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Abstract 14 

Intestinal microbial communities are influenced by a confluence of ecological forces. Understanding 15 

the dynamics between environment, microbiota and host is essential to gain insights into microbial 16 

community assembly processes. However, few studies systematically assess the contribution of 17 

different environmental sources to gut microbial community composition. We used a common 18 

garden experiment to determine the roles of biotic, abiotic and stochastic processes shaping gut 19 

microbial communities in Atlantic salmon (Salmo salar) in a natural river during a simulated 10-20 

month farm escape scenario. Most of the taxa found in the salmon intestine originated from 21 

macroinvertebrates (the potential food source) rather than the water column, indicating that diet is 22 

an important factor in community assembly. The contribution of food sources to the fish gut 23 

community was lowest in winter and increased over March and May, reflecting seasonality in fish 24 

appetite. Previous work in salmon has hinted at a role for maternal effects in driving inter-25 

generational sharing of microbial taxa. Our results suggest a possible host and/or maternal genetic 26 

effect affecting inter-individual differences in gut microbial community composition, whereby 27 

distinct assemblages were noted between farmed, wild and hybrid fish. Neutral modelling estimated 28 

that the majority (86%) of taxa present in the gut are transient. Overall, our data highlight the 29 

significance of both deterministic and stochastic drivers influencing the seasonal fluctuations of gut 30 

microbial communities in young Atlantic Salmon and hint at potential genetic or maternal effects on 31 

fish microbiota. These findings greatly enhance our understanding of the complex interactions 32 

between hosts, their living environment and associated microbiota. 33 
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Introduction   37 

Host-associated microbiota play a vital role for host health (Di Maiuta et al., 2013; Ray et al., 2012) 38 

and development (Bates et al., 2006; Llewellyn et al., 2014; Sommer & Bäckhed, 2013). Intestinal 39 

bacteria, for example, are known to facilitate digestion of otherwise inaccessible feeds (Di Maiuta et 40 

al., 2013; Ray et al., 2012), stimulate the immune system (Stagaman et al., 2017), protect the host 41 

from pathogens due to competitive exclusion (Lawley & Walker, 2013) and may even influence host-42 

behaviour (Cusick et al., 2021; Davis et al., 2016).  43 

The expansion of the aquaculture industry has led to an increased interest in manipulating gut 44 

microbiota to improve fish welfare and nutritional absorption capacity (Egerton et al., 2018; Perry et 45 

al., 2020). However, to induce desired microbial traits one must understand the underlying 46 

processes of microbial community assembly and its temporal development (Dittmann et al., 2017). 47 

In theory, fish acquire their intestinal microbiota from the surrounding environment, e.g., by 48 

swallowing water or due to bacteria attached to food items (Hansen & Olafsen, 1999). However, 49 

recent research indicates the possibility of maternal transmission of bacteria during birth 50 

(Rasmussen et al., 2023). As the individual matures, its gut microbial community composition is 51 

shaped by a confluence of ecological forces, which interact but can be grouped into two main 52 

factors: deterministic/selective and stochastic/neutral (Chase & Leibold, 2009; Hubbell, 2005; Stegen 53 

et al., 2012). Deterministic factors create specific conditions and selective pressures that favour the 54 

growth and colonisation of certain microbial taxa, leading to the establishment of a unique gut 55 

microbial community in each individual. Deterministic factors include host-specific factors such as 56 

genetics (Smith et al., 2015), immune response (Kelly & Salinas, 2017) and physiology (Dehler et al., 57 

2017) as well as environmental factors such as food source and food availability (Gajardo et al., 58 

2017; Li et al., 2022; Ringø et al., 2016), parasite presence (Llewellyn et al., 2017; Schaal et al., 2022), 59 

temperature (Ghosh et al., 2022; Kokou et al., 2018), pH (Sylvain et al., 2016) and other microbes 60 

(Coyte et al., 2015; Kokou et al., 2019). Stochastic processes, on the other hand, are not guided by 61 



specific host or environmental factors but are rather influenced by random events, such as dispersal 62 

and ecological drift (Hanson et al., 2012; Vellend, 2010). Dispersal is a process where 63 

microorganisms are introduced to the gut from external sources, such as the environment or other 64 

individuals. Ecological drift refers to random events of microbial birth, death and replacement and 65 

can lead to variability in the gut microbial community even in the absence of strong selective 66 

pressures. In fish, neutral community assembly can explain a substantial amount of observable 67 

differences in gut microbial community structure (Burns et al., 2016; Heys et al., 2020). Despite 68 

advances in microbiome research, there are still substantial knowledge gaps regarding the dynamics 69 

of gut microbial communities over time and the origin of microbial taxa within these communities. 70 

One key unanswered question is whether the microbial taxa that are detectable in the gut are 71 

established, long-term residents, or if they are transient, externally sourced and passing through the 72 

intestine without establishing a lasting presence. To understand the dynamics of microbial taxa in 73 

the gut it is essential to investigate their sources and to determine how they contribute to the 74 

composition and variability of the gut microbiome. 75 

Most studies investigate microbial assembly processes using laboratory models or artificial systems. 76 

Yet, insights must also be acquired from natural environments (Cusick et al., 2021) because these 77 

reflect the harsh and complex conditions by which host organisms actually live (Friberg et al., 2019). 78 

Atlantic salmon is one of the ecological and economical most important fish species worldwide and  79 

is extensively researched to examine various aspects of fish biology, aquaculture practices and 80 

ecosystem dynamics (Aas et al., 2010; Houston & Macqueen, 2019). One significant research focus 81 

revolves around the ramifications of farmed escapes from aquaculture facilities, which pose a 82 

serious threat to wild populations (Forseth et al., 2017; Thorstad et al., 2008). These escapes can 83 

have detrimental effects on wild fish due to competition for limited habitat and food resources, as 84 

well as the potential for genetic interactions through interbreeding with wild individuals (Jonsson & 85 

Jonsson, 2006; McGinnity et al., 2003; Reed et al., 2015). Most Atlantic salmon populations have an 86 

anadromous life cycle. After hatching in spring, the majority of Atlantic salmon remain in their 87 



freshwater habitat for two years, before migrating to the ocean where they undergo most of their 88 

somatic growth (Hoar, 1988). During their juvenile phase, Atlantic Salmon face seasonal variations in 89 

food supply (e.g., macroinvertebrate type and quantity) and environmental conditions (e.g., 90 

temperature, oxygen concentration and water pH) that might directly or indirectly affect the 91 

structure of gut bacteria. Understanding the role of environmental factors determining gut microbial 92 

community composition in the wild will enable better predictions of the impact of future 93 

environmental changes on fish health in both natural and aquaculture populations. For example, 94 

changes in food availability or rising water temperatures due to global warming will likely perturb 95 

microbial communities, with direct consequences for fish survival and welfare (Harvell et al., 2002).  96 

In the present study, we take advantage of a large-scale common garden experimental setup in the 97 

wild to investigate gut microbial community assembly and development in Atlantic salmon. In a 98 

natural river environment, we examined the gut microbiome of juvenile Atlantic salmon sampled 99 

over a 10-month period. We evaluated the role of different drivers of gut microbial assembly 100 

including abiotic variables, host genetics and water- and feed-associated microbiota. Furthermore, 101 

we used source tracking analysis to understand how the composition and abundance of 102 

environmental bacteria influences the gut microbiome throughout different seasons. In addition, we 103 

utilized abundance-occupancy distributions to estimate the importance of stochastic colonisation 104 

processes in the assembly of the gut microbial community and to determine potentially important 105 

core taxa. By exploring the intricate interplay between stochastic and deterministic factors driving 106 

community assembly, our study offers a comprehensive perspective on the ecological succession of 107 

the wild gut microbial community of juvenile Atlantic salmon. 108 



Materials and Methods 109 

Study area and sampling 110 

Atlantic salmon were bred at the Marine Institute in Furnace, Newport, Co. Mayo, Ireland 111 

(53°55′22″N 9°34′18″W) located at the Burrishoole river system and consisted of four genetic 112 

groups: domesticated farmed fish (F) from the “Fanad MOWI” strain, native wild fish (W) from the 113 

