References
- Aebersold, R., & Mann, M. (2003). Mass spectrometry-based proteomics.Nature , 422 (6928), 198–207.
https://doi.org/10.1038/nature01511
- Zhang, Y., Fonslow, B. R., Shan, B., Baek, M.-C., & Yates, J. R.
(2013). Protein analysis by shotgun/bottom-up proteomics.Chemical Reviews , 113 (4), 2343–2394.
https://doi.org/10.1021/cr3003533
- Cargile, B. J., Bundy, J. L., & Stephenson Jr., J. L. (2004).
Potential for false positive identifications from large databases
through tandem mass spectrometry. Journal of Proteome Research ,3 (5), 1082–1085. https://doi.org/10.1021/pr049946o
- Foster, L. J. (2011). Interpretation of data underlying the link
between colony collapse disorder (CCD) and an invertebrate iridescent
virus. Molecular & Cellular Proteomics , 10 (3),
M110.006387. https://doi.org/10.1074/mcp.M110.006387
- Kumar, D., Yadav, A. K., & Dash, D. (2017). Choosing an optimal
database for protein identification from tandem mass spectrometry
data. In: S. Keerthikumar, & S. Mathivanan (Eds.), Proteome
bioinformatics (pp. 17–29). New York, NY: Humana Press.
https://doi.org/10.1007/978-1-4939-6740-7_3
- Nesvizhskii, A. I. (2014). Proteogenomics: concepts, applications and
computational strategies. Nature Methods , 11 (11),
1114–1125. https://doi.org/10.1038/nmeth.3144
- Li, H., Joh, Y. S., Kim, H., Paek, E., Lee, S.-W., & Hwang, K.-B.
(2016). Evaluating the effect of database inflation in proteogenomic
search on sensitive and reliable peptide identification. BMC
Genomics , 17 (Supplement 13), 1031,
https://doi.org/10.1186/s12864-016-3327-5
- Genersch, E., Forsgren, E., Pentikainen, J., Ashiralieva, A., Rauch,
S., Kilwinski, J., & Fries, I. (2006). Reclassification ofPaenibacillus larvae subsp. pulvifaciens andPaenibacillus larvae subsp. larvae asPaenibacillus larvae without subspecies differentiation.International Journal of Systematic and Evolutionary
Microbiology , 56 (3), 501–511.
https://doi.org/10.1099/ijs.0.63928-0
- Beims, H., Bunk, B., Erler, S., Mohr, K. I., Sproer, C., Pradella, S.,
… Steinert, M. (2020). Discovery of Paenibacillus larvae ERIC
V: phenotypic and genomic comparison to genotypes ERIC I-IV reveal
different inventories of virulence factors which correlate with
epidemiological prevalences of American foulbrood. International
Journal of Medical Microbiology , 310 (2), 151394.
https://doi.org/10.1016/j.ijmm.2020.151394
- Djukic, M., Brzuszkiewicz, E., Funfhaus, A., Voss, J., Gollnow, K.,
Poppinga, L., … Daniel, R. (2014). How to kill the honey bee larva:
genomic potential and virulence mechanisms of Paenibacillus
larvae . PLoS ONE , 9 (3), e90914.
https://doi.org/10.1371/journal.pone.0090914
- Erban, T., Zitek, J., Bodrinova, M., Talacko, P., Bartos, M., &
Hrabak, J. (2019). Comprehensive proteomic analysis of exoproteins
expressed by ERIC I, II, III and IV Paenibacillus larvaegenotypes reveals a wide range of virulence factors. Virulence ,10 (1), 363–375.
https://doi.org/10.1080/21505594.2019.1603133
- Erban, T., Sopko, B., Bodrinova, M., Talacko, P., Chalupnikova, J.,
Markovic, M., & Kamler, M. (2023). Proteomic insight into the
interaction of Paenibacillus larvae with honey bee larvae
before capping collected from an American foulbrood outbreak: pathogen
proteins within the host, lysis signatures and interaction markers.Proteomics , 23 (1), 2200146.
https://doi.org/10.1002/pmic.202200146
- Khatun, J., Yu, Y., Wrobel, J. A., Risk, B. A., Gunawardena, H. P.,
Secrest, A., … Giddings, M. C. (2013). Whole human genome
proteogenomic mapping for ENCODE cell line data: identifying
protein-coding regions. BMC Genomics , 14 (1), 141.
https://doi.org/10.1186/1471-2164-14-141
- Castellana, N. E., Shen, Z., He, Y., Walley, J. W., Cassidy, C. J.,
Briggs, S. P., & Bafna, V. (2014). An automated proteogenomic method
uses mass spectrometry to reveal novel genes in Zea mays .Molecular & Cellular Proteomics , 13 (1), 157–167.
