References

1. Luchini, C., Lawlor, R. T., Milella, M. & Scarpa, A. Molecular Tumor Boards in Clinical Practice. Trends Cancer 6, 738–744 (2020).
2. Schwaederle, M.et al. Molecular Tumor Board: The University of California San Diego Moores Cancer Center Experience. The Oncologist19, 631–636 (2014).
3. Hoefflin, R.et al. Personalized Clinical Decision Making Through Implementation of a Molecular Tumor Board: A German Single-Center Experience. JCO Precis. Oncol. 1–16 (2018) doi:10.1200/PO.18.00105.
4. Ortiz, M. V.et al. Integrating Genomics Into Clinical Pediatric Oncology Using the Molecular Tumor Board at the Memorial Sloan Kettering Cancer Center: Pediatric Molecular Tumor Board in Clinical Oncology.Pediatr. Blood Cancer 63, 1368–1374 (2016).
5. Dalton, W. B.et al. Personalized Medicine in the Oncology Clinic: Implementation and Outcomes of the Johns Hopkins Molecular Tumor Board.JCO Precis. Oncol. 1–19 (2017) doi:10.1200/PO.16.00046.
6. Ree, A. H. et al. Implementing precision cancer medicine in the public health services of Norway: the diagnostic infrastructure and a cost estimate.ESMO Open 2, e000158 (2017).
7. Tafe, L. J.et al. Implementation of a Molecular Tumor Board: The Impact on Treatment Decisions for 35 Patients Evaluated at Dartmouth-Hitchcock Medical Center. The Oncologist 20, 1011–1018 (2015).
8. Larson, K. L.et al. Clinical Outcomes of Molecular Tumor Boards: A Systematic Review. JCO Precis. Oncol. 1122–1132 (2021) doi:10.1200/PO.20.00495.
9. Behel, V. et al. Impact of Molecular Tumor Board on the Clinical Management of Patients With Cancer. JCO Glob. Oncol. e2200030 (2022) doi:10.1200/GO.22.00030.
10. Liu, A. et al. Molecular Tumor Boards: The Next Step towards Precision Therapy in Cancer Care. Hematol. Rep. 15, 244–255 (2023).
11. Brown, N. A. & Elenitoba-Johnson, K. S. J. Enabling Precision Oncology Through Precision Diagnostics. Annu. Rev. Pathol. Mech. Dis. 15, 97–121 (2020).
12. Baselga, J., Perez, E. A., Pienkowski, T. & Bell, R. Adjuvant Trastuzumab: A Milestone in the Treatment of HER-2-Positive Early Breast Cancer.The Oncologist 11, 4–12 (2006).
13. Wakai, T. et al. Next-generation sequencing-based clinical sequencing: toward precision medicine in solid tumors. Int. J. Clin. Oncol.24, 115–122 (2019).
14. Beg, S. et al. Integration of whole-exome and anchored PCR-based next generation sequencing significantly increases detection of actionable alterations in precision oncology. Transl. Oncol. 14, 100944 (2021).
15. Ottestad, A. L.et al. Assessment of Two Commercial Comprehensive Gene Panels for Personalized Cancer Treatment. J. Pers. Med. 13, 42 (2022).
16. Wei, B. et al. Evaluation of the TruSight Oncology 500 Assay for Routine Clinical Testing of Tumor Mutational Burden and Clinical Utility for Predicting Response to Pembrolizumab. J. Mol. Diagn. 24, 600–608 (2022).
17. Froyen, G., Geerdens, E., Berden, S., Cruys, B. & Maes, B. Diagnostic Validation of a Comprehensive Targeted Panel for Broad Mutational and Biomarker Analysis in Solid Tumors. Cancers 14, 2457 (2022).
18. Landrum, M. J.et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 42, D980–D985 (2014).
19. Chakravarty, D.et al. OncoKB: A Precision Oncology Knowledge Base. JCO Precis. Oncol. 1–16 (2017) doi:10.1200/PO.17.00011.
20. Lee, J., Ledermann, J. A. & Kohn, E. C. PARP Inhibitors for BRCA1/2 mutation-associated and BRCA-like malignancies. Ann. Oncol.25, 32–40 (2014).
21. Al-Batran, S. E.et al. LBA-06 IMAB362: a novel immunotherapeutic antibody targeting the tight-junction protein component CLAUDIN18.2 in gastric cancer. Ann. Oncol. 27, ii141 (2016).