Burrishoole river system and their reciprocal hybrids (denoted hybrid farmed female (HFF) and 114 

hybrid wild female (HWF, Figure 1a, b). In April 2018 at the swim-up stage, prior to the 115 

commencement of exogenous feeding fry were introduced into a section of the Srahrevagh river in 116 

the Burrishoole catchment. The experiment river consists of approximately 7520m2 of high-quality 117 

Atlantic salmon habitat. It is contained at its upper end by a series of large waterfalls and at its lower 118 

end by a fish trap capable of capturing all life cycle stages from egg to adult. A detailed description of 119 

the system is reported in (McGinnity et al., 1997, 2003; Perry et al., 2021). 120 

A total of 80 fish were captured in the Srahrevagh River across a 10-month period in 2019: January 121 

(n=16); March (n=14); May (n=8); June (n=13); July (n=11); November (n=18). Fish were caught via 122 

electrofishing and transported in buckets filled with oxygenated river water to the Marine Institute 123 

Newport Research Station for processing. The feeding status of all fish was unknown. All fish were 124 

euthanized by an anaesthetic overdose of methane tricaine sulphonate (MS-222, 80ml/l, FVG, 125 

Ireland) and their fork length (mm) and wet weight (g) measured. The intestines of sampled fish 126 

were dissected aseptically via an incision along the fish’s ventral side. The pyloric caecum was 127 

removed, cut into pieces, put into sterile cryotubes and immediately placed on dry ice. An overview 128 

of samples taken is shown in Table S 1. 129 

In order to identify free-living water bacteria that might serve as a dispersal source for fish gut 130 

communities, three water samples were collected at each sampling timepoint at locations at the 131 

bottom (bot), middle (mid) and top of the study section of the Srahrevagh river (Figure 1c). The 132 



water was collected in sterile water bottles (1.5 L). Within one hour of collection the water was 133 

filtered in a sterile environment using 0.2µm filters (Whatman, Chicago, IL, USA) at the Marine 134 

Institute Newport Research Station. After filtration the filter papers were placed into cryotubes, 135 

immediately placed on dry ice and stored at -80°C. 136 

To evaluate the potential contribution of prey organisms to gut microbial community composition, a 137 

sample of the macroinvertebrate community was collected at each fish sampling timepoint. 138 

Macroinvertebrate samples were retrieved from the Srahrevagh river using a surber sampler 139 

(Surber, 1937). The surber sampler was placed in three different sections on the riverbed allowing 140 

three macroinvertebrate sample replicates to be obtained at each of the three sampling sites. Larger 141 

stones were overturned and wiped to collect attached invertebrates and the riverbed was agitated 142 

for three minutes allowing macroinvertebrates to flow into the collection net. Samples were 143 

collected in an upstream direction (bottom, middle and top). All macroinvertebrates present, were 144 

sorted into common taxa on the riverbank. Macroinvertebrates of the same order (two of each 145 

replicate) were pooled into sterile cryotubes on each sampling occasion. The cryotubes were 146 

immediately stored on dry ice in the field until samples were taken back to the Marine Institute 147 

Newport Research Station and stored in the -80 freezer. We limited the analysis to the five most 148 

abundant taxonomic orders of macroinvertebrates in the experimental river: Mayfly 149 

(Ephemeroptera), Stonefly (Plecoptera), Fly (Diptera), Caddis fly (Trichoptera) and Beetles 150 

(Coleoptera). 151 

All gut, water and macroinvertebrate samples were transported on dry ice to the University of 152 

Glasgow for subsequent microbial profiling. 153 

A suite of environmental parameters in the Burrishoole catchment and the Srahrevagh river are 154 

measured continuously as part of an ongoing LTER (long-term ecological research) program of 155 

monitoring. Parameters that were used in this study include water temperature, water level and 156 

water discharge, dissolved oxygen (DO) and conductivity.  157 



To determine the sex and genetic origin (farmed, wild or hybrid provenance) of each fish in the 158 

common garden river experiment, fin clips were taken and preserved in absolute ethanol for 159 

subsequent genetic profiling and parentage assignment. Parentage analysis was conducted at the 160 

University College Cork using a three-panel multiplex PCR which amplified 10 microsatellites loci (for 161 

details see Perry et al., 2021). 162 

The study was carried out under the Health Products Regulatory Authority (HPRA) licence number 163 

AE19130-P056 in Ireland. 164 

 165 

Figure 1: Map highlighting the location of the Marine Institute Research Station in Newport and the 166 
experiment river (Shrarevagh river) located within the Burrishoole river system (A) in Western 167 
Ireland (B). (C) shows the study site within a section of the experiment river. The study site is 168 
contained on its lower end by a trap and its upper end by waterfalls. Atlantic Salmon of four genetic 169 
origins (farmed, wild and their reciprocal hybrids) were introduced into the experimental river to 170 
simulate a farm escape and introgression event. Environmental parameters, including water 171 
temperature, dissolved oxygen, conductivity and river discharge were continuously measured over 172 
the course of the 10-month experiment. At each sampling timepoint replicates of water and 173 
macroinvertebrate samples were taken at three sections of the river, marked as bot (bottom), mid 174 
(middle) and top. Atlantic Salmon were caught via electrofishing across the whole section of the 175 
study site. Microbial profiling of Atlantic salmon intestines, water column and macroinvertebrates 176 
were conducted at the University of Glasgow. 177 



Microbial DNA extraction and NGS library preparation 178 

DNA extraction and NGS library preparation protocols used were based on methods established and 179 

summarized in Kazlauskaite et al., (2021) and Schaal et al., (2022). The frozen gut tissue (100mg) and 180 

filter papers were cut up into pieces using sterilized equipment and DNA was extracted using the 181 

QIAamp DNA Stool Mini Kit (Qiagen, Valencia, CA, USA) according to the manufacturer’s protocol 182 

(Claassen et al., 2013). The pooled macroinvertebrates were crushed with a sterile pestle before 183 

DNA extraction. Extracted DNA was amplified using primers targeting the V1 hypervariable 16S rDNA 184 

region (Gajardo et al., 2016). V1 was chosen over V4 because the primers are less liable to cross-185 

hybridisation with salmon DNA (Heys et al., 2020; Werner et al., 2012). Amplification of the target 186 

region was achieved using tagged barcodes 27F and 338R at a concentration of 1pM for each primer. 187 

PCR included an initial denaturation step at 95°C for 10min; 30 cycles at 95°C for 30s, 55°C for 30s 188 

and 72°C for 30s; and a final elongation step of 72°C for 10min. First-round PCR products were then 189 

used for a subsequent second round of PCR, in which external multiplex identifiers (barcodes) were 190 

added. Cycle number was reduced to eight and reaction conditions were identical as to mentioned 191 

before. All primer sequences are detailed in (Schaal et al., 2022). Second round amplicons were gel-192 

purified using the QIAquick Gel Extraction Kit (Qiagen, Valencia, CA, USA) and quantified using a 193 

Qubit fluorometer (Thermo Fisher Scientific, USA). Final amplicons were pooled equimolarly at a 194 

concentration of 10nM and paired-end sequencing was carried out using a NovaSeq 6000 system 195 

provided by NovoGene. 196 

Bioinformatic pipeline 197 

Sequence analysis was performed with our bioinformatic pipeline as described previously by  198 

Kazlauskaite et al. (2021) and Schaal et al. (2022).  199 

Quality filtering and trimming (>Q33 Phred score) was performed on all sequence reads of the target 200 

region using the Sickle (v.1.2) software (Joshi & Fass, 2011). Read error correction was carried out 201 

using the BayesHammer module within the SPAdes (v.2.5.0) software to obtain high-quality 202 



assemblies (Nikolenko et al., 2013). Paired-end reads were merged (overlap length 50bp) using 203 

PANDAseq (v.2.11) with the simple Bayesian read merging algorithm (Masella et al., 2012; Schirmer 204 

et al., 2016). Thereafter, merged reads were dereplicated, sorted, and chimaeras and singletons 205 

were removed by using VSEARCH (v.2.3.4; Rognes et al., 2016). Sequences were decontaminated 206 

against the last assembled version of Salmo salar genome using DeconSeq (v.0.4.3; Schmieder and 207 

