References
1. Luchini, C.,
Lawlor, R. T., Milella, M. & Scarpa, A. Molecular Tumor Boards in
Clinical Practice. Trends Cancer 6, 738–744 (2020).
2. Schwaederle, M.et al. Molecular Tumor Board: The University of California San
Diego Moores Cancer Center Experience. The Oncologist19, 631–636 (2014).
3. Hoefflin, R.et al. Personalized Clinical Decision Making Through
Implementation of a Molecular Tumor Board: A German Single-Center
Experience. JCO Precis. Oncol. 1–16 (2018)
doi:10.1200/PO.18.00105.
4. Ortiz, M. V.et al. Integrating Genomics Into Clinical Pediatric Oncology
Using the Molecular Tumor Board at the Memorial Sloan Kettering Cancer
Center: Pediatric Molecular Tumor Board in Clinical Oncology.Pediatr. Blood Cancer 63, 1368–1374 (2016).
5. Dalton, W. B.et al. Personalized Medicine in the Oncology Clinic:
Implementation and Outcomes of the Johns Hopkins Molecular Tumor Board.JCO Precis. Oncol. 1–19 (2017) doi:10.1200/PO.16.00046.
6. Ree, A. H. et
al. Implementing precision cancer medicine in the public health
services of Norway: the diagnostic infrastructure and a cost estimate.ESMO Open 2, e000158 (2017).
7. Tafe, L. J.et al. Implementation of a Molecular Tumor Board: The Impact on
Treatment Decisions for 35 Patients Evaluated at Dartmouth-Hitchcock
Medical Center. The Oncologist 20, 1011–1018 (2015).
8. Larson, K. L.et al. Clinical Outcomes of Molecular Tumor Boards: A Systematic
Review. JCO Precis. Oncol. 1122–1132 (2021)
doi:10.1200/PO.20.00495.
9. Behel, V. et
al. Impact of Molecular Tumor Board on the Clinical Management of
Patients With Cancer. JCO Glob. Oncol. e2200030 (2022)
doi:10.1200/GO.22.00030.
10. Liu, A. et
al. Molecular Tumor Boards: The Next Step towards Precision Therapy in
Cancer Care. Hematol. Rep. 15, 244–255 (2023).
11. Brown, N. A. &
Elenitoba-Johnson, K. S. J. Enabling Precision Oncology Through
Precision Diagnostics. Annu. Rev. Pathol. Mech. Dis. 15,
97–121 (2020).
12. Baselga, J.,
Perez, E. A., Pienkowski, T. & Bell, R. Adjuvant Trastuzumab: A
Milestone in the Treatment of HER-2-Positive Early Breast Cancer.The Oncologist 11, 4–12 (2006).
13. Wakai, T. et
al. Next-generation sequencing-based clinical sequencing: toward
precision medicine in solid tumors. Int. J. Clin. Oncol.24, 115–122 (2019).
14. Beg, S. et
al. Integration of whole-exome and anchored PCR-based next generation
sequencing significantly increases detection of actionable alterations
in precision oncology. Transl. Oncol. 14, 100944
(2021).
15. Ottestad, A. L.et al. Assessment of Two Commercial Comprehensive Gene Panels for
Personalized Cancer Treatment. J. Pers. Med. 13, 42
(2022).
16. Wei, B. et
al. Evaluation of the TruSight Oncology 500 Assay for Routine Clinical
Testing of Tumor Mutational Burden and Clinical Utility for Predicting
Response to Pembrolizumab. J. Mol. Diagn. 24, 600–608
(2022).
17. Froyen, G.,
Geerdens, E., Berden, S., Cruys, B. & Maes, B. Diagnostic Validation of
a Comprehensive Targeted Panel for Broad Mutational and Biomarker
Analysis in Solid Tumors. Cancers 14, 2457 (2022).
18. Landrum, M. J.et al. ClinVar: public archive of relationships among sequence
variation and human phenotype. Nucleic Acids Res. 42,
D980–D985 (2014).
