References:
1. Northrop BH, Frayne SH, Choudhary U. Thiol–maleimide “click”
chemistry: evaluating the influence of solvent, initiator, and thiol on
the reaction mechanism, kinetics, and selectivity. Polymer
Chemistry. 2015;6(18):3415-3430.
2. Nair DP, Podgorski M, Chatani S, et al. The thiol-Michael addition
click reaction: a powerful and widely used tool in materials chemistry.Chemistry of Materials. 2014;26(1):724-744.
3. Kolb HC, Finn M, Sharpless KB. Click chemistry: diverse chemical
function from a few good reactions. Angewandte Chemie
International Edition. 2001;40(11):2004-2021.
4. Ravasco JM, Faustino H, Trindade A, Gois PM. Bioconjugation with
maleimides: A useful tool for chemical biology. Chemistry–A
European Journal. 2019;25(1):43-59.
5. Hermanson G. Chapter 3-The Reactions of Bioconjugation. in (ed.
Hermanson, GTBT-BT (Third E.) 229–258. In: Academic Press; 2013.
6. Dong L, Li C, Locuson C, Chen S, Qian MG. A two-step immunocapture
LC/MS/MS assay for plasma stability and payload migration assessment of
cysteine–maleimide-based antibody drug conjugates. Analytical
chemistry. 2018;90(10):5989-5994.
7. Baldwin AD, Kiick KL. Tunable degradation of maleimide–thiol adducts
in reducing environments. Bioconjugate chemistry.2011;22(10):1946-1953.
8. Shen B-Q, Xu K, Liu L, et al. Conjugation site modulates the in vivo
stability and therapeutic activity of antibody-drug conjugates.Nature biotechnology. 2012;30(2):184-189.
9. Tumey LN, Charati M, He T, et al. Mild method for succinimide
hydrolysis on ADCs: impact on ADC potency, stability, exposure, and
efficacy. Bioconjugate chemistry. 2014;25(10):1871-1880.
10. Fontaine SD, Reid R, Robinson L, Ashley GW, Santi DV. Long-term
stabilization of maleimide–thiol conjugates. Bioconjugate
chemistry. 2015;26(1):145-152.
11. Christie RJ, Fleming R, Bezabeh B, et al. Stabilization of
cysteine-linked antibody drug conjugates with N-aryl maleimides.Immunome Research. 2016;12(S2):29.
12. Ponte JF, Sun X, Yoder NC, et al. Understanding how the stability of
the thiol-maleimide linkage impacts the pharmacokinetics of
lysine-linked antibody–maytansinoid conjugates. Bioconjugate
chemistry. 2016;27(7):1588-1598.
13. Szijj PA, Bahou C, Chudasama V. Minireview: Addressing the
retro-Michael instability of maleimide bioconjugates. Drug
Discovery Today: Technologies. 2018;30:27-34.
14. Lahnsteiner M, Kastner A, Mayr J, Roller A, Keppler BK, Kowol CR.
Improving the stability of maleimide–thiol conjugation for drug
targeting. Chemistry–A European Journal.2020;26(68):15867-15870.
15. Gober IN, Riemen AJ, Villain M. Sequence sensitivity and pH
dependence of maleimide conjugated N‐terminal cysteine peptides to
thiazine rearrangement. Journal of Peptide Science.2021;27(7):e3323.
16. Boyatzis AE, Bringans SD, Piggott MJ, Duong MN, Lipscombe RJ, Arthur
PG. Limiting the hydrolysis and oxidation of maleimide–peptide adducts
improves detection of protein thiol oxidation. Journal of proteome
research. 2017;16(5):2004-2015.
17. Rodriguez Mallon A, Javier Gonzalez L, Encinosa Guzman PE, et al.
Functional and Mass Spectrometric Evaluation of an Anti-Tick Antigen
Based on the P0 Peptide Conjugated to Bm86 Protein. Pathogens.2020;9(6).
18. González LJ, Encinosa Guzmán PE, Machado W, et al. Synthesis,
LC-MS/MS analysis, and biological evaluation of two vaccine candidates
against ticks based on the antigenic P0 peptide from R. sanguineus
linked to the p64K carrier protein from Neisseria meningitidis.Analytical and Bioanalytical Chemistry. 2021;413(23):5885-5900.
19. Kühn-Hölsken E, Lenz C, Dickmanns A, et al. Mapping the binding site
of snurportin 1 on native U1 snRNP by cross-linking and mass
spectrometry. Nucleic acids research. 2010;38(16):5581-5593.
20. Warren CM, Kobayashi T, Solaro RJ. Sites of intra-and intermolecular
cross-linking of the N-terminal extension of troponin I in human cardiac
whole troponin complex. Journal of Biological Chemistry.2009;284(21):14258-14266.
21. Bonner J, Talbert LE, Akkawi N, Julian RR. Simplified identification
of disulfide, trisulfide, and thioether pairs with 213 nm UVPD.Analyst. 2018;143(21):5176-5184.
22. Talbert LE, Julian RR. Directed-backbone dissociation following
bond-specific carbon-sulfur UVPD at 213 nm. Journal of The
American Society for Mass Spectrometry. 2018;29(9):1760-1767.