22. Fu, Z., Li, S., Han, S., Shi, C. & Zhang, Y. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct. Target. Ther. 7, 93 (2022).
23. Hoefflin, R.et al. Transitioning the Molecular Tumor Board from Proof of Concept to Clinical Routine: A German Single-Center Analysis.Cancers 13, 1151 (2021).
24. Horak, P. et al. Assigning evidence to actionability: An introduction to variant interpretation in precision cancer medicine. Genes. Chromosomes Cancer 61, 303–313 (2022).
25. Mateo, J. et al. A framework to rank genomic alterations as targets for cancer precision medicine: the ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Ann. Oncol. 29, 1895–1902 (2018).
26. Li, M. M. et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer. J. Mol. Diagn. 19, 4–23 (2017).
27. Leichsenring, J.et al. Variant classification in precision oncology. Int. J. Cancer 145, 2996–3010 (2019).
28. Illert, A. L.et al. The German Network for Personalized Medicine to enhance patient care and translational research. Nat. Med. 29, 1298–1301 (2023).
29. Maier, T., Güell, M. & Serrano, L. Correlation of mRNA and protein in complex biological samples. FEBS Lett. 583, 3966–3973 (2009).
30. Greenbaum, D., Colangelo, C., Williams, K. & Gerstein, M. Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol.(2003).
31. Chen, G. et al. Discordant Protein and mRNA Expression in Lung Adenocarcinomas.Mol. Cell. Proteomics 1, 304–313 (2002).
32. Koussounadis, A., Langdon, S. P., Um, I. H., Harrison, D. J. & Smith, V. A. Relationship between differentially expressed mRNA and mRNA-protein correlations in a xenograft model system. Sci. Rep. 5, 10775 (2015).
33. NCI CPTAC et al. Proteogenomic characterization of human colon and rectal cancer.Nature 513, 382–387 (2014).
34. NCI CPTAC et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55–62 (2016).
35. Muntel, J.et al. Surpassing 10 000 identified and quantified proteins in a single run by optimizing current LC-MS instrumentation and data analysis strategy. Mol. Omics 15, 348–360 (2019).
36. Eckert, M. A.et al. Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts. Nature 569, 723–728 (2019).
37. Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 537, (2016).
38. Bache, N. et al. A Novel LC System Embeds Analytes in Pre-formed Gradients for Rapid, Ultra-robust Proteomics. Mol. Cell. Proteomics17, 2284–2296 (2018).
39. Barbieux, C.et al. Netherton syndrome subtypes share IL-17/IL-36 signature with distinct IFN-α and allergic responses. J. Allergy Clin. Immunol. S0091674921013981 (2021) doi:10.1016/j.jaci.2021.08.024.
40. Fahrner, M., Bronsert, P., Fichtner-Feigl, S., Jud, A. & Schilling, O. Proteome biology of primary colorectal carcinoma and corresponding liver metastases. Neoplasia 23, 1240–1251 (2021).
41. Werner, J.et al. Targeted and explorative profiling of kallikrein proteases and global proteome biology of pancreatic ductal adenocarcinoma, chronic pancreatitis, and normal pancreas highlights disease-specific proteome remodelling. Neoplasia 36, 100871 (2023).
42. Coscia, F.et al. Multi-level Proteomics Identifies CT45 as a Chemosensitivity Mediator and Immunotherapy Target in Ovarian Cancer.Cell 175, 159-170.e16 (2018).
43. Brenes, A., Hukelmann, J., Bensaddek, D. & Lamond, A. I. Multibatch TMT Reveals False Positives, Batch Effects, and Missing Values. 15 (2019).
44. Kreimer, S.et al. Advanced Precursor Ion Selection Algorithms for Increased Depth of Bottom-Up Proteomic Profiling. J. Proteome Res.15, 3563–3573 (2016).
45. Gillet, L. C.et al. Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis*□S. 17 (2012).
46. Barkovits, K.et al. Reproducibility, Specificity and Accuracy of Relative Quantification Using Spectral Library-based Data-independent Acquisition. Mol. Cell. Proteomics 19, 181–197 (2020).
47. Fröhlich, K.et al. Benchmarking of analysis strategies for data-independent acquisition proteomics using a large-scale dataset comprising inter-patient heterogeneity. Nat. Commun. 13, 2622 (2022).
48. Kulak, N. A., Pichler, G., Paron, I., Nagaraj, N. & Mann, M. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat. Methods 11, 319–324 (2014).