Edwards, 2011) and overlapped reads were clustered into operational taxonomic units (OTUs) using 208 

VSEARCH at 97% sequence identity. Naïve Bayesian classifiers, implemented in QIIME2 (Bolyen et al., 209 

2019; Pedregosa et al., 2011) were used to classify OTUs against the Silva 138 database (Quast et al., 210 

2012). Phylogenetic trees were generated using FastTree (Price et al., 2010). 211 

Statistical analysis 212 

All data were analysed in R (R Core Team, 2022) using the packages PhyloSeq (McMurdie & Holmes, 213 

2013), microeco (Liu et al., 2021), metacoder (Foster et al., 2017) and vegan (Oksanen, 2007). OTUs 214 

that were not assigned to the kingdoms of Bacteria and Archaea were removed, as were sequences 215 

assigned as chloroplast or mitochondria. To limit sample depth effects on diversity measurements, 216 

samples were rarefied to 10000 reads. Alpha diversity was assessed via Chao1 richness and the 217 

Shannon’s index of entropy. Generalised linear models were used to assess the significance of 218 

predictor variables. Akaike Information Criterion (AIC) was used to determine the best-fit model. 219 

Beta-diversity measures were visualised by principal coordinates analysis (PCoA) plots using Bray-220 

Curtis and weighted UniFrac distance measures. Permutational multivariate analysis of variance 221 

(PERMANOVA) was used to test the effects of sampling date (month), sex and genetic origin on the 222 

intestinal microbial communities among individual fish. 223 

Distance-based redundancy analysis (dbRDA) 224 

We used distance-based redundancy analysis (dbRDA) to determine how much of the variation in 225 

intestinal or environmental microbial communities could be explained by external environmental 226 

factors. Environmental variables were log10 transformed to improve comparability of canonical 227 



coefficients (Buttigieg & Ramette, 2014). Candidate predictors tested were host-specific factors such 228 

as fish length or weight and environmental factors such as water temperature, water level and river 229 

discharge, dissolved oxygen (DO) and conductivity. Environmental factors were used to predict 230 

seasonal differences in the bacterial communities collected from the water column. To estimate the 231 

perturbation of aquatic bacteria due to flooding events, the average river discharge was calculated 232 

as the seven-day mean prior to sampling timepoints.  233 

Source tracking analysis 234 

Fast expectation-maximization for microbial source tracking (FEAST, Shenhav et al., 2019) was used 235 

to analyse the contribution and the relative importance of fish feed (macroinvertebrates) and 236 

planktonic water bacteria to intestinal microbial community composition of the individual fish. The 237 

tool estimates the contribution of different source environments to a microbial community, referred 238 

to as the sink. It also identifies the fraction of the sink attributed to other unidentified origins, known 239 

as the unknown source. Mixing proportions were calculated for each individual fish by using five 240 

macroinvertebrate samples (each from one order) and three water samples (reflecting top, mid and 241 

bot locations within the study site). These eight “sources” were sampled at the same timepoint as 242 

the respective fish. 243 

Abundance-occupancy analysis and neutral model fitting 244 

We employed a Shade-Stopnisek abundancy-occupancy analysis to identify potential ‘core’ OTUs in 245 

the intestinal microbiome of Atlantic salmon (Shade & Stopnisek, 2019), which uses abundance-246 

occupancy distributions fitted to Sloan's neutral model (Sloan et al., 2006). To determine the core 247 

OTUs, we ranked the OTUs based on their occupancy (the frequency of their occurrence in the 248 

samples) and weighted them by their abundance. Only OTUs present in all sampling timepoints were 249 

considered core. In addition, a potential core OTU had to pass a core inclusion threshold. Therefore, 250 

we quantified the contribution of the core subset of taxa to beta diversity using the Bray-Curtis 251 

resemblance. To determine the core inclusion threshold, we used a minimum percentage increase in 252 



beta diversity of 4% to identify the point at which further increases would offer marginal returns in 253 

explanatory value. Important to note is that the inclusion threshold percentage depends on the 254 

study design and must be chosen accordingly. To estimate the importance of neutral processes in 255 

the assembly of the intestinal microbiome, we applied the Sloan neutral model. The model assumes 256 

that community composition dynamics are primarily driven by random processes such as ecological 257 

drift and dispersal rather than by species-specific interactions or adaptations. OTUs that occur more 258 

frequently than expected are interpreted as potentially having additional factors influencing their 259 

abundance, such as microbe-microbe interactions, niche differentiation or host filtering. In this study 260 

we refer to OTUs that occur more frequently as expected as being positively selected. Conversely, if 261 

certain OTUs occur less frequently than expected, it may suggest that they are subject to 262 

competitive exclusion, environmental filtering or other processes that limit their abundance. To fit 263 

the occupancy of OTUs and their mean relative abundances across the metacommunity to the 264 

model, we used the R code of Burns et al., 2016. 265 

Differential abundance testing 266 

We used analysis of compositions of microbiomes with bias correction (ANCOM-BC; Lin & Peddada, 267 

2020) to identify differentially abundant taxa between environments. ANCOM-BC was recently 268 

recommended as a very robust method for accurately determining differentially abundant taxa 269 

(Nearing et al., 2022). The method is based on a log-linear model that accounts for sampling 270 

fractions across samples and deals with the sparse compositionality of microbiome data. In addition, 271 

ANCOM-BC can deal with different scenarios for zero-counts. Here, we did not correct for structural 272 

zeros since we assumed that the presence of taxa was not unique to a certain sampling timepoint. 273 

The iteration convergence tolerance for the expectation-maximization algorithm was kept at its 274 

default value of 1e-5. Significance was determined by using Benjamini-Hochberg corrected p-values 275 

(Benjamini & Hochberg, 1995). 276 



In addition, we used random forest analysis implemented in the microeco package (Liu et al., 2021), 277 

to highlight the relative abundance of core OTUs grouped on genera with respect to the sampling 278 

month. The aim was to determine if seasonality in gut microbial community composition persists in 279 

core OTUs and to identify which positively selected core OTUs exhibit seasonal patterns (Beck & 280 

Foster, 2014; White et al., 2009; Yatsunenko et al., 2012). MeanDecreaseGini was used to determine 281 

the importance of differentially expressed taxa per sampling month. P-values were adjusted for 282 

multiple comparisons using the Benjamini–Hochberg method (Benjamini & Hochberg, 1995). 283 

Results 284 

Distinct compositions of gut, water, and macroinvertebrate microbial communities 285 

The microbial community compositions of gut, water and macroinvertebrate samples differed 286 

significantly (F=20.67; R2=0.21; p=0.001; Figure 2a). Water communities showed significantly more 287 

diversity than gut and macroinvertebrate communities (Figure 2b, c). ANCOM-BC detected 513 taxa 288 

on genus level that were differentially abundant between at least two bacterial environments (gut, 289 

macroinvertebrate, water). Schlegellela, Corynebacterium, Staphylococcus and Acidovorax were 290 

most abundant in fish guts, whereas Flavobacterium, Sphingorhabdus, Novosphingobium and 291 

Methylotenera were dominant in macroinvertebrates (Figure 2d). 108 genera showed negative log 292 

abundances in water samples but were positively enriched in gut communities. Biggest log fold 293 

changes between the gut and water environment were observed for Schlegella (W= -16.48, 294 

p<0.0001), Corynebacterium (W= -15.01, p<0.0001), Staphylococcus (W= -14.08, p<0.0001), Delftia 295 

