposed system used
in the real-world field test are shown in the Table 4 . Note that, the
maximum speed was set to 1.5m/s and the average speed was 0.7m/s.

As shown in Fig. 26 , the UAV in Building A safely passed through
the car door using the proposed 3D path planning algorithm and flew to
the second floor through stair using the reliable state estimation result
by the proposed LIO algorithm. The UAV, which flew in the guided
mode to the entrance set by the operator on the second floor, per-
formed exploration using the proposed exploration algorithm in the
exploration area set by the operator, and finally escaped the building
through the exit and returned to the start point. The exploration effi-
ciency using the proposed exploration algorithm in the exploration area
was 12m3/s, showing high exploration efficiency that completed the
exploration within about 117s as shown in Fig. 30 . Also, as shown
in Fig. 29 , the UAV in Building B flew in guided mode to the win-
dow, the entrance set by the operator, and completed the exploration
within about 180s with a exploration efficiency of about 18m3/s as
shown in Fig. 31 . The final exploration volumes were about 600m3

and 750m3 in Building A and Building B, respectively, and all map points
within the exploration area were fully generated. Interestingly, due to
the exit location term in the exploration scorewe set, theUAVhad fewer
back-and-forth maneuvers in both field tests.

FIGURE 32 2D view of the object detection & localization results in
the Building A environment. The small circles indicate the raw detec-
tions projected onto the floor plan, while the large circles represent the
mean locations of the clustered detections. Each image is labeled with
the corresponding location number, and the different colors represent
different object categories.

Finally, we compared the performance of the proposed LIO algorithm
with several benchmark algorithms, such as end-to-end (e2e) error, aver-
age odometry computation time per one LiDAR scan, and CPU usage
(with respect to one CPU), using data obtained from field test environ-
ments. As presented in Table 5 , the accuracy of the proposed LIO for
both Building A and Building B was the highest, at 0.08m and 0.06m,
respectively. Moreover, the average computation time was the second-
lowest at 11.89ms and 13.32ms, respectively, following Fast-LIO2.
The CPU usage was 12.14% in Building A and 12.82% in Building B,
the second-lowest following Fast-LIO2 and LINS. Therefore, we veri-
fied that the proposed LIO algorithm is highly competitive in terms of
accuracy, computational cost, and practicality.

The performance of the object detection and localization systemwas
evaluated during exploration and the summary of the results is pre-
sented in Table 6 . In Building A, the system was able to detect and
localize 12 out of 14 objects belonging to five different categories,
namely person, computer, communication device, weapon storage, and
barbed wire. The two false negatives occurred because objects of the
same category were too close to each other and were clustered as one.

Kim et al 21

FIGURE 33 2D view of the object detection & localization results in
the Building B environment. The small circles indicate the raw detec-
tions projected onto the floor plan, while the large circles represent the
mean locations of the clustered detections. Each image is labeled with
the corresponding location number, and the different colors represent
different object categories.

TABLE 6 Object detection & localization performance

Building Seen Detected Localized F1 score
A 14 14 12 0.92
B 2 2 2 1.00

An example of incorrect clustering can be seen in Fig. 32 , where two
people were clustered as one in location 5. Furthermore, the commu-
nication device category was not detected by the UAV’s camera. The
full pipeline of detection and localization achieved a F1 score of 0.92
in Building A. In Building B, which had objects belonging to two cate-
gories, namely traffic cone and fire extinguisher, the system successfully
detected and localized all of the objects resulting in a perfect F1 score
of 1.00. Overall, the detection and localization pipeline demonstrated
great accuracy performance with limited computation resources.