49. Kuras, M. et al. Proteomic Workflows for High-Quality Quantitative Proteome and Post-Translational Modification Analysis of Clinically Relevant Samples from Formalin-Fixed Paraffin-Embedded Archives. J. Proteome Res.20, 1027–1039 (2021).
50. Müller, T.et al. Automated sample preparation with SP3 for low-input clinical proteomics. Mol. Syst. Biol. 16, e9111 (2020).
51. Bekker-Jensen, D. B. et al. A Compact Quadrupole-Orbitrap Mass Spectrometer with FAIMS Interface Improves Proteome Coverage in Short LC Gradients.Mol. Cell. Proteomics 19, 716–729 (2020).
52. Ostasiewicz, P., Zielinska, D. F., Mann, M. & Wiśniewski, J. R. Proteome, Phosphoproteome, and N-Glycoproteome Are Quantitatively Preserved in Formalin-Fixed Paraffin-Embedded Tissue and Analyzable by High-Resolution Mass Spectrometry. J. Proteome Res. 9, 3688–3700 (2010).
53. Warinner, C., Korzow Richter, K. & Collins, M. J. Paleoproteomics. Chem. Rev.122, 13401–13446 (2022).
54. Jersie-Christensen, R. R. et al. Quantitative metaproteomics of medieval dental calculus reveals individual oral health status.Nat. Commun. 9, 4744 (2018).
55. Balgley, B. M.et al. Evaluation of Archival Time on Shotgun Proteomics of Formalin-Fixed and Paraffin-Embedded Tissues. J. Proteome Res.8, 917–925 (2009).
56. Sharma, K.et al. Ultradeep Human Phosphoproteome Reveals a Distinct Regulatory Nature of Tyr and Ser/Thr-Based Signaling. Cell Rep.8, 1583–1594 (2014).
57. Pan, S., Chen, R., Aebersold, R. & Brentnall, T. A. Mass Spectrometry Based Glycoproteomics—From a Proteomics Perspective. Mol. Cell. Proteomics 10, R110.003251 (2011).
58. Choudhary, C., Weinert, B. T., Nishida, Y., Verdin, E. & Mann, M. The growing landscape of lysine acetylation links metabolism and cell signalling.Nat. Rev. Mol. Cell Biol. 15, 536–550 (2014).
59. Kim, W. et al. Systematic and Quantitative Assessment of the Ubiquitin-Modified Proteome. Mol. Cell 44, 325–340 (2011).
60. Choudhary, C.et al. Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions. Science 325, 834–840 (2009).
61. Fíla, J. & Honys, D. Enrichment techniques employed in phosphoproteomics. Amino Acids 43, 1025–1047 (2012).
62. Tape, C. J.et al. Reproducible Automated Phosphopeptide Enrichment Using Magnetic TiO 2 and Ti-IMAC. Anal. Chem.86, 10296–10302 (2014).
63. Udeshi, N. D., Mertins, P., Svinkina, T. & Carr, S. A. Large-scale identification of ubiquitination sites by mass spectrometry. Nat. Protoc.8, 1950–1960 (2013).
64. Fang, P., Ji, Y., Oellerich, T., Urlaub, H. & Pan, K.-T. Strategies for Proteome-Wide Quantification of Glycosylation Macro- and Micro-Heterogeneity.Int. J. Mol. Sci. 23, 1609 (2022).
65. Becker, J. P. & Riemer, A. B. The Importance of Being Presented: Target Validation by Immunopeptidomics for Epitope-Specific Immunotherapies. Front. Immunol. 13, 883989 (2022).
66. Vasaikar, S.et al. Proteogenomic Analysis of Human Colon Cancer Reveals New Therapeutic Opportunities. Cell 1035–1049 (2019) doi:10.1016/j.cell.2019.03.030.
67. Chinese Human Proteome Project (CNHPP) Consortium et al. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma.Nature 567, 257–261 (2019).
68. Niu, L. et al. Noninvasive proteomic biomarkers for alcohol-related liver disease.Nat. Med. 28, 1277–1287 (2022).
69. Intasqui, P., Bertolla, R. P. & Sadi, M. V. Prostate cancer proteomics: clinically useful protein biomarkers and future perspectives. Expert Rev. Proteomics 15, 65–79 (2018).
70. Deeb, S. J.et al. Machine Learning-based Classification of Diffuse Large B-cell Lymphoma Patients by Their Protein Expression Profiles.Mol. Cell. Proteomics 14, 2947–2960 (2015).
