References
1. Shao, Y., et al., Design and mechanisms of asymmetric supercapacitors. 2018. 118 (18): p. 9233-9280.
2. Shen, K., et al., Recent progress in binder‐free electrodes synthesis for electrochemical energy storage application. 2021.4 (6): p. 860-880.
3. Nsude, H.E., et al., Binder-free fabricated CuFeS2 electrodes for supercapacitor applications. 2022. 9 (2): p. 025501.
4. Bolotin, K.I., et al., Ultrahigh electron mobility in suspended graphene. 2008. 146 (9-10): p. 351-355.
5. Tung, T.T., et al., Recent advances in sensing applications of graphene assemblies and their composites. 2017. 27 (46): p. 1702891.
6. Balandin, A.A., et al., Superior thermal conductivity of single-layer graphene. 2008. 8 (3): p. 902-907.
7. Lee, C., et al., Measurement of the elastic properties and intrinsic strength of monolayer graphene. 2008. 321 (5887): p. 385-388.
8. Viswanathan, A., et al., Superior supercapacitance exhibited by acid insoluble Ni (OH) 2 in the form of its nanocomposite with rGO.2022. 55 : p. 105527.
9. Meng, Q., et al., Research progress on conducting polymer based supercapacitor electrode materials. 2017. 36 : p. 268-285.
10. Zhang, S.-W., et al., Self-assembling hierarchical NiCo2O4/MnO2 nanosheets and MoO3/PPy core-shell heterostructured nanobelts for supercapacitor. 2017. 312 : p. 296-305.
11. An, C., et al., Metal oxide-based supercapacitors: progress and prospectives. 2019. 1 (12): p. 4644-4658.
12. Małolepszy, A., et al., Synthesis of graphene foams and their sorption properties of n-hexane. 2021. 28 (4): p. 1069-1079.
13. Zhang, S., et al., Sustainable production of value-added carbon nanomaterials from biomass pyrolysis. 2020. 3 (9): p. 753-760.
14. Amani, H., et al., Three-dimensional graphene foams: synthesis, properties, biocompatibility, biodegradability, and applications in tissue engineering. 2018. 5 (1): p. 193-214.
15. Velasco, A., et al., Recent trends in graphene supercapacitors: from large area to microsupercapacitors. 2021.5 (5): p. 1235-1254.
16. Nunes Jr, C.V., et al., Unexpected effect of drying method on the microstructure and electrocatalytic properties of bentonite/alpha-nickel hydroxide nanocomposite. 2015. 297 : p. 408-412.
17. Zhao, Y., et al., Al-substituted α-nickel hydroxide prepared by homogeneous precipitation method with urea. 2004. 29 (8): p. 889-896.
18. Huang, J., et al., Effect of Al-doped β-Ni (OH) 2 nanosheets on electrochemical behaviors for high performance supercapacitor application. 2013. 232 : p. 370-375.
19. Shangguan, E., et al., A comparative study of structural and electrochemical properties of high-density aluminum substituted α-nickel hydroxide containing different interlayer anions. 2015. 282 : p. 158-168.
20. Liu, H., et al., Ultrathin Ni-Al layered double hydroxide nanosheets with enhanced supercapacitor performance. 2017.43 (16): p. 14395-14400.
21. Xia, Q.X., et al., Facile synthesis of manganese carbonate quantum dots/Ni (HCO 3) 2–MnCO 3 composites as advanced cathode materials for high energy density asymmetric supercapacitors. 2015.3 (44): p. 22102-22117.
22. Mummoorthi, G., et al., Synthesis and characterization of Ternary α-Fe2O3/NiO/rGO composite for high-performance supercapacitors.2022. 7 (31): p. 27390-27399.
23. Liu, W., et al., In situ fabrication of three-dimensional, ultrathin graphite/carbon nanotube/NiO composite as binder-free electrode for high-performance energy storage. 2015. 3 (2): p. 624-633.
24. Bu, Y., et al., Synthesis of porous NiO/reduced graphene oxide composites for supercapacitors. 2012. 159 (7): p. A990.
25. Xu, J., et al., NiO-rGO composite for supercapacitor electrode. 2020. 18 : p. 100420.
26. Pore, O., et al., Facile hydrothermal synthesis of NiO/rGO nanocomposite electrodes for supercapacitor and nonenzymatic glucose biosensing application. 2022. 29 (6): p. 1991-2001.
27. Shi, F., et al., Application of three-dimensional reduced graphene oxide-gold composite modified electrode for direct electrochemistry and electrocatalysis of myoglobin. 2016. 58 : p. 450-457.
28. Wang, W., et al., Single-step one-pot synthesis of graphene foam/TiO2 nanosheet hybrids for effective water treatment. 2017.7 (1): p. 43755.
29. Huang, M., et al., NiO nanoflakes grown on porous graphene frameworks as advanced electrochemical pseudocapacitor materials. 2014.259 : p. 98-105.
30. Feicht, P., et al., Brodie’s or Hummers’ method: oxidation conditions determine the structure of graphene oxide. 2019.25 (38): p. 8955-8959.
31. Siyahjani, S., et al., Enhanced capacitive behaviour of graphene based electrochemical double layer capacitors by etheric substitution on ionic liquids. 2020. 467 : p. 228353.
32. Perumbilavil, S., et al., White light Z-scan measurements of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400–700 nm region. 2015. 107 (5).
33. Aghazadeh, M. and H.F.J.J.o.M.S.M.i.E. Rad, In situ growth of Ni (OH) 2-porous nitrogen-doped graphene composite onto Ni foam support as advanced electrochemical supercapacitors materials. 2022.33 (14): p. 11038-11054.
34. Wang, Q., et al., π-π stacked iron (II) phthalocyanine/graphene oxide composites: rational fabrication and excellent supercapacitor properties with superior rate performance.2021. 25 (2): p. 659-670.
35. Philip, M.R., et al., Self-protected nickel–graphene hybrid low density 3D scaffolds. 2014. 2 (45): p. 19488-19494.
36. Du, H., et al., Polyol-mediated synthesis of mesoporous α-Ni (OH) 2 with enhanced supercapacitance. 2013. 5 (14): p. 6643-6648.
37. Zhang, J., et al., Reduction of graphene oxide via L-ascorbic acid. 2010. 46 (7): p. 1112-1114.
38. Neiva, E.G., et al., One material, multiple functions: graphene/Ni (OH) 2 thin films applied in batteries, electrochromism and sensors. 2016. 6 (1): p. 33806.
39. Mao, Y., B. Zhou, and S.J.J.o.M.S.M.i.E. Peng, Simple deposition of mixed α, β-nickel hydroxide thin film onto nickel foam as high-performance supercapacitor electrode material. 2020. 31 : p. 9457-9467.
40. Zhang, S. and N.J.A.E.M. Pan, Supercapacitors performance evaluation. 2015. 5 (6): p. 1401401.