(W= -16.85, p<0.0001) and Acidovorax (W= -13.26, p<0.0001). Many genera belonging to the phylum 296 

of Firmicutes e.g., Mycoplasma, Clostridium sensu stricto, Bacillus and several taxa belonging to the 297 

order of Lactobacillus were also positively enriched in salmon guts. 298 



 299 

Figure 2: Principal coordinate analysis (PCoA) of bacterial communities from gut, water and 300 
macroinvertebrate samples. (B) Chao1 richness of bacterial communities collected from gut, 301 
macroinvertebrate and water environments. (C) Shannon diversity index of bacterial communities 302 
collected from different environments. Significance was determined by pairwise t-testing. 303 
Significance codes: ***<0.001; ns=not significant. (D) Bias-corrected log observed abundances, 304 
calculated by analysis of compositions of microbiomes with bias correction (ANCOM-BC). The 305 
heatmap shows 25 differentially abundant taxa on genus level. In total, 513 genera were significantly 306 
differentially abundant between at least two environments. Values and respective colour schemes 307 
depict bias-corrected log observed abundances. 308 

    

    

   

   

   

   

          
            

 
 
 
  
  
  
  
 

           

   

                  

     

   

   

   

 

    

    

    

    

                          

 
 
  
 

  

   

   

    

   

   

  

                          

  
  
 
 
 

      

   

   

    

    

    

 

    

    

    

    

    

    

    

    

    

    

    

    

    

   

    

    

    

    

    

    

    

    

    

    

    

    

    

   

    

    

    

    

    

    

    

    

    

   

    

    

    

    

    

    

    

    

    

    

    

    

    

    

   

    

    

    

   

    

    

    

    

    

    

    

     

     

     

     

     

     

     

          

          

             

        

                        

                     

                        

               

      

              

           

             

              

          

               

             

              

                 

             

            

              

              

             

         

      

                          

 

 

 

 

 



Influences of seasonality and host genetic origin on gut microbial communities  309 

Gut microbial community composition of Atlantic salmon juveniles varied considerably among 310 

sampling months (Figure 3a). However, monthly clusters did not align sequentially from January to 311 

November and instead appeared to be randomly separated by PCoA ordination. Interestingly, PCoA 312 

ordination clustered fish samples from the wild and hybrid wild female origin in March, May and 313 

November, indicating a potential genetic and/or maternal effect on gut microbial community 314 

structure. However, it is important to note that our sampling design lacks statistical power in terms 315 

of the number of fish per sampling time point, specifically in relation to their genetic origin (see 316 

Table S 1). Therefore, results indicating a genetic effect associated with the origin of the fish (farm, 317 

wild or hybrid) must be treated with care. PERMANOVA indicated statistical support for the 318 

differences observed in PCoA ordination. Sampling month (16.4%), genetic origin (5.4%) and their 319 

interaction term (20.5%) explained almost half of the observable variation. Fish sex had no 320 

significant effect on gut microbial community composition, and 56.5% of the variation remained 321 

unexplained (Table S 2). Pairwise testing revealed that the microbial community composition 322 

significantly differed between all sampling months (Table S 3). For genetic origin, we found that the 323 

microbial communities in wild fish differed significantly from those of farmed fish (F=2.121, p=0.01) 324 

and hybrid farmed female (F=1.858, p= 0.01) fish but not to hybrid wild female fish (F=0.897, p=0.66, 325 

Table S 4). However, these significant differences might only be present in certain sampling months. 326 

Unfortunately, we couldn’t elaborate on this further due to the formerly mentioned flaws in the our 327 

sampling design. 328 

Fish gut microbiomes showed their highest average diversity in January (Figure 3b, c). Alpha diversity 329 

measures were lowest in March and May and increased again over the summer months. The results 330 

from the generalised linear models showed that only the sampling time had a significant effect on 331 

alpha diversity measures. No significant effects on alpha diversity measures were found for genetic 332 

origin or sex (Table S 5, 333 



Table S 6). 334 

 335 

Figure 3: Alpha and beta diversity of Atlantic salmon gut microbiomes obtained from samples 336 
collected in the river environment. (A) Principal coordinate analysis (PCoA) of gut samples grouped 337 
by sampling month. Each data point represents an individual sample. Shapes represent the genetic 338 
background of fish (F=Farmed, HFF=Hybrid Farmed Female, HWF=Hybrid Wild Female, W=Wild). 339 
Percentages in parenthesis indicate the amount of variation shown on each axis. Lines mark the 340 
centroids of each group. Distance matrix was calculated based on Bray-Curtis dissimilarities. (B) 341 
Chao1 richness for gut samples grouped by sampling month. (C) Shannon diversity index for gut 342 
samples grouped by sampling month. 343 

Environmental and host-specific factors correlate with gut microbial community 344 

composition 345 

We used distance-based redundancy analysis (dbRDA) to attempt to explain monthly differences in 346 

gut microbial community composition in terms of environmental (e.g., seasonal) and host-specific 347 

(e.g., host developmental stage) factors. Distance-based linear models revealed that water 348 

temperature (F=2.56; R2=0.03) and fish age (F=3.58; R2=0.04) were significant predictors of gut 349 

microbial community patterns (Table S 7). However, inspection of Figure 4a, together with the 350 

statistical evaluation of the model suggests that the model only explains the community differences 351 

between a subset sampling timepoints. The combination of temperature and fish age only explained 352 

around 7.3% of the total variation, which indicates that in our study the direct effect of water 353 

temperature and host age on gut bacteria might be minor.  354 

    

   

   

          
            

 
 
 
 
  
 
  
 
 

      

 

   

   

 

     

      

      

      

      

      

      

   

 

 

 

 

 

 

                                    

     

  
  
 
 
 

   

   

   

    

                                    

     

 
 
  
 

   

   



Temperature was lowest for the January sampling event at around 6°C (Figure 4b). Intermediate 355 

temperatures were detected in March, May, June and November (app. 9°C, 10°C, 12°C and 8°C, 356 

respectively) and highest in July (app. 16°C). We observed increased frequencies of high river flow 357 

rates during spring and autumn (Figure S 1). March had the highest mean discharge rate (747(l/s)) 358 

followed by November (729(l/s)) and January (570(l/s)). Lower discharge rates were recorded in May 359 

(78(l/s)), June (88(l/s)) and July (128(l/s)). Observed conductivity was highest in May (0.14(mS/cm) 360 

and June (0.13(mS/cm)). Other sampling timepoints showed lower conductivity (0.09(mS/cm), Figure 361 

S 1). Dissolved oxygen in the Srahrevagh river was negatively correlated with temperature and 362 

showed corresponding patterns over time (Figure 4c). 363 

 364 

Figure 4: Distance-based Redundancy Analysis (dbRDA) shows correlations between gut microbial 365 
community composition and temperature, fish age and dissolved oxygen (A). Relative position of gut 366 
samples in the bi-plot is based on Bray-Curtis dissimilarities. Vectors indicate the weight and 367 
direction of those environmental and host-specific factors that were best predictors of gut bacterial 368 
composition as suggested by the results of the distance-based linear model. The dbRDA axes 369 
describe the percentage of the fitted or total variation explained by each axis while being 370 
constrained to account for group differences. (B) Water temperature [°C] of the Srahrevagh river in 371 
2019 measured in 30-minute intervals. (C) Dissolved oxygen [mg/l] of the Srahrevagh river in 2019 372 
measured in 2-minute intervals. Blue lines depict mean values fitted with loess regression. 373 

   

           

   

  

 

 

 

       

                                                

 
 
 
 
 
  
  
  
 
  
  
  
 
 
  
   
  
  
  
  
  
  
   
  
  
 
 
 
 

     

      

      

      

      

      

      

 

  

  

  

                                        
                       

  
 
 
  
  
 
  
  
  
  

  

  

  

  

                                        

                      

 
  
  
  
 
 
  
  
  
 
  
 
  
  
 

   

   



The role of environmental bacteria in shaping gut microbial communities 374 

Microbial communities in the water column showed a pronounced seasonal pattern (F=10.34; 375 

R2=0.81; p=0.001). DbRDA analysis revealed that water temperature (F=13.09; R2=0.29; p=0.001), 376 

conductivity (F=11.34; R2=0.25; p=0.001), dissolved oxygen (F=4.52; R2=0.10; p=0.009) and river 377 

discharge (F=5.60; R2=0.08; p=0.024) were all significant predictors of the seasonal changes in 378 

bacterial community composition in the water column (Figure 5a). Microbial communities derived 379 

from macroinvertebrate samples were clustered by their origin, but also showed temporal trends 380 

within groups (Figure 5b). PERMANOVA supports this observation. Macroinvertebrate origin 381 

