References
1. Shao, Y., et al., Design and mechanisms of asymmetric
supercapacitors. 2018. 118 (18): p. 9233-9280.
2. Shen, K., et al., Recent progress in binder‐free electrodes
synthesis for electrochemical energy storage application. 2021.4 (6): p. 860-880.
3. Nsude, H.E., et al., Binder-free fabricated CuFeS2 electrodes
for supercapacitor applications. 2022. 9 (2): p. 025501.
4. Bolotin, K.I., et al., Ultrahigh electron mobility in suspended
graphene. 2008. 146 (9-10): p. 351-355.
5. Tung, T.T., et al., Recent advances in sensing applications of
graphene assemblies and their composites. 2017. 27 (46): p.
1702891.
6. Balandin, A.A., et al., Superior thermal conductivity of
single-layer graphene. 2008. 8 (3): p. 902-907.
7. Lee, C., et al., Measurement of the elastic properties and
intrinsic strength of monolayer graphene. 2008. 321 (5887): p.
385-388.
8. Viswanathan, A., et al., Superior supercapacitance exhibited by
acid insoluble Ni (OH) 2 in the form of its nanocomposite with rGO.2022. 55 : p. 105527.
9. Meng, Q., et al., Research progress on conducting polymer based
supercapacitor electrode materials. 2017. 36 : p. 268-285.
10. Zhang, S.-W., et al., Self-assembling hierarchical
NiCo2O4/MnO2 nanosheets and MoO3/PPy core-shell heterostructured
nanobelts for supercapacitor. 2017. 312 : p. 296-305.
11. An, C., et al., Metal oxide-based supercapacitors: progress
and prospectives. 2019. 1 (12): p. 4644-4658.
12. Małolepszy, A., et al., Synthesis of graphene foams and their
sorption properties of n-hexane. 2021. 28 (4): p. 1069-1079.
13. Zhang, S., et al., Sustainable production of value-added
carbon nanomaterials from biomass pyrolysis. 2020. 3 (9): p.
753-760.
14. Amani, H., et al., Three-dimensional graphene foams:
synthesis, properties, biocompatibility, biodegradability, and
applications in tissue engineering. 2018. 5 (1): p. 193-214.
15. Velasco, A., et al., Recent trends in graphene
supercapacitors: from large area to microsupercapacitors. 2021.5 (5): p. 1235-1254.
16. Nunes Jr, C.V., et al., Unexpected effect of drying method on
the microstructure and electrocatalytic properties of
bentonite/alpha-nickel hydroxide nanocomposite. 2015. 297 : p.
408-412.
17. Zhao, Y., et al., Al-substituted α-nickel hydroxide prepared
by homogeneous precipitation method with urea. 2004. 29 (8): p.
889-896.
18. Huang, J., et al., Effect of Al-doped β-Ni (OH) 2 nanosheets
on electrochemical behaviors for high performance supercapacitor
application. 2013. 232 : p. 370-375.
19. Shangguan, E., et al., A comparative study of structural and
electrochemical properties of high-density aluminum substituted α-nickel
hydroxide containing different interlayer anions. 2015. 282 :
p. 158-168.
20. Liu, H., et al., Ultrathin Ni-Al layered double hydroxide
nanosheets with enhanced supercapacitor performance. 2017.43 (16): p. 14395-14400.
21. Xia, Q.X., et al., Facile synthesis of manganese carbonate
quantum dots/Ni (HCO 3) 2–MnCO 3 composites as advanced cathode
materials for high energy density asymmetric supercapacitors. 2015.3 (44): p. 22102-22117.
22. Mummoorthi, G., et al., Synthesis and characterization of
Ternary α-Fe2O3/NiO/rGO composite for high-performance supercapacitors.2022. 7 (31): p. 27390-27399.
23. Liu, W., et al., In situ fabrication of three-dimensional,
ultrathin graphite/carbon nanotube/NiO composite as binder-free
electrode for high-performance energy storage. 2015. 3 (2): p.
624-633.
24. Bu, Y., et al., Synthesis of porous NiO/reduced graphene oxide
composites for supercapacitors. 2012. 159 (7): p. A990.
25. Xu, J., et al., NiO-rGO composite for supercapacitor
electrode. 2020. 18 : p. 100420.
26. Pore, O., et al., Facile hydrothermal synthesis of NiO/rGO
nanocomposite electrodes for supercapacitor and nonenzymatic glucose
biosensing application. 2022. 29 (6): p. 1991-2001.
27. Shi, F., et al., Application of three-dimensional reduced
graphene oxide-gold composite modified electrode for direct
electrochemistry and electrocatalysis of myoglobin. 2016. 58 :
p. 450-457.
28. Wang, W., et al., Single-step one-pot synthesis of graphene
foam/TiO2 nanosheet hybrids for effective water treatment. 2017.7 (1): p. 43755.
29. Huang, M., et al., NiO nanoflakes grown on porous graphene
frameworks as advanced electrochemical pseudocapacitor materials. 2014.259 : p. 98-105.
30. Feicht, P., et al., Brodie’s or Hummers’ method: oxidation
conditions determine the structure of graphene oxide. 2019.25 (38): p. 8955-8959.
31. Siyahjani, S., et al., Enhanced capacitive behaviour of
graphene based electrochemical double layer capacitors by etheric
substitution on ionic liquids. 2020. 467 : p. 228353.
32. Perumbilavil, S., et al., White light Z-scan measurements of
ultrafast optical nonlinearity in reduced graphene oxide nanosheets in
the 400–700 nm region. 2015. 107 (5).
33. Aghazadeh, M. and H.F.J.J.o.M.S.M.i.E. Rad, In situ growth of
Ni (OH) 2-porous nitrogen-doped graphene composite onto Ni foam support
as advanced electrochemical supercapacitors materials. 2022.33 (14): p. 11038-11054.
34. Wang, Q., et al., π-π stacked iron (II)
phthalocyanine/graphene oxide composites: rational fabrication and
excellent supercapacitor properties with superior rate performance.2021. 25 (2): p. 659-670.
35. Philip, M.R., et al., Self-protected nickel–graphene hybrid
low density 3D scaffolds. 2014. 2 (45): p. 19488-19494.
36. Du, H., et al., Polyol-mediated synthesis of mesoporous α-Ni
(OH) 2 with enhanced supercapacitance. 2013. 5 (14): p.
6643-6648.
37. Zhang, J., et al., Reduction of graphene oxide via L-ascorbic
acid. 2010. 46 (7): p. 1112-1114.
38. Neiva, E.G., et al., One material, multiple functions:
graphene/Ni (OH) 2 thin films applied in batteries, electrochromism and
sensors. 2016. 6 (1): p. 33806.
39. Mao, Y., B. Zhou, and S.J.J.o.M.S.M.i.E. Peng, Simple
deposition of mixed α, β-nickel hydroxide thin film onto nickel foam as
high-performance supercapacitor electrode material. 2020. 31 :
p. 9457-9467.
40. Zhang, S. and N.J.A.E.M. Pan, Supercapacitors performance
evaluation. 2015. 5 (6): p. 1401401.