19. Chakravarty, D.et al. OncoKB: A Precision Oncology Knowledge Base. JCO
Precis. Oncol. 1–16 (2017) doi:10.1200/PO.17.00011.
20. Lee, J.,
Ledermann, J. A. & Kohn, E. C. PARP Inhibitors for BRCA1/2
mutation-associated and BRCA-like malignancies. Ann. Oncol.25, 32–40 (2014).
21. Al-Batran, S. E.et al. LBA-06 IMAB362: a novel immunotherapeutic antibody
targeting the tight-junction protein component CLAUDIN18.2 in gastric
cancer. Ann. Oncol. 27, ii141 (2016).
22. Fu, Z., Li, S.,
Han, S., Shi, C. & Zhang, Y. Antibody drug conjugate: the “biological
missile” for targeted cancer therapy. Signal Transduct. Target.
Ther. 7, 93 (2022).
23. Hoefflin, R.et al. Transitioning the Molecular Tumor Board from Proof of
Concept to Clinical Routine: A German Single-Center Analysis.Cancers 13, 1151 (2021).
24. Horak, P. et
al. Assigning evidence to actionability: An introduction to variant
interpretation in precision cancer medicine. Genes. Chromosomes
Cancer 61, 303–313 (2022).
25. Mateo, J. et
al. A framework to rank genomic alterations as targets for cancer
precision medicine: the ESMO Scale for Clinical Actionability of
molecular Targets (ESCAT). Ann. Oncol. 29, 1895–1902
(2018).
26. Li, M. M. et
al. Standards and Guidelines for the Interpretation and Reporting of
Sequence Variants in Cancer. J. Mol. Diagn. 19, 4–23
(2017).
27. Leichsenring, J.et al. Variant classification in precision oncology. Int.
J. Cancer 145, 2996–3010 (2019).
28. Illert, A. L.et al. The German Network for Personalized Medicine to enhance
patient care and translational research. Nat. Med. 29,
1298–1301 (2023).
29. Maier, T., Güell,
M. & Serrano, L. Correlation of mRNA and protein in complex biological
samples. FEBS Lett. 583, 3966–3973 (2009).
30. Greenbaum, D.,
Colangelo, C., Williams, K. & Gerstein, M. Comparing protein abundance
and mRNA expression levels on a genomic scale. Genome Biol.(2003).
31. Chen, G. et
al. Discordant Protein and mRNA Expression in Lung Adenocarcinomas.Mol. Cell. Proteomics 1, 304–313 (2002).
32. Koussounadis, A.,
Langdon, S. P., Um, I. H., Harrison, D. J. & Smith, V. A. Relationship
between differentially expressed mRNA and mRNA-protein correlations in a
xenograft model system. Sci. Rep. 5, 10775 (2015).
33. NCI CPTAC et
al. Proteogenomic characterization of human colon and rectal cancer.Nature 513, 382–387 (2014).
34. NCI CPTAC et
al. Proteogenomics connects somatic mutations to signalling in breast
cancer. Nature 534, 55–62 (2016).
35. Muntel, J.et al. Surpassing 10 000 identified and quantified proteins in a
single run by optimizing current LC-MS instrumentation and data analysis
strategy. Mol. Omics 15, 348–360 (2019).
36. Eckert, M. A.et al. Proteomics reveals NNMT as a master metabolic regulator of
cancer-associated fibroblasts. Nature 569, 723–728
(2019).
37. Aebersold, R. &
Mann, M. Mass-spectrometric exploration of proteome structure and
function. Nature 537, (2016).
38. Bache, N. et
al. A Novel LC System Embeds Analytes in Pre-formed Gradients for
Rapid, Ultra-robust Proteomics. Mol. Cell. Proteomics17, 2284–2296 (2018).
39. Barbieux, C.et al. Netherton syndrome subtypes share IL-17/IL-36 signature
with distinct IFN-α and allergic responses. J. Allergy Clin.
Immunol. S0091674921013981 (2021) doi:10.1016/j.jaci.2021.08.024.