6 CONCLUSION

In summary, the proposed UAV system provides an efficient and reliable
solution for exploring unknown environments, especially in disaster sce-
narios where human intervention is limited. The system includes a novel
LIO algorithm that optimizes computational cost and accuracy through
surrounding-adaptive keyframe generation and scan to sub-mapmatch-
ing. The 3D path planning and obstacle avoidance techniques ensure
safe and reliable navigation in complex environments while maintaining
low computation demands by utilizing 2D grids rotated in roll direc-
tion and motion primitives. The exploration algorithm based on 3Dmap
points clustering enables fast and efficient exploration using exit-aided
objective function. Furthermore, the system includes object detection
and localization capabilities that enhance its practicality in real-world

scenarios. Overall, the proposed system provides a comprehensive and
practical solution for exploring unknown environments with limited
human intervention.

References

[1] Besl, P. and N. D. McKay, 1992: A method for registration of 3-d
shapes. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 14, no. 2, 239–256, doi:10.1109/34.121791.

[2] Biber, P. and W. Strasser, 2003: The normal distributions trans-
form: a new approach to laser scan matching. Proceedings 2003
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2003) (Cat. No.03CH37453), volume 3, 2743–2748 vol.3.

[3] Bircher, A., M. Kamel, K. Alexis, H. Oleynikova, and R. Sieg-
wart, 2016: Receding horizon "next-best-view" planner for 3d
exploration. 2016 IEEE International Conference on Robotics and
Automation (ICRA), 1462–1468.

[4] Cao, C., H. Zhu, H. Choset, and J. Zhang, 2021: Tare: A hierarchi-
cal framework for efficiently exploring complex 3d environments.
Robotics: Science and Systems Conference (RSS), Virtual.

[5] Chao, C., Z. Hongbiao, C. Howie, and Z. Ji, 2021: Exploring large
and complex environments fast and efficiently. IEEE International
Conference on Robotics and Automation (ICRA), Xi’an, China.

[6] Chen, Y. and G. Medioni, 1991: Object modeling by registra-
tion of multiple range images. Proceedings. 1991 IEEE International
Conference on Robotics and Automation, 2724–2729 vol.3.

[7] Chiu, Y.-C., C.-Y. Tsai, M.-D. Ruan, G.-Y. Shen, and T.-T. Lee, 2020:
Mobilenet-ssdv2: An improved object detectionmodel for embed-
ded systems. 2020 International Conference on System Science and
Engineering (ICSSE), 1–5.

[8] Cieslewski, T., E. Kaufmann, and D. Scaramuzza, 2017: Rapid
exploration with multi-rotors: A frontier selection method for high
speed flight. 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2135–2142.

[9] Dang, T., M. Tranzatto, S. Khattak, F. Mascarich, K. Alexis, and
M. Hutter, 2020: Graph-based subterranean exploration path
planning using aerial and legged robots. Journal of Field Robotics,
37, no. 8, 1363–1388, wiley Online Library.

[10] Dharmadhikari, M., T. Dang, L. Solanka, J. Loje, H. Nguyen,
N. Khedekar, and K. Alexis, 2020: Motion primitives-based path
planning for fast and agile exploration using aerial robots. 2020
IEEE International Conference on Robotics and Automation (ICRA),
179–185.

22 Kim et al

[11] Forster, C., L. Carlone, F. Dellaert, and D. Scaramuzza, 2017:
On-manifold preintegration for real-time visual–inertial
odometry. IEEE Transactions on Robotics, 33, no. 1, 1–21,
doi:10.1109/tro.2016.2597321.
URL http://dx.doi.org/10.1109/TRO.2016.2597321

[12] Howard, A., M. Sandler, B. Chen, W. Wang, L. Chen, M. Tan,
G. Chu, V. Vasudevan, Y. Zhu, R. Pang, H. Adam, and Q. Le, 2019:
Searching for mobilenetv3. 2019 IEEE/CVF International Con-
ference on Computer Vision (ICCV), IEEE Computer Society, Los
Alamitos, CA, USA, 1314–1324.
URL https://doi.ieeecomputersociety.org/10.1109/ICCV.2019.
00140

[13] Howard, A. G., M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T.Weyand, M. Andreetto, and H. Adam, 2017:Mobilenets: Efficient
convolutional neural networks for mobile vision applications.
URL https://arxiv.org/abs/1704.04861

[14] Karaman, S. and E. Frazzoli, 2011: Sampling-based algorithms
for optimal motion planning. The International Journal or Robotics
Research, 30, no. 7, 846–894.