(taxonomic order) explained 30.6% of the observable variation in macroinvertebrate community 382 

composition and sampling month explained 14.8%, with 54.5% of variation remaining unexplained. 383 

Pairwise testing revealed that all macroinvertebrate orders showed significant differences in 384 

microbial community composition except Ephemeroptera and Plecoptera (F=1.05; R2=0.09; p=0.37), 385 

which both showed seasonal differences (Table S 8). 386 

Source tracking analysis revealed monthly variations in mixing proportions in gut microbial 387 

communities (Figure 5c). In January, bacteria from the water body contributed approximately 36% of 388 

intestinal genera, whereas taxa from the potential food sources (macroinvertebrates) contributed 389 

about 21%. The macroinvertebrate contribution steadily increased over the following sampling 390 

months, to around 50% in June, July and November. The contribution of taxa which couldn’t be 391 

associated with either water or food sources declined after May (53%) reaching its lowest 392 

percentage in November (23%). Water source contributions were lowest in June at about 8% and 393 

highest in January (36%) and November (23%). Within food sources, macroinvertebrates from the 394 

order Diptera were the most dominant source of bacteria for gut communities. Microbial taxa 395 

derived from Diptera were almost completely absent in November, when Ephemeroptera became 396 

the largest source contributor. Similar observations were made for March. Source contributions for 397 

individual fish are shown in Figure S 2. 398 



 399 

Figure 5: (A) Distance based Redundancy Analysis (dbRDA) shows correlations between microbial 400 
community composition of the water column and temperature, dissolved oxygen, conductivity and 401 
river flow rate (discharge rate). (B) Principal coordinate analysis (PCoA) of microbial communities 402 
from macroinvertebrate samples grouped by origin. (C) Fast expectation-maximization for microbial 403 
source tracking (FEAST) estimations of average microbial source contributions for Atlantic salmon 404 
gut communities per sampling month. Mixing proportions were calculated by using taxa counts on 405 
genus level. Sources contain five different macroinvertebrate orders (potential food source) and 406 
three different water samples, collected from the top, the middle (mid) and the bottom (bot) section 407 
of the Srahrevagh river (see Figure 1). Source samples were collected at the same sampling day as 408 
the fish gut samples. 409 

Potential core taxa of juvenile Atlantic Salmon intestinal microbiomes 410 

Our neutral model estimated that 6821/7911 (86.22%) of OTUs detected in our study were randomly 411 

assembled in fish intestines, whereas 987 (12.47%) occurred more frequently than expected by the 412 

neutral model (Figure 6a, b). The model assigned 117 OTUs as ‘core’ OTUs, of which 78 occurred 413 

   

           

         
      

           

     
         

   

   

          

                                                 

 
 
 
 
 
 
  
 
 
  
 
 
  
  
 
 
 
 
   
 
  
 
 
  
  
  
  
   
  
  
 
 
 
 

   

  

   

   

   

    

                                    

     

 
 
  
 
 
  
 
  
  
 
  
 
  
 
 
  
  
 
 
 
 

       

       

          

           

             

          

       

        

        

        

     

      

      

      

      

      

      

    

   

   

   

                 

            

 
 
 
 
  
 
 
  
 
 

     

      

      

      

      

      

      

      

       

          

           

             

          

   



significantly more frequently than expected by the neutral model, 17 were considered neutral, and 414 

22 OTUs occurred less frequently than expected. 415 

After grouping the 117 core OTUs by genus, we discovered that certain genera appeared in multiple 416 

sections of the neutral model (Figure S 3): these genera were observed more frequently than 417 

expected, less frequently than expected, or with the same frequency as expected. Corynebacterium 418 

and Pseudoalteromonas were the only genera that appeared in all three sections of the neutral 419 

model. Additionally, OTUs associated with Pseudomonas, Acidovorax, Turicella, Schlegellea, and 420 

Xanthobacteriaceae were present in two sections of the neutral model.  421 

We used a taxonomic heat tree to illustrate the distribution of the 78 core OTUs that did occur more 422 

frequently than expected in the salmon gut (Figure S 4). Those OTUs were dominated by 423 

Proteobacteria (85.7%), followed by Firmicutes (10%) and Actinobacteriota (3.5%). At genus level we 424 

identified 25 different taxa. Here, Variovorax (18.4%), Pseudomonas (11.2), Staphylococcus (6.7%), 425 

Delftia (5.8%), Pseudoalteromonas (4.4%) and Schlegella (4.4%) were the most dominant 426 

contributors to the deterministically selected core taxa. Other notable genera included 427 

Acinetobacter (2.5%), Streptococcus (1.8%), Carnobacterium (1.3%) and Fibrobacter (0.9%). A further 428 

16 OTUs could not be assigned to a specific genus by the reference database, most of those OTUs 429 

belonged to the Comamonadaceae family.  430 

When restricted to just core taxa we found that 17 out of 25 genera were differentially abundant in 431 

at least one sampling month. Interestingly, genera Pseudomonas, Streptoccus, Carnobacterium, 432 

Acientobacter, Bosea, Methylothenera, Gallionella and Sphingomonas showed no significant 433 

seasonal differences in their relative abundance (Figure 6c). 434 



 435 

Figure 6: (A)Abundance-occupancy distribution of OTUs from Atlantic salmon intestines sampled at 436 
six sampling timepoints over a period of 10 months. Each point represents an OTU. The black line 437 
represents the fit of the neutral model, and the dashed lines represents 95% confidence intervals 438 
around the model prediction. OTUs that occur more frequently than predicted by the model are 439 
shown above (upper) the interval and are marked in blue. OTUs that occur less frequently than 440 
predicted are shown below (under) the interval and are marked in orange. OTUs that fit the neutral 441 
model are marked in white. OTUs that are classified as upper and under are likely to be 442 
deterministically selected by the intestinal environment. Yellow glowing OTUs represent core OTUs 443 
and were estimated by abundance–occurrence relationships and their contribution to Bray-Curtis 444 
similarity according to (Shade & Stopnisek, 2019). Core OTUs that appear more frequently than 445 
expected by the neutral model were used for further analysis (roughly highlighted by the blue 446 
ellipsis). (B) Pie plots of percentages of OTUs that fit the neutral model (white), occur more 447 
frequently than predicted (blue) or less frequently than predicted (orange). Second pie plot depicts 448 
percentages for the core OTUs highlighted by the yellow glow in the abundance-occupancy plot. (C) 449 
Differential abundance analysis of deterministically selected core OTUs grouped on genus level. 17 450 
out of 25 genera were differently abundant between at least two sampling months. Mean Decrease 451 
Gini indicator represents the importance of each genus in distinguishing between sampling months. 452 



Discussion 453 

We assessed the role of host specific and environmental factors, as well as stochastic processes, in 454 

shaping the gut microbial development of Atlantic salmon living in a natural river. We found that 455 

bacterial community compositions collected from water and macroinvertebrate samples were 456 

significantly different from each other and the salmon intestine. This aligns with findings that gut 457 

microbial communities in fish are shaped by the environmental filter conditioned by the gut 458 

ecosystem (Cheaib et al., 2020; Kim et al., 2021). In theory, most microbes found in the gut originate 459 

from the surrounding environment. However, low-abundance environmental bacteria can further 460 

evolve to be more prolific colonisers of a fish’s intestine, whereas highly abundant environmental 461 

bacteria might lack the capability of surviving in the gut environment (López Nadal et al., 2020; 462 

Robinson et al., 2018). We found that certain taxa of Firmicutes, such as Mycoplasma, Clostridium 463 

sensu stricto, Bacillus, as well as several taxa belonging to the order Lactobacillus, were present in 464 

very low abundance in environmental samples. However, the same taxa were significantly enriched 465 

in fish intestines, indicating their capability to thrive and multiply in the fish gut environment. 466 

Gut microbial community composition varied significantly between all sampling months. Fish caught 467 

in January had, on average, a significantly more diverse gut microbiome than fish caught in the other 468 

months. Microbial richness was lowest in spring and autumn, with intermediate levels in summer. 469 