40. Fahrner, M.,
Bronsert, P., Fichtner-Feigl, S., Jud, A. & Schilling, O. Proteome
biology of primary colorectal carcinoma and corresponding liver
metastases. Neoplasia 23, 1240–1251 (2021).
41. Werner, J.et al. Targeted and explorative profiling of kallikrein proteases
and global proteome biology of pancreatic ductal adenocarcinoma, chronic
pancreatitis, and normal pancreas highlights disease-specific proteome
remodelling. Neoplasia 36, 100871 (2023).
42. Coscia, F.et al. Multi-level Proteomics Identifies CT45 as a
Chemosensitivity Mediator and Immunotherapy Target in Ovarian Cancer.Cell 175, 159-170.e16 (2018).
43. Brenes, A.,
Hukelmann, J., Bensaddek, D. & Lamond, A. I. Multibatch TMT Reveals
False Positives, Batch Effects, and Missing Values. 15 (2019).
44. Kreimer, S.et al. Advanced Precursor Ion Selection Algorithms for Increased
Depth of Bottom-Up Proteomic Profiling. J. Proteome Res.15, 3563–3573 (2016).
45. Gillet, L. C.et al. Targeted Data Extraction of the MS/MS Spectra Generated by
Data-independent Acquisition: A New Concept for Consistent and Accurate
Proteome Analysis*□S. 17 (2012).
46. Barkovits, K.et al. Reproducibility, Specificity and Accuracy of Relative
Quantification Using Spectral Library-based Data-independent
Acquisition. Mol. Cell. Proteomics 19, 181–197 (2020).
47. Fröhlich, K.et al. Benchmarking of analysis strategies for data-independent
acquisition proteomics using a large-scale dataset comprising
inter-patient heterogeneity. Nat. Commun. 13, 2622
(2022).
48. Kulak, N. A.,
Pichler, G., Paron, I., Nagaraj, N. & Mann, M. Minimal, encapsulated
proteomic-sample processing applied to copy-number estimation in
eukaryotic cells. Nat. Methods 11, 319–324 (2014).
49. Kuras, M. et
al. Proteomic Workflows for High-Quality Quantitative Proteome and
Post-Translational Modification Analysis of Clinically Relevant Samples
from Formalin-Fixed Paraffin-Embedded Archives. J. Proteome Res.20, 1027–1039 (2021).
50. Müller, T.et al. Automated sample preparation with SP3 for low-input
clinical proteomics. Mol. Syst. Biol. 16, e9111 (2020).
51. Bekker-Jensen, D.
B. et al. A Compact Quadrupole-Orbitrap Mass Spectrometer with
FAIMS Interface Improves Proteome Coverage in Short LC Gradients.Mol. Cell. Proteomics 19, 716–729 (2020).
52. Ostasiewicz, P.,
Zielinska, D. F., Mann, M. & Wiśniewski, J. R. Proteome,
Phosphoproteome, and N-Glycoproteome Are Quantitatively Preserved in
Formalin-Fixed Paraffin-Embedded Tissue and Analyzable by
High-Resolution Mass Spectrometry. J. Proteome Res. 9,
3688–3700 (2010).
53. Warinner, C.,
Korzow Richter, K. & Collins, M. J. Paleoproteomics. Chem. Rev.122, 13401–13446 (2022).
54.
Jersie-Christensen, R. R. et al. Quantitative metaproteomics of
medieval dental calculus reveals individual oral health status.Nat. Commun. 9, 4744 (2018).
55. Balgley, B. M.et al. Evaluation of Archival Time on Shotgun Proteomics of
Formalin-Fixed and Paraffin-Embedded Tissues. J. Proteome Res.8, 917–925 (2009).
56. Sharma, K.et al. Ultradeep Human Phosphoproteome Reveals a Distinct
Regulatory Nature of Tyr and Ser/Thr-Based Signaling. Cell Rep.8, 1583–1594 (2014).
57. Pan, S., Chen, R.,
Aebersold, R. & Brentnall, T. A. Mass Spectrometry Based
Glycoproteomics—From a Proteomics Perspective. Mol. Cell.