[15] Kim, B., C. Jung, D. H. Shim, and A. akbar Agha-mohammadi,
2023: Adaptive keyframe generation based lidar inertial odometry
for complex underground environments. 2023 IEEE International
Conference on Robotics andAutomation (ICRA), accepted, To appear.

[16] Kim, G., S. Choi, and A. Kim, 2021: Scan context++: Structural
place recognition robust to rotation and lateral variations in urban
environments. IEEE Transactions on Robotics, accepted. To appear.

[17] Kim, G. and A. Kim, 2018: Scan context: Egocentric spatial descrip-
tor for place recognitionwithin 3d point cloudmap. 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
4802–4809.

[18] Kim, K. and H. S. Lee, 2020: Probabilistic anchor assignment with
iou prediction for object detection. ECCV.

[19] Koide, K., J. Miura, and E. Menegatti, 2019: A portable three-
dimensional lidar-based system for long-term and wide-area
people behavior measurement. International Journal of Advanced
Robotic Systems, 16, doi:10.1177/1729881419841532.

[20] Koide, K., M. Yokozuka, S. Oishi, and A. Banno, 2021: Voxelized
gicp for fast and accurate 3d point cloud registration. 2021
IEEE International Conference on Robotics and Automation (ICRA),
11054–11059.

[21] Kulkarni, M., M. Dharmadhikari, M. Tranzatto, S. Zimmermann,
V. Reijgwart, P. De Petris, H. Nguyen, N. Khedekar, C. Papachris-
tos, L. Ott, et al., 2022: Autonomous teamed exploration of
subterranean environments using legged and aerial robots. 2022
International Conference on Robotics and Automation (ICRA), IEEE,
3306–3313.

[22] Lin, T., M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Gir-
shick, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zit-
nick, 2014: Microsoft COCO: common objects in context. CoRR,
abs/1405.0312.
URL http://arxiv.org/abs/1405.0312

[23] Liu, Z., H. Hu, Y. Lin, Z. Yao, Z. Xie, Y. Wei, J. Ning, Y. Cao, Z. Zhang,
L. Dong, F. Wei, and B. Guo, 2022: Swin transformer v2: Scaling
up capacity and resolution. International Conference on Computer
Vision and Pattern Recognition (CVPR).

[24] Ma, N., X. Zhang, H.-T. Zheng, and J. Sun, 2018: Shufflenet v2:
Practical guidelines for efficient cnn architecture design. Proceed-
ings of the European Conference on Computer Vision (ECCV).

[25] Petrlik, M., P. Petrá ček, V. Krátký, T. Musil, Y. Stasinchuk, M. Vrba,
T. Báča, D. Heřt, M. Pecka, T. Svoboda, and M. Saska, 2023:
UAVs beneath the surface: Cooperative autonomy for subter-
ranean search and rescue in DARPA SubT. Field Robotics, 3, no. 1,
1–68, doi:10.55417/fr.2023001.
URL https://doi.org/10.55417%2Ffr.2023001

[26] Qiao, S., L.-C. Chen, and A. Yuille, 2021: Detectors: Detecting
objects with recursive feature pyramid and switchable atrous
convolution. 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 10208–10219.

[27] Qin, C., H. Ye, C. E. Pranata, J. Han, S. Zhang, andM. Liu, 2020: Lins:
A lidar-inertial state estimator for robust and efficient navigation.
2020 IEEE International Conference on Robotics and Automation
(ICRA), IEEE, 8899–8906.

[28] Rusu, R. B., 2009: Semantic 3D Object Maps for Everyday Manipu-
lation in Human Living Environments. PhD dissertation, Technische
Universität München.