71. Zhang, Z. et al. Three Biomarkers Identified from Serum Proteomic Analysis for the Detection of Early Stage Ovarian Cancer.
72. Liu, L. et al. Novel Mechanism of Lapatinib Resistance in HER2-Positive Breast Tumor Cells: Activation of AXL. Cancer Res. 69, 6871–6878 (2009).
73. Klaeger, S.et al. The target landscape of clinical kinase drugs.Science 358, eaan4368 (2017).
74. Yu, K.-H. et al. Predicting Ovarian Cancer Patients’ Clinical Response to Platinum-Based Chemotherapy by Their Tumor Proteomic Signatures.J. Proteome Res. 15, 2455–2465 (2016).
75. Li, C. et al. Integrated Omics of Metastatic Colorectal Cancer. Cancer Cell 38, 734-747.e9 (2020).
76. Xu, J.-Y. et al. Integrative Proteomic Characterization of Human Lung Adenocarcinoma. Cell 182, 245-261.e17 (2020).
77. Cao, L. et al. Proteogenomic characterization of pancreatic ductal adenocarcinoma.Cell 184, 5031-5052.e26 (2021).
78. Exploiting the Tumor Proteome Activity Status for Future Cancer Therapies | TOPAS Project | Fact Sheet | H2020. CORDIS | European Commissionhttps://cordis.europa.eu/project/id/833710.
79. Wahjudi, L. W.et al. Integrating proteomics into precision oncology. Int. J. Cancer 148, 1438–1451 (2021).
80. Craven, R. A. & Banks, R. E. Laser Capture Microdissection for Proteome Analysis.Curr. Protoc. Protein Sci. 31, (2003).
81. Longuespee, R.et al. A laser microdissection-based workflow for FFPE tissue microproteomics: important considerations for small sample processing.Methods San Diego Calif (2015) doi:10.1016/j.ymeth.2015.12.008.
82. Mustafa, D., Kros, J. M. & Luider, T. Combining Laser Capture Microdissection and Proteomics Techniques. in Clinical Proteomics (ed. Vlahou, A.) vol. 428 159–178 (Humana Press, 2008).
83. Doll, S. et al. Rapid proteomic analysis for solid tumors reveals LSD 1 as a drug target in an end‐stage cancer patient. Mol. Oncol. 12, 1296–1307 (2018).
84. Doroshow, D. B.et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 18, 345–362 (2021).
85. Herbst, R. S.et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. The Lancet 387, 1540–1550 (2016).
86. Tong, J., Taylor, P. & Moran, M. F. Proteomic Analysis of the Epidermal Growth Factor Receptor (EGFR) Interactome and Post-translational Modifications Associated with Receptor Endocytosis in Response to EGF and Stress*□S.
87. Zhang, E. Y.et al. Genome Wide Proteomics of ERBB2 and EGFR and Other Oncogenic Pathways in Inflammatory Breast Cancer. J. Proteome Res. 12, 2805–2817 (2013).
88. Knudsen, E. S. & Witkiewicz, A. K. The Strange Case of CDK4/6 Inhibitors: Mechanisms, Resistance, and Combination Strategies. Trends Cancer 3, 39–55 (2017).
89. Goel, S., Bergholz, J. S. & Zhao, J. J. Targeting CDK4 and CDK6 in cancer.Nat. Rev. Cancer 22, 356–372 (2022).
90. Sievers, E. L. & Senter, P. D. Antibody-Drug Conjugates in Cancer Therapy. Annu. Rev. Med. 64, 15–29 (2013).
91. Criscitiello, C., Morganti, S. & Curigliano, G. Antibody–drug conjugates in solid tumors: a look into novel targets. J. Hematol. Oncol.J Hematol Oncol 14, 20 (2021).
92. Moek, K. L., De Groot, D. J. A., De Vries, E. G. E. & Fehrmann, R. S. N. The antibody–drug conjugate target landscape across a broad range of tumour types. Ann. Oncol. 28, 3083–3091 (2017).
93. ADC Drug Map | ADC Review. https://www.adcreview.com/adc-drugmap/.
94. Cicek, M. S.et al. Quality Assessment and Correlation of Microsatellite Instability and Immunohistochemical Markers among Population- and Clinic-Based Colorectal Tumors. J. Mol. Diagn. 13, 271–281 (2011).