Proteomics 10, R110.003251 (2011).
58. Choudhary, C.,
Weinert, B. T., Nishida, Y., Verdin, E. & Mann, M. The growing
landscape of lysine acetylation links metabolism and cell signalling.Nat. Rev. Mol. Cell Biol. 15, 536–550 (2014).
59. Kim, W. et
al. Systematic and Quantitative Assessment of the Ubiquitin-Modified
Proteome. Mol. Cell 44, 325–340 (2011).
60. Choudhary, C.et al. Lysine Acetylation Targets Protein Complexes and
Co-Regulates Major Cellular Functions. Science 325,
834–840 (2009).
61. Fíla, J. & Honys,
D. Enrichment techniques employed in phosphoproteomics. Amino
Acids 43, 1025–1047 (2012).
62. Tape, C. J.et al. Reproducible Automated Phosphopeptide Enrichment Using
Magnetic TiO 2 and Ti-IMAC. Anal. Chem.86, 10296–10302 (2014).
63. Udeshi, N. D.,
Mertins, P., Svinkina, T. & Carr, S. A. Large-scale identification of
ubiquitination sites by mass spectrometry. Nat. Protoc.8, 1950–1960 (2013).
64. Fang, P., Ji, Y.,
Oellerich, T., Urlaub, H. & Pan, K.-T. Strategies for Proteome-Wide
Quantification of Glycosylation Macro- and Micro-Heterogeneity.Int. J. Mol. Sci. 23, 1609 (2022).
65. Becker, J. P. &
Riemer, A. B. The Importance of Being Presented: Target Validation by
Immunopeptidomics for Epitope-Specific Immunotherapies. Front.
Immunol. 13, 883989 (2022).
66. Vasaikar, S.et al. Proteogenomic Analysis of Human Colon Cancer Reveals New
Therapeutic Opportunities. Cell 1035–1049 (2019)
doi:10.1016/j.cell.2019.03.030.
67. Chinese Human
Proteome Project (CNHPP) Consortium et al. Proteomics identifies
new therapeutic targets of early-stage hepatocellular carcinoma.Nature 567, 257–261 (2019).
68. Niu, L. et
al. Noninvasive proteomic biomarkers for alcohol-related liver disease.Nat. Med. 28, 1277–1287 (2022).
69. Intasqui, P.,
Bertolla, R. P. & Sadi, M. V. Prostate cancer proteomics: clinically
useful protein biomarkers and future perspectives. Expert Rev.
Proteomics 15, 65–79 (2018).
70. Deeb, S. J.et al. Machine Learning-based Classification of Diffuse Large
B-cell Lymphoma Patients by Their Protein Expression Profiles.Mol. Cell. Proteomics 14, 2947–2960 (2015).
71. Zhang, Z. et
al. Three Biomarkers Identified from Serum Proteomic Analysis for the
Detection of Early Stage Ovarian Cancer.
72. Liu, L. et
al. Novel Mechanism of Lapatinib Resistance in HER2-Positive Breast
Tumor Cells: Activation of AXL. Cancer Res. 69,
6871–6878 (2009).
73. Klaeger, S.et al. The target landscape of clinical kinase drugs.Science 358, eaan4368 (2017).
74. Yu, K.-H. et
al. Predicting Ovarian Cancer Patients’ Clinical Response to
Platinum-Based Chemotherapy by Their Tumor Proteomic Signatures.J. Proteome Res. 15, 2455–2465 (2016).
75. Li, C. et
al. Integrated Omics of Metastatic Colorectal Cancer. Cancer
Cell 38, 734-747.e9 (2020).
76. Xu, J.-Y. et
al. Integrative Proteomic Characterization of Human Lung
Adenocarcinoma. Cell 182, 245-261.e17 (2020).
77. Cao, L. et
al. Proteogenomic characterization of pancreatic ductal adenocarcinoma.Cell 184, 5031-5052.e26 (2021).