[29] Sandler, M., A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
2018: MobileNetV2: Inverted Residuals and Linear Bottlenecks.
2018 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, IEEE, Salt Lake City, UT, 4510–4520.
URL https://ieeexplore.ieee.org/document/8578572/

[30] Segal, A., D. Haehnel, and S. Thrun, 2009: Generalized icp.
Robotics: Science and System, Seattle, WA, volume 2, 435.

[31] Shan, T. and B. Englot, 2018: Lego-loam: Lightweight and ground-
optimized lidar odometry and mapping on variable terrain.
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), IEEE, 4758–4765.

[32] Shan, T., B. Englot, D. Meyers, W. Wang, C. Ratti, and R. Daniela,
2020: Lio-sam: Tightly-coupled lidar inertial odometry via smooth-
ing and mapping. IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), IEEE, 5135–5142.

http://dx.doi.org/10.1109/TRO.2016.2597321
https://doi.ieeecomputersociety.org/10.1109/ICCV.2019.00140
https://doi.ieeecomputersociety.org/10.1109/ICCV.2019.00140
https://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1405.0312
https://doi.org/10.55417%2Ffr.2023001
https://ieeexplore.ieee.org/document/8578572/

Kim et al 23

[33] Tan, M. and Q. V. Le, 2019: Efficientnet: Rethink-
ing model scaling for convolutional neural networks.
doi:10.48550/ARXIV.1905.11946.
URL https://arxiv.org/abs/1905.11946

[34] Tan, M., R. Pang, and Q. V. Le, 2020: Efficientdet: Scalable and effi-
cient object detection. Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

[35] Tian, Z., C. Shen, H. Chen, and T. He, 2019: Fcos: Fully convo-
lutional one-stage object detection. Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV).

[36] — 2022: FCOS: A simple and strong anchor-free object detector.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 44,
no. 4, 1922–1933, doi:10.1109/TPAMI.2020.3032166.

[37] Tranzatto, M., M. Dharmadhikari, L. Bernreiter, M. Camurri,
S. Khattak, F. Mascarich, P. Pfreundschuh, D. Wisth, S. Zim-
mermann, M. Kulkarni, V. Reijgwart, B. Casseau, T. Homberger,
P. De Petris, L. Ott, W. Tubby, G. Waibel, H. Nguyen, C. Cadena,
R. Buchanan, L. Wellhausen, N. Khedekar, O. Andersson, L. Zhang,
T. Miki, T. Dang, M. Mattamala, M. Montenegro, K. Meyer, X. Wu,
A. Briod, M. Mueller, M. Fallon, R. Siegwart, M. Hutter, and
K. Alexis, 2022: Team cerberus wins the darpa subterranean chal-
lenge: Technical overview and lessons learned.
URL https://arxiv.org/abs/2207.04914

[38] Vrba, M., D. Heřt, and M. Saska, 2019: Onboard marker-
less detection and localization of non-cooperating drones
for their safe interception by an autonomous aerial system.
IEEE Robotics and Automation Letters, 4, no. 4, 3402–3409,
doi:10.1109/LRA.2019.2927130.

[39] Wang, C.-Y., A. Bochkovskiy, and H.-Y. Liao, 2022: YOLOv7: Train-
able bag-of-freebies sets new state-of-the-art for real-time object
detectors. arXiv preprint arXiv:2207.02696.

[40] Wang, C.-Y., A. Bochkovskiy, and H.-Y. M. Liao, 2021: Scaled-
YOLOv4: Scaling cross stage partial network. Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 13029–13038.

[41] Wang, C.-Y., I.-H. Yeh, and H.-Y. M. Liao, 2021: You only learn one
representation: Unified network for multiple tasks. arXiv preprint
arXiv:2105.04206.

[42] Wang, H., C. Wang, C. Chen, and L. Xie, 2020: F-loam : Fast lidar
odometry and mapping. 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS).