The magnitude of the observed difference in diversity between January and the other months was a 470 

rather surprising find. In theory, the reduction of feeding in winter should limit the amount of 471 

different ecological niches in the gut, leading to less diversity rather than more. However, based on 472 

the findings of the FEAST analysis we noticed that more bacteria from the water column were 473 

present in the gut in January compared to other sampling months. Given the high microbial diversity 474 

of the water column, this carryover might explain the high gut alpha diversity in January. Bray-Curtis 475 

distances between sampling months did not follow a sequential pattern, and Bray-Curtis distances 476 

within sampling months did not increase gradually over time. The results suggest that Atlantic 477 



salmon juveniles' gut microbial community composition is highly dynamic and undergoes 478 

considerable changes over time. This indicates that the factors driving the changes in the gut 479 

microbiome may vary from one month to another and that multiple factors may be involved. 480 

Potential deterministic processes could be seasonal temperature, genetic differences between hosts 481 

and diet volume or composition. Whilst temperature is a probable cause of differences in gut 482 

microbial community composition between sampling months, genetic background is a potential 483 

cause of inter-individual differences within a sampling timepoint. Dietary differences might drive 484 

monthly differences as well as inter-individual differences. In our study, we observed that water 485 

temperature accounted for approximately 3% of the total variation in gut microbial community 486 

composition. Although it was a statistically significant predictor, we determined that the overall 487 

impact of temperature on the gut microbiome was relatively minor. Fish are poikilothermic, and 488 

each bacterial species has an optimum growing temperature determined by their thermodynamic 489 

limitations (Corkrey et al., 2012). Hence, environmental temperature variations might lead to 490 

microbial abundance changes. Indeed some studies have suggested that elevated temperature can 491 

drive overabundance of pathogenic Vibrionaceae in some freshwater systems (Suzzi et al., 2023). 492 

PERMANOVA results also suggest that a fish’s genetic origin impacts gut microbial communities. 493 

However, given that we had an uneven and non-constant distribution of the genetic origins across 494 

our sampling months, we do not believe we can confidently say that there are effects of both month 495 

and genetic origin. 496 

If gut microbial community composition is indeed driven by host genetics, it would not be the first 497 

such example in fish. Genetic impacts on fish gut microbiomes have been observed among 498 

genetically divergent populations of sticklebacks (Smith et al., 2015), guppies (Sullam et al., 2015) 499 

and very recently in Chinook salmon (Oncorhynchus tshawytscha, Ziab et al., 2023). In our system, 500 

genetic background might impact gut microbial communities in several ways. First, due to 501 

differences in feeding habits between farmed and wild fish. Farmed fish are from lineages that have 502 



been fed ad libitum in a sheltered environment for multiple generations. Due to this metabolic 503 

obligation farmed fish might start feeding earlier in the year and also stay active later in the year 504 

than their wild counterparts. A second possibility could be that genetic differences between farmed 505 

and wild fish create different selective pressures in the gut environment, possibly in respect to 506 

variation among fish of different provenances in immune response genes (de Eyto et al., 2007, 507 

2011). Consequently, this genetic variation may lead to the proliferation of different bacterial 508 

species. However, we also cannot discount the possibility of maternal effects, whereby microbes 509 

may be transferred during oviposition. Close co-diversification between adult salmon linages and 510 

Mycoplasma strains observed recently would be consistent with this hypothesis (Rasmussen et al., 511 

2023). To assess the implications of genetic effects on gut microbial communities it is important to 512 

understand if differences in microbial communities between farmed, wild and hybrid fish persist 513 

over time and if those changes correlate with variations in host metabolism or disease susceptibility. 514 

This knowledge is not only relevant for assessing the impact of introgression events to the fitness of 515 

salmonid populations but also for developing targeted strategies to promote fish health and mitigate 516 

potential negative effects. 517 

Diet is one of the most important drivers of gut microbial community composition (Gajardo et al., 518 

2017; Zarkasi et al., 2016). Intestinal microorganisms feed on food items that the host cannot digest, 519 

producing many host-beneficial metabolites in the process (Koh et al., 2016; Ríos-Covián et al., 520 

2016). A change of diet composition or volume might therefore have major implications for gut 521 

bacteria growth and consequently for fish physiology and health. It is known that fish have reduced 522 

appetite in the winter months (Volkoff & Rønnestad, 2020). Hence, it is unsurprising that we found a 523 

distinct cluster of winter samples in our PCoA. FEAST analysis showed that the contribution 524 

percentages of food-derived bacteria were found to be the lowest in January, which is in agreement 525 

with a decrease in appetite of juvenile salmon during the winter season (Volkoff & Rønnestad, 2020). 526 

We found traces of bacterial taxa from all five macroinvertebrate groups in our fish, but Diptera (Fly) 527 

and Ephemeroptera (Mayfly) seemed the favoured food source for salmon in our study based on 528 



microbiome sharing. Most of the taxa found in fish guts originated from the macroinvertebrate 529 

order Diptera. In March and especially in November, those contribution percentages shifted to 530 

Ephemeroptera, which suggests a change in diet or simply a seasonal change in macroinvertebrate 531 

abundance. Our results match nicely with the stomach count analysis conducted by de Eyto et al., 532 

2020 who also found Diptera and Ephemeroptera to be the most important food sources for juvenile 533 

Atlantic salmon in our experimental river. Despite not being the main topic of this manuscript, it is 534 

still worth noting that the investigated macroinvertebrates themselves seem to have an order-535 

specific microbiome. As with most host associated intestinal microbiomes it is likely that diet is of 536 

major influence for the microbial structure in macroinvertebrates (Kroetsch et al., 2020). Depending 537 

on their life stage aquatic insects feed on algae or leaf litter but may also prey on other 538 

macroinvertebrates when older. As adults, certain Diptera species, commonly known as midges, also 539 

interact with terrestrial livestock by feeding on their blood (Walker, 2001). It would be interesting to 540 

investigate a potential carryover from bacteria associated with terrestrial animals (skin or faeces) 541 

through the macroinvertebrate as intermediate host into salmon. In this context, there might be a 542 

special interest to investigate the potential carryover of antimicrobial resistance genes from 543 

agriculture facilities into the aquatic environment. 544 

An important aspect in determining the impact of dietary shifts on host health is whether the 545 

bacteria introduced through food consumption persist in the gut or if they are merely transient. Our 546 

abundance-occupancy analyses allowed further exploration of this question. The model implied that 547 

the majority of OTUs (86%) were neutrally assembled, suggesting that the presence of those OTUs in 548 

fish guts is determined by ecological drift or random dispersal from environmental sources. This high 549 

percentage is consistent with previous studies, which have also shown that the majority of taxa in 550 

salmon microbial communities are neutrally assembled (Burns et al., 2016; Heys et al., 2020). 551 

However, it is worth noting that the neutral model approach used in our study has been subject to 552 

criticism for potentially overestimating the significance of stochastic processes in shaping 553 

community outcomes (Ning et al., 2019, 2020). To identify potentially important taxa, we employed 554 



an abundance-occupancy threshold. All taxa that passed the threshold were considered ‘core’, but 555 

we remind readers that ‘core’ taxa should be treated as study-specific. We identified 78 OTUs as 556 

being positively selected core microbiota. These core microorganisms can be considered versatile 557 

species that can adapt to the gut environment and persist across individual fish and over time. 558 

However, no OTU was present in all our samples, revealing inter-individual variations among hosts. 559 

Most positively-selected core genera displayed significant differences in their relative abundance 560 

across sampling timepoints, suggesting a pronounced seasonality in the composition of core 561 

microbial communities in the intestines of juvenile Atlantic salmon and strong links to seasonally 562 

influenced diet. As mentioned in the beginning of this discussion, some taxa were positively enriched 563 

in the gut compared to the environment. Out of these taxa our model identified positively selected 564 

core OTUs associated with Turicella, Staphylocccus, Schlegella, Pseudoalteromonas, Delftia, 565 