78. Exploiting the
Tumor Proteome Activity Status for Future Cancer Therapies |
TOPAS Project | Fact Sheet | H2020. CORDIS
| European Commissionhttps://cordis.europa.eu/project/id/833710.
79. Wahjudi, L. W.et al. Integrating proteomics into precision oncology. Int.
J. Cancer 148, 1438–1451 (2021).
80. Craven, R. A. &
Banks, R. E. Laser Capture Microdissection for Proteome Analysis.Curr. Protoc. Protein Sci. 31, (2003).
81. Longuespee, R.et al. A laser microdissection-based workflow for FFPE tissue
microproteomics: important considerations for small sample processing.Methods San Diego Calif (2015) doi:10.1016/j.ymeth.2015.12.008.
82. Mustafa, D., Kros,
J. M. & Luider, T. Combining Laser Capture Microdissection and
Proteomics Techniques. in Clinical Proteomics (ed. Vlahou, A.)
vol. 428 159–178 (Humana Press, 2008).
83. Doll, S. et
al. Rapid proteomic analysis for solid tumors reveals LSD 1 as a drug
target in an end‐stage cancer patient. Mol. Oncol. 12,
1296–1307 (2018).
84. Doroshow, D. B.et al. PD-L1 as a biomarker of response to immune-checkpoint
inhibitors. Nat. Rev. Clin. Oncol. 18, 345–362 (2021).
85. Herbst, R. S.et al. Pembrolizumab versus docetaxel for previously treated,
PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a
randomised controlled trial. The Lancet 387, 1540–1550
(2016).
86. Tong, J., Taylor,
P. & Moran, M. F. Proteomic Analysis of the Epidermal Growth Factor
Receptor (EGFR) Interactome and Post-translational Modifications
Associated with Receptor Endocytosis in Response to EGF and Stress*□S.
87. Zhang, E. Y.et al. Genome Wide Proteomics of ERBB2 and EGFR and Other
Oncogenic Pathways in Inflammatory Breast Cancer. J. Proteome
Res. 12, 2805–2817 (2013).
88. Knudsen, E. S. &
Witkiewicz, A. K. The Strange Case of CDK4/6 Inhibitors: Mechanisms,
Resistance, and Combination Strategies. Trends Cancer 3,
39–55 (2017).
89. Goel, S.,
Bergholz, J. S. & Zhao, J. J. Targeting CDK4 and CDK6 in cancer.Nat. Rev. Cancer 22, 356–372 (2022).
90. Sievers, E. L. &
Senter, P. D. Antibody-Drug Conjugates in Cancer Therapy. Annu.
Rev. Med. 64, 15–29 (2013).
91. Criscitiello, C.,
Morganti, S. & Curigliano, G. Antibody–drug conjugates in solid
tumors: a look into novel targets. J. Hematol. Oncol.J Hematol
Oncol 14, 20 (2021).
92. Moek, K. L., De
Groot, D. J. A., De Vries, E. G. E. & Fehrmann, R. S. N. The
antibody–drug conjugate target landscape across a broad range of tumour
types. Ann. Oncol. 28, 3083–3091 (2017).
93. ADC Drug Map
| ADC Review. https://www.adcreview.com/adc-drugmap/.
94. Cicek, M. S.et al. Quality Assessment and Correlation of Microsatellite
Instability and Immunohistochemical Markers among Population- and
Clinic-Based Colorectal Tumors. J. Mol. Diagn. 13,
271–281 (2011).
95. Jones, D. T. W.et al. Tandem Duplication Producing a Novel Oncogenic BRAFFusion Gene Defines the Majority of Pilocytic Astrocytomas. Cancer
Res. 68, 8673–8677 (2008).
96. Kyuno, D. et
al. Claudin-18.2 as a therapeutic target in cancers: cumulative
findings from basic research and clinical trials. Tissue Barriers10, 1967080 (2022).
97. Long, S. et
al. Metaproteomics characterizes human gut microbiome function in
colorectal cancer. Npj Biofilms Microbiomes 6, 14
(2020).