[43] Xiong, Y., H. Liu, S. Gupta, B. Akin, G. Bender, Y.Wang, P.-J. Kinder-
mans, M. Tan, V. Singh, and B. Chen, 2021: MobileDets: Searching
for Object Detection Architectures for Mobile Accelerators. 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), IEEE, Nashville, TN, USA, 3824–3833.
URL https://ieeexplore.ieee.org/document/9578555/

[44] Xu, W., Y. Cai, D. He, J. Lin, and F. Zhang, 2021: FAST-LIO2: fast
direct lidar-inertial odometry. CoRR, abs/2107.06829.
URL https://arxiv.org/abs/2107.06829

[45] Xu, W. and F. Zhang, 2020: FAST-LIO: A fast, robust lidar-inertial
odometry package by tightly-coupled iterated kalman filter. CoRR,
abs/2010.08196.
URL https://arxiv.org/abs/2010.08196

[46] Yamauchi, B., 1997: A frontier-based approach for autonomous
exploration. Proceedings 1997 IEEE International Symposium on
Computational Intelligence in Robotics and Automation CIRA’97.
’TowardsNewComputational Principles for Robotics andAutomation’,
146–151.

[47] Yokozuka, M., K. Koide, S. Oishi, and A. Banno, 2020: Litamin:
Lidar-based tracking and mapping by stabilized icp for geometry
approximation with normal distributions. 2020 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 5143–
5150.

[48] Zhang, J., C. Hu, R. G. Chadha, and S. Singh, 2020: Falco: Fast
likelihood-based collision avoidance with extension to human-
guided navigation. Journal of Field Robotics, 37, no. 8, 1300–1313.

[49] Zhang, J. and S. Singh, 2014: LOAM: lidar odometry and mapping
in real-time. Robotics: Science and Systems X, University of California,
Berkeley, USA, July 12-16, 2014, D. Fox, L. E. Kavraki, and H. Kur-
niawati, Eds.
URL http://www.roboticsproceedings.org/rss10/p07.html

[50] Zhang, X., X. Zhou, M. Lin, and J. Sun, 2018: Shufflenet: An
extremely efficient convolutional neural network for mobile
devices. Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

[51] Zhou, B., Y. Zhang, X. Chen, and S. Shen, 2021: Fuel: Fast uav
exploration using incremental frontier structure and hierarchical
planning. IEEE Robotics and Automation Letters, 6, no. 2, 779–786.

[52] Zhou, L., G. Huang, Y. Mao, J. Yu, S. Wang, and M. Kaess,
2022: PLC-lislam: Lidar slam with planes, lines, and cylin-
ders. IEEE Robotics and Automation Letters, 7, no. 3, 7163–7170,
doi:10.1109/LRA.2022.3180116.

[53] Zhou, X., V. Koltun, and P. Krähenbühl, 2021: Probabilistic two-
stage detection. arXiv preprint arXiv:2103.07461.

[54] Zong, Z., G. Song, and Y. Liu, 2022: Detrs with collaborative hybrid
assignments training. arXiv preprint arXiv:2211.12860.

https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/2207.04914
https://ieeexplore.ieee.org/document/9578555/
https://arxiv.org/abs/2107.06829
https://arxiv.org/abs/2010.08196
http://www.roboticsproceedings.org/rss10/p07.html

	An autonomous UAV system based on adaptive LiDAR Inertial Odometry for practical exploration in complex environments
	Abstract
	Introduction
	Related Work
	Localization
	Path Planning & Exploration Algorithm
	Onboard Object Detection & Localization

	System Overview
	Methods
	Localization
	Spatial volume based parameter adjustment
	IMU pre-integration
	Scan matching via Generalized-ICP
	Optimization

	Path Planner
	Rolling grid search-based planning
	Motion primitive-based planning

	Autonomous Exploration
	Onboard Object Detection and Localization
	Object Detection
	Object 3D Position Estimation
	Detection Association via Euclidean Clustering

	Experiments
	Simulation based evaluation
	Experimental Evaluation

	Conclusion
	References