95. Jones, D. T. W.et al. Tandem Duplication Producing a Novel Oncogenic BRAFFusion Gene Defines the Majority of Pilocytic Astrocytomas. Cancer Res. 68, 8673–8677 (2008).
96. Kyuno, D. et al. Claudin-18.2 as a therapeutic target in cancers: cumulative findings from basic research and clinical trials. Tissue Barriers10, 1967080 (2022).
97. Long, S. et al. Metaproteomics characterizes human gut microbiome function in colorectal cancer. Npj Biofilms Microbiomes 6, 14 (2020).
98. Narunsky-Haziza, L. et al. Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions. Cell 185, 3789-3806.e17 (2022).
99. Lehtiö, J.et al. Proteogenomics of non-small cell lung cancer reveals molecular subtypes associated with specific therapeutic targets and immune-evasion mechanisms. Nat. Cancer 2, 1224–1242 (2021).
100. Zhang, H.et al. Integrated Proteogenomic Characterization of Human High-Grade Serous Ovarian Cancer. Cell 166, 755–765 (2016).
101. Blank-Landeshammer, B. et al. Proteogenomics of Colorectal Cancer Liver Metastases: Complementing Precision Oncology with Phenotypic Data.Cancers 11, 1907 (2019).
102. Sinha, A.et al. The Proteogenomic Landscape of Curable Prostate Cancer.Cancer Cell 35, 414-427.e6 (2019).
103. Nesvizhskii, A. I. Proteogenomics: concepts, applications and computational strategies.Nat. Methods 11, 1114–1125 (2014).
104. Rodriguez, H., Zenklusen, J. C., Staudt, L. M., Doroshow, J. H. & Lowy, D. R. The next horizon in precision oncology: Proteogenomics to inform cancer diagnosis and treatment. Cell 184, 1661–1670 (2021).
105. Ellis, M. J.et al. Connecting Genomic Alterations to Cancer Biology with Proteomics: The NCI Clinical Proteomic Tumor Analysis Consortium.Cancer Discov. 3, 1108–1112 (2013).
106. Nakajima, E. C.et al. FDA Approval Summary: Sotorasib for KRAS G12C-Mutated Metastatic NSCLC. Clin. Cancer Res. 28, 1482–1486 (2022).
107. Kopetz, S.et al. Encorafenib, Binimetinib, and Cetuximab in BRAFV600E–Mutated Colorectal Cancer. N. Engl. J. Med. 381, 1632–1643 (2019).
108. Akkapeddi, P.et al. Exploring switch II pocket conformation of KRAS(G12D) with mutant-selective monobody inhibitors. Proc. Natl. Acad. Sci.120, e2302485120 (2023).
109. Feng, J. et al. Feedback activation of EGFR/wild-type RAS signaling axis limits KRASG12D inhibitor efficacy in KRASG12D-mutated colorectal cancer.Oncogene 42, 1620–1633 (2023).
110. Tang, D. & Kang, R. Glimmers of hope for targeting oncogenic KRAS-G12D. Cancer Gene Ther. s41417-022-00561–3 (2022) doi:10.1038/s41417-022-00561-3.
111. Mirati Therapeutics Inc. A Phase 1/2 Multiple Expansion Cohort Trial of MRTX1133 in Patients With Advanced Solid Tumors Harboring a KRAS G12D Mutation. https://clinicaltrials.gov/study/NCT05737706 (2023).
112. National Cancer Institute (NCI). A Phase I/II Study Administering Peripheral Blood Lymphocytes Transduced With a Murine T-Cell Receptor Recognizing the G12D Variant of Mutated RAS in HLA-A*11:01 Patients. https://clinicaltrials.gov/study/NCT03745326 (2023).
113. Taiho Oncology, Inc. A Phase 1 Study of TAS0612 in Patients With Locally Advanced or Metastatic Solid Tumors. https://clinicaltrials.gov/study/NCT04586270 (2023).
114. Buechner, P.et al. Requirements Analysis and Specification for a Molecular Tumor Board Platform Based on cBioPortal. Diagnostics10, 93 (2020).
115. Tamborero, D.et al. Support systems to guide clinical decision-making in precision oncology: The Cancer Core Europe Molecular Tumor Board Portal.Nat. Med. 26, 992–994 (2020).
116. Tamborero, D.et al. The Molecular Tumor Board Portal supports clinical decisions and automated reporting for precision oncology. Nat. Cancer 3, 251–261 (2022).