98. Narunsky-Haziza,
L. et al. Pan-cancer analyses reveal cancer-type-specific fungal
ecologies and bacteriome interactions. Cell 185,
3789-3806.e17 (2022).
99. Lehtiö, J.et al. Proteogenomics of non-small cell lung cancer reveals
molecular subtypes associated with specific therapeutic targets and
immune-evasion mechanisms. Nat. Cancer 2, 1224–1242
(2021).
100. Zhang, H.et al. Integrated Proteogenomic Characterization of Human
High-Grade Serous Ovarian Cancer. Cell 166, 755–765
(2016).
101.
Blank-Landeshammer, B. et al. Proteogenomics of Colorectal Cancer
Liver Metastases: Complementing Precision Oncology with Phenotypic Data.Cancers 11, 1907 (2019).
102. Sinha, A.et al. The Proteogenomic Landscape of Curable Prostate Cancer.Cancer Cell 35, 414-427.e6 (2019).
103. Nesvizhskii, A.
I. Proteogenomics: concepts, applications and computational strategies.Nat. Methods 11, 1114–1125 (2014).
104. Rodriguez, H.,
Zenklusen, J. C., Staudt, L. M., Doroshow, J. H. & Lowy, D. R. The next
horizon in precision oncology: Proteogenomics to inform cancer diagnosis
and treatment. Cell 184, 1661–1670 (2021).
105. Ellis, M. J.et al. Connecting Genomic Alterations to Cancer Biology with
Proteomics: The NCI Clinical Proteomic Tumor Analysis Consortium.Cancer Discov. 3, 1108–1112 (2013).
106. Nakajima, E. C.et al. FDA Approval Summary: Sotorasib for KRAS G12C-Mutated Metastatic NSCLC. Clin. Cancer Res. 28,
1482–1486 (2022).
107. Kopetz, S.et al. Encorafenib, Binimetinib, and Cetuximab in BRAFV600E–Mutated Colorectal Cancer. N. Engl. J. Med. 381,
1632–1643 (2019).
108. Akkapeddi, P.et al. Exploring switch II pocket conformation of KRAS(G12D) with
mutant-selective monobody inhibitors. Proc. Natl. Acad. Sci.120, e2302485120 (2023).
109. Feng, J. et
al. Feedback activation of EGFR/wild-type RAS signaling axis limits
KRASG12D inhibitor efficacy in KRASG12D-mutated colorectal cancer.Oncogene 42, 1620–1633 (2023).
110. Tang, D. & Kang,
R. Glimmers of hope for targeting oncogenic KRAS-G12D. Cancer Gene
Ther. s41417-022-00561–3 (2022) doi:10.1038/s41417-022-00561-3.
111. Mirati
Therapeutics Inc. A Phase 1/2 Multiple Expansion Cohort Trial of
MRTX1133 in Patients With Advanced Solid Tumors Harboring a KRAS G12D
Mutation. https://clinicaltrials.gov/study/NCT05737706 (2023).
112. National Cancer
Institute (NCI). A Phase I/II Study Administering Peripheral Blood
Lymphocytes Transduced With a Murine T-Cell Receptor Recognizing the
G12D Variant of Mutated RAS in HLA-A*11:01 Patients.
https://clinicaltrials.gov/study/NCT03745326 (2023).
113. Taiho Oncology,
Inc. A Phase 1 Study of TAS0612 in Patients With Locally Advanced
or Metastatic Solid Tumors.
https://clinicaltrials.gov/study/NCT04586270 (2023).
114. Buechner, P.et al. Requirements Analysis and Specification for a Molecular
Tumor Board Platform Based on cBioPortal. Diagnostics10, 93 (2020).
115. Tamborero, D.et al. Support systems to guide clinical decision-making in
precision oncology: The Cancer Core Europe Molecular Tumor Board Portal.Nat. Med. 26, 992–994 (2020).
116. Tamborero, D.et al. The Molecular Tumor Board Portal supports clinical
decisions and automated reporting for precision oncology. Nat.
Cancer 3, 251–261 (2022).