Aliivibrio, Axicodovorax and Psychrobacter. Mycoplasma a genus that was found to be an important 566 

member in other studies of Atlantic salmon intestines, especially in the marine phase (Cheaib et al., 567 

2021; Heys et al., 2020; Llewellyn et al., 2016; Rasmussen et al., 2021, 2023), was only observed in 568 

small numbers of fish in our study. However, all OTUs associated with Mycoplasma were predicted 569 

to be more frequently abundant than estimated by our neutral model, indicating deterministic 570 

selection. It is possible that this genus establishes predominance over the course of Atlantic salmon 571 

development (Llewellyn et al., 2016). Whilst characterising core microbiota, we found several other 572 

similarities to previous studies that have characterised core members of gut microbial communities 573 

in juvenile Atlantic salmon sampled in freshwater. For instance, Corynebacterium, several Firmicutes 574 

and Vibrionales are often reported as core contributors of Atlantic salmon gut microbial 575 

communities (Gajardo et al., 2016; Uren Webster et al., 2018). The model used in this study also 576 

classified OTUs associated to bacteria of marine origin (Marinomonas and Pseudoalteromonas) as 577 

core microbiota. These bacteria are known to be highly abundant in marine fish (Schaal et al., 2022) 578 

and as mentioned previously, their presence in juvenile freshwater fish could possibly be due to 579 

maternal transmission during birth. However, knowledge about maternal effects on microbiota in 580 



oviparous fish is lacking. It is crucial to recognise that even though certain OTUs may be classified as 581 

neutral, indicating a higher probability of having a short presence in the gut, they can still play a 582 

significant role in shaping the overall community structure. This is because these OTUs may interact 583 

with the resident microbiota, influencing their composition and function. The question remains how 584 

those taxa influence residence bacteria and under what (environmental) circumstances those taxa 585 

can incorporate themselves into the resident community. Understanding this process would be 586 

especially beneficial to improve the applicability of pre and probiotic treatments. 587 

Conclusion 588 

This study provides a comprehensive overview about the factors governing gut microbial succession 589 

in Atlantic salmon utilising a large-scale common garden experiment undertaken in the wild. The 590 

results suggest that gut microbial community composition is highly dynamic and undergoes 591 

considerable changes over time, driven by both deterministic and stochastic processes. We found 592 

distinct microbial profiles of water, macroinvertebrate and intestine communities, which indicates 593 

that microbial communities in fish are shaped by the environmental filter conditioned by the gut 594 

ecosystem. Macroinvertebrates, the potential food source, had an order-specific microbiome, 595 

whereas bacteria associated with the water column showed a temporal pattern. Microbial taxa 596 

associated with macroinvertebrates were more abundant in the gut than bacteria associated with 597 

the water column, indicating that diet is an important factor in gut community assembly. We 598 

estimated that most detectable OTUs in our study were assembled stochastically. Deterministic 599 

factors impacting gut microbial community composition, like temperature and fish age had a 600 

significant influence on the fish’s microbiome but their overall importance was estimated to be 601 

minor. Monthly differences in gut microbial community composition also persisted in 602 

deterministically selected core taxa. Our results also suggest that there might be an additive host 603 

genetic effect determining differences observed between farmed and wild fish, thereby promoting 604 

inter-individual differences in gut microbial community composition within sampling months. 605 



Previous work in salmon has hinted at a role for maternal effects in driving inter-generational 606 

sharing of microbial taxa and our study, although lacking in statistical power, points in that direction. 607 

Future work could explore such a genetic and/or maternally determined relationship. Meanwhile, 608 

we hope this study should serve as important benchmark for rigorously analysing natural fish gut 609 

microbial assembly in their proper trophic and environmental context. 610 
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Additional Files 960 

Supplementary Figures 961 

 962 

Figure S 1: (A) Mean river discharge (l/s) of the Srahrevagh river in 2019 measured in 30-minute 963 
intervals. (B) Mean conductivity (mS/cm) of the Srahrevagh river in 2019 measured in 2-minute 964 
intervals. Blue lines depict mean values fitted with loess regression. 965 

 

     

     

     

     

                                        

                       

 
  
 
  
 
  
  
  
  
  
  
  

    

    

    

    

    

                                        

                      

 
 
 
 
 
  
  
  
  
 
  
  
  

      



 966 

Figure S 2: Fast expectation-maximization for microbial source tracking (FEAST) estimations of 967 
microbial source contributions for Atlantic salmon gut communities. Each bar represents one 968 
individual sample. Each plot represents one sampling month. (A) January, (B) March, (C) May, (D) 969 
June, (E) July, (F) November. Mixing proportions were calculated by using taxa counts on genus level. 970 
Sources contain five different macroinvertebrates (feed samples) and three different water samples, 971 
collected from the top, the middle (mid) and the bottom (bot) of the experimental study area in the 972 
Srahrevagh river. Source samples were collected at the same sampling day as fish guts. 973 

 974 

 975 

Figure S 3: Pie plots of ten most abundant core genera as determined by the abundance-occupancy 976 
model. The model was used to determine core OTUs, which had to surpass a specific core inclusion 977 
threshold to be included in the analysis. The core OTUs were further divided into three categories: 978 
Core upper, which were positively selected by the intestinal environment and appeared more 979 
frequently than expected by a neutral model; Core neutral, which occurred as frequently as 980 
predicted by the neutral model; and Core under, which appeared less frequently than expected by 981 
the neutral model. For the plots OTUs were grouped on genus level. 982 

  

   

   

   

    

         

 
 
  
 
 
  
 
   
 
 
  
 
  
 
 
  
  
 
 
 
        

       

          

           

             

          

       

          

         

         

  

   

   

   

    

         

 
 
  
 
 
  
 
   
 
 
  
 
  
 
 
  
  
 
 
 
        

       

          

           

             

          

       

         

         

         

  

   

   

   

    

         

 
 
  
 
 
  
 
   
 
 
  
 
  
 
 
  
  
 
 
 
        

       

          

           

             

          

       

         

         

         

  

   

   

   

    

         

 
 
  
 
 
  
 
   
 
 
  
 
  
 
 
  
  
 
 
 
        

       

          

           

             

          

       

         

         

         

  

   

   

   

    

         

 
 
  
 
 
  
 
   
 
 
  
 
  
 
 
  
  
 
 
 
        

       

          

           

             

          

       

         

         

         

  

   

   

   

    

         

 
 
  
 
 
  
 
   
 
 
  
 
  
 
 
  
  
 
 
 
        

       

          

           

             

          

       

         

         

         

                                                                                            

      

         

   

          

     

          

           

              

                 

       

            

         

                 

          

             

      

            

     

            

           

          

              

             

                 

               

         

          

           

      

          

     

               

         

        

              

                 

                        

       

                 

             

             

      



 983 

Figure S 4: Taxonomic heat map of deterministically selected core OTUs as determined by the 984 
abundance-occupancy model from Figure 6. Node size and colour reflect the mean relative 985 
abundance of taxa per taxonomic rank. 986 

Supplementary Tables 987 

Table S 1: Overview of sampled fish during the 10-month experiment. 80 fish were sampled across 988 

six sampling timepoints. Fish age is depicted in months. Number of samples taken is shown for 989 

each sex per origin per month. Respective mean length (mm) and weight (g) measurements are 990 

included. Brackets show standard deviations. F=Farmed, HFF=Hybrid Farmed Female, HWF=Hybrid 991 

Wild Female, W=Wild. 992 

Month Age (Months) Origin  Male (N) Female (N) Length (mm) Weight (g) 

Jan_19 
(N=16) 

9  

F  1 1 61.91 (±1.85) 2.39 (±0.33) 

HFF  4 4 62.76 (±4.13) 2.36 (±0.49) 

HWF  3 1 55.35 (±7.52) 1.67 (±0.79) 

W 0 2 56.62 (±14.07) 1.78 (±1.27) 

Mar_19 11  F 1 2 66.45 (±6.32) 2.82 (±0.82) 

        

              

          

                

              

                   

                   
       

              

             

               

           

                

               

               

                

                 

                

               

           
               

                   

                 

              

                 

            

                

                

                

               

                
                 

                 

             

                  

                 

                      