https://doi.org/10.1074/mcp.M113.031260
- McAfee, A., Harpur, B. A., Michaud, S., Beavis, R. C., Kent, C. F.,
Zayed, A., & Foster, L. J. (2016). Toward an upgraded honey bee
(Apis mellifera L.) genome annotation using proteogenomics.Journal of Proteome Research , 15 (2), 411–421.
https://doi.org/10.1021/acs.jproteome.5b00589
- McAfee, A., Chan, Q. W. T., Evans, J., & Foster, L. J. (2017). AVarroa destructor protein atlas reveals molecular underpinnings
of developmental transitions and sexual differentiation.Molecular & Cellular Proteomics , 16 (12), 2125–2137.
https://doi.org/10.1074/mcp.RA117.000104
- Cox, J., Hein, M. Y., Luber, C. A., Paron, I., Nagaraj, N., & Mann,
M. (2014). Accurate proteome-wide label-free quantification by delayed
normalization and maximal peptide ratio extraction, termed MaxLFQ.Molecular & Cellular Proteomics , 13 (9), 2513–2526.
https://doi.org/10.1074/mcp.M113.031591
- Cox, J., Neuhauser, N., Michalski, A., Scheltema, R. A., Olsen, J. V.,
& Mann, M. (2011). Andromeda: a peptide search engine integrated into
the MaxQuant environment. Journal of Proteome Research ,10 (4), 1794–1805. https://doi.org/10.1021/pr101065j
- Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Geiger,
T., … Cox, J. (2016). The Perseus computational platform for
comprehensive analysis of (prote)omics data. Nature Methods ,13 (9), 731–740. https://doi.org/10.1038/nmeth.3901
- Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R., & Pfister, H.
(2014). UpSet: visualization of intersecting sets. IEEE
Transactions on Visualization and Computer Graphics , 20 (12),
1983–1992. https://doi.org/10.1109/TVCG.2014.2346248
- Conway, J. R., Lex, A., & Gehlenborg, N. (2017). UpSetR: an R package
for the visualization of intersecting sets and their properties.Bioinformatics , 33 (18), 2938–2940.
https://doi.org/10.1093/bioinformatics/btx364
- Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W.,
… Higgins, D. G. (2011). Fast, scalable generation of high-quality
protein multiple sequence alignments using Clustal Omega.Molecular Systems Biology , 7 , 539.
https://doi.org/10.1038/msb.2011.75
- Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M., &
Barton, G. J. (2009). Jalview Version 2—a multiple sequence
alignment editor and analysis workbench. Bioinformatics ,25 (9), 1189–1191.
https://doi.org/10.1093/bioinformatics/btp033
- Blum, M., Chang, H.-Y., Chuguransky, S., Grego, T., Kandasaamy, S.,
Mitchell, A., … Finn, R. D. (2021). The InterPro protein families
and domains database: 20 years on. Nucleic Acids Research ,49 (D1), D344–D354. https://doi.org/10.1093/nar/gkaa977
- Paysan-Lafosse, T., Blum, M., Chuguransky, S., Grego, T., Pinto, B.
L., Salazar, G. A., … Bateman, A. (2023). InterPro in 2022.Nucleic Acids Research , 51 (D1), D418–D427.
https://doi.org/10.1093/nar/gkac993
- Hertlein, G., Muller, S., Garcia-Gonzalez, E., Poppinga, L., Sussmuth,
R. D., & Genersch, E. (2014). Production of the catechol type
siderophore bacillibactin by the honey bee pathogenPaenibacillus larvae . PLoS ONE , 9 (9), e108272.
https://doi.org/10.1371/journal.pone.0108272
- Bork, P., & Doolittle, R. F. (1992). Proposed acquisition of an
animal protein domain by bacteria. Proceedings of the National
Academy of Sciences of the United States of America , 89 (19),
8990–8994. https://doi.org/10.1073/pnas.89.19.8990
- Kaur, J., & Reinhardt, D. P. (2015). Extracellular matrix (ECM)
molecules. In: A. Vishwakarma, P. Sharpe, S. Shi, & M. Ramalingam
(Eds.), Stem cell biology and tissue engineering in dental sciences
(pp. 25–45). London: Academic Press.
https://doi.org/10.1016/B978-0-12-397157-9.00003-5
- Hobbs, J. K., Meier, E. P. W., Pluvinage, B., Mey, M. A., & Boraston,
A. B. (2019). Molecular analysis of an enigmatic Streptococcus
pneumoniae virulence factor: the raffinose-family oligosaccharide
utilization system. Journal of Biological Chemistry ,294 (46), 17197–17208.