            

                

                

                    

                

                 

        

           

          

     

       

             

                           

              

             

            

         

               

            

          

                 

           

      

          

                

           

             

             

           

 

  

  

  

  

   
  
  
  
 
 
 
 
 
 
 
 
  

     
 



(N=14)  HFF 2 2 63.88 (±7.23) 2.50 (±0.88) 

HWF 1 0 53.38 1.28 

W 3 3 53.29 (±4.77) 1.37 (±0.44) 

May_19 
(N=8)  

13  

F 2 0 80.00 (±1.41) 4.9 (±0.13) 

HFF 1 0 78.00 4.87 

HWF 1 2 73.67 (±1.53) 3.76 (±0.22) 

W 2 0 69.50 (±3.54) 2.92 (±0.28) 

Jun_19 
(N=13)  

14  

F 1 4 90.80 (±7.36) 7.91 (±2.50) 

HFF 0 2 85.67 (±10.07) 5.91 (±2.23) 

HWF 4 0 89.50 (±5.45) 6.57 (±0.60) 

W 1 1 73.00 (±4.24) 4.24 (±0.01) 

Jul_19 
(N=11)  

15  

F 1 1 107.50 (±2.12) 13.55 (±1.51) 

HFF 1 3 94.33 (±11.5) 8.36 (±2.93) 

HWF 1 1 87.50 (±3.54) 6.34 (±0.66) 

W 2 1 79.00 (±1.41) 5.21 (±0.04) 

Nov_19 
(N=18) 

19 

F 1 1 112.50 (±6.36) 14.59 (±2.41) 

HFF 5 0 111.00 (±14.71) 16.25 (±6.65) 

HWF 3 4 103.43 (±8.73) 11.85 (±2.14) 

W 2 2 102.25 (±6.34) 10.72 (±2.35) 

 993 

Table S 2: PERMANOVA results to assess the effects of genetic origin, sampling month and sex on 994 
the composition of the Atlantic salmon gut microbiome in the river habitat. Significance code: 995 
***<0.001 996 

Group Df SumOfSqs R2 F Pr(>F) Signif. 

Origin 3 1.690 0.054 1.707 0.001 *** 

Month 5 5.098 0.164 3.089 0.001 *** 

Sex 1 0.278 0.009 0.843 0.791 
 

Origin:Month 15 6.358 0.205 1.284 0.001 *** 

Residual 53 17.495 0.565 
   

Total 77 30.922 1 
   

 997 

Table S 3: PERMANOVA testing pairwise comparisons of gut microbial samples grouped by their 998 
sampling timepoint (month) in the river habitat. Significance codes: **<0.01; *<0.05. 999 

Groups measure F R2 p.value p.adjusted Signif. 

Jan_19 vs Mar_19 bray 3.627 0.115 0.001 0.002 ** 

Jan_19 vs May_19 bray 4.299 0.163 0.001 0.002 ** 

Jan_19 vs Jun_19 bray 4.856 0.152 0.001 0.002 ** 

Jan_19 vs Jul_19 bray 1.885 0.073 0.003 0.004 ** 

Jan_19 vs Nov_19 bray 5.469 0.150 0.001 0.002 ** 

Mar_19 vs May_19 bray 1.808 0.083 0.008 0.009 ** 

Mar_19 vs Jun_19 bray 2.706 0.098 0.001 0.002 ** 

Mar_19 vs Jul_19 bray 1.772 0.075 0.004 0.005 ** 

Mar_19 vs Nov_19 bray 1.661 0.054 0.018 0.018 * 



May_19 vs Jun_19 bray 2.360 0.110 0.001 0.002 ** 

May_19 vs Jul_19 bray 2.044 0.113 0.004 0.005 ** 

May_19 vs Nov_19 bray 2.385 0.094 0.001 0.002 ** 

Jun_19 vs Jul_19 bray 2.183 0.094 0.001 0.002 ** 

Jun_19 vs Nov_19 bray 4.201 0.130 0.001 0.002 ** 

Jul_19 vs Nov_19 bray 2.930 0.105 0.001 0.002 ** 

 1000 

Table S 4: PERMANOVA testing pairwise comparisons of gut microbial samples grouped by their 1001 
associated genetic origin in the river habitat. F=Farmed, HFF=Hybrid Farmed Female, HWF=Hybrid 1002 
Wild Female, W=Wild. Significance codes: *<0.05. 1003 

Groups measure F R2 p.value p.adjusted Signif. 

HWF vs HFF bray 1.247 0.028 0.076 0.114 
 

HWF vs W bray 0.897 0.024 0.662 0.662 
 

HWF vs F bray 1.545 0.043 0.036 0.072 
 

HFF vs W bray 1.858 0.044 0.004 0.012 * 

HFF vs F bray 1.002 0.025 0.446 0.535 
 

W vs F bray 2.121 0.062 0.002 0.012 * 

 1004 

Table S 5: Generalised linear model results to assess the effects of sampling time on Chao1 1005 
richness. AIC: 203.45. AIC served as indicator to determine the best-fit model. Significance codes: 1006 
***<0.001; **<0.01 1007 

 
Estimate Std. Error t value Pr(>|t|) Signif. 

(Intercept) 722.760 47.480 15.222 < 2e-16 *** 

Mar_19 -451.100 69.500 -6.490 0.000 *** 

May_19 -504.340 82.240 -6.133 0.000 *** 

Jun_19 -264.220 69.500 -3.801 0.000 *** 

Jul_19 -219.440 79.130 -2.773 0.007 ** 

Nov_19 -430.420 65.260 -6.596 0.000 *** 

 1008 

Table S 6: Generalised linear model results to assess the effects of sampling time on Shannon 1009 
diversity. AIC: 1060.9. AIC served as indicator to determine the best-fit model. Significance codes: 1010 
***<0.001; **<0.01 1011 

 
Estimate Std. Error t value Pr(>|t|) Signif. 

(Intercept) 5.017 0.209 24.035 < 2e-16 *** 

Mar_19 -2.084 0.306 -6.820 0.000 *** 

May_19 -1.893 0.362 -5.236 0.000 *** 

Jun_19 -1.762 0.306 -5.767 0.000 *** 

Jul_19 -0.941 0.348 -2.704 0.009 ** 

Nov_19 -1.124 0.287 -3.918 0.000 *** 

Table S 7: Distanced-based linear model showing the best environmental and host specific 1012 
predictors of gut microbial community composition in Atlantic Salmon parr in a river habitat. 1013 
                                                       “         ”                    : ***<      1014 



Predictor Df SumOfSqs R2 F Pr(>F) Signif. 

Temperature 1 0.972 0.031 2.556 1.00E-04 *** 

Age 1 1.364 0.044 3.587 4.00E-04 *** 

Residual 75 28.903 0.885 
   

Total 78 31.221 0.926 
   

   1    

 1015 

Table S 8: PERMANOVA testing pairwise comparisons of macroinvertebrate samples grouped by 1016 
their origin. Significance codes: **<0.01; *<0.05. 1017 

Groups measure F R2  p.value p.adjusted  Signif. 

Diptera vs Coleoptera wei_unifrac 2.695 0.212 0.019 0.024 * 

Diptera vs Trichoptera wei_unifrac 4.427 0.307 0.001 0.007 ** 

Diptera vs Ephemeroptera wei_unifrac 2.992 0.230 0.004 0.007 ** 

Diptera vs Plecoptera wei_unifrac 3.365 0.252 0.005 0.007 ** 

Coleoptera vs Trichoptera wei_unifrac 2.675 0.211 0.004 0.007 ** 

Coleoptera vs Ephemeroptera wei_unifrac 2.458 0.197 0.004 0.007 ** 

Coleoptera vs Plecoptera wei_unifrac 3.551 0.262 0.002 0.007 ** 

Trichoptera vs Ephemeroptera wei_unifrac 2.010 0.167 0.032 0.036 * 

Trichoptera vs Plecoptera wei_unifrac 2.596 0.206 0.003 0.007 ** 

Ephemeroptera vs Plecoptera wei_unifrac 1.055 0.095 0.369 0.369 
 

 1018 