https://doi.org/10.1074/jbc.RA119.010280
- Chakrapani, N., Fischer, J., Swiontek, K., Codreanu-Morel, F.,
Hannachi, F., Morisset, M., … Hilger, C. (2022). alpha-Gal present
on both glycolipids and glycoproteins contributes to immune response
in meat-allergic patients. Journal of Allergy and Clinical
Immunology , 150 (2), 396–405.e311.
https://doi.org/10.1016/j.jaci.2022.02.030
- Alippi, A. (2017). Microbe sample from Paenibacillus larvaesubsp. pulvifaciens . National Center for Biotechnology
Information (NCBI).
https://www.ncbi.nlm.nih.gov/biosample/SAMN06547380/ (Accessed
date: 6 April 2023)
- Monniot, C., Zebre, A. C., Ake, F. M. D., Deutscher, J., & Milohanic,
E. (2012). Novel listerial glycerol dehydrogenase- and
phosphoenolpyruvate-dependent dihydroxyacetone kinase system connected
to the pentose phosphate pathway. Journal of Bacteriology ,194 (18), 4972–4982. https://doi.org/10.1128/JB.00801-12
- Gutknecht, R., Beutler, R., Garcia-Alles, L. F., Baumann, U., & Erni,
B. (2001). The dihydroxyacetone kinase of Escherichia coliutilizes a phosphoprotein instead of ATP as phosphoryl donor.The EMBO Journal , 20 (10), 2480–2486.
https://doi.org/10.1093/emboj/20.10.2480
- Blotz, C., & Stulke, J. (2017). Glycerol metabolism and its
implication in virulence in Mycoplasma . FEMS Microbiology
Reviews , 41 (5), 640–652.
https://doi.org/10.1093/femsre/fux033
- Paredes, J. C., Herren, J. K., Schupfer, F., & Lemaitre, B. (2016).
The role of lipid competition for endosymbiont-mediated protection
against parasitoid wasps in Drosophila . mBio ,7 (4), e01006-01016. https://doi.org/10.1128/mBio.01006-16
- Athukoralage, J. S., McMahon, S. A., Zhang, C., Gruschow, S., Graham,
S., Krupovic, M., … White, M. F. (2020). An anti-CRISPR viral ring
nuclease subverts type III CRISPR immunity. Nature ,577 (7791). 572–575.
https://doi.org/10.1038/s41586-019-1909-5
- Louwen, R., Staals, R. H. J., Endtz, H. P., van Baarlen, P., & van
der Oost, J. (2014). The role of CRISPR-Cas systems in virulence of
pathogenic bacteria. Microbiology and Molecular Biology
Reviews , 78 (1), 74–88.
https://doi.org/10.1128/MMBR.00039-13
- Ratledge, C., & Dover, L. G. (2000). Iron metabolism in pathogenic
bacteria. Annual Review of Microbiology , 54 , 881–941.
https://doi.org/10.1146/annurev.micro.54.1.881
- Khasheii, B., Mahmoodi, P., & Mohammadzadeh, A. (2021). Siderophores:
importance in bacterial pathogenesis and applications in medicine and
industry. Microbiological Research , 250 , 126790.
https://doi.org/10.1016/j.micres.2021.126790
- Braun, V., & Hantke, K. (2011). Recent insights into iron import by
bacteria. Current Opinion in Chemical Biology , 15 (2),
328–334. https://doi.org/10.1016/j.cbpa.2011.01.005
- Al Shaer, D., Al Musaimi, O., de la Torre, B. G., & Albericio, F.
(2020). Hydroxamate siderophores: natural occurrence, chemical
synthesis, iron binding affinity and use as Trojan horses against
pathogens. European Journal of Medicinal Chemistry , 208 ,
112791. https://doi.org/10.1016/j.ejmech.2020.112791
- Keerthikumar, S., & Mathivanan, S. (2017). Proteomic data storage and
sharing. In: S. Keerthikumar, & S. Mathivanan (Eds.), Proteome
bioinformatics (pp. 5–15). New York, NY: Humana Press.
https://doi.org/10.1007/978-1-4939-6740-7_2
- Martens L. (2011). Proteomics databases and repositories. In: C. H.
Wu, & C. Chen (Eds.), Bioinformatics for comparative proteomics (pp.
213–227). New York, NY: Humana Press.
https://doi.org/10.1007/978-1-60761-977-2_14
Table 1 List of P. larvae genome assemblies used for
proteogenomic analysis.