Figures
Figure 1. PCA and heatmap analysis of RNA-Seq. A) PCA of the SCC-13, A431, AG13145, and CRL-2617 following PDT color-coded by cell type. B) PCA of 4 sample cell lines color-coded by treatment; red as control and blue as ALA PDT. C) Heatmap analysis of SCC-13, A431, AG13145, and CRL-2617 following PDT. D) Set of genes with p-value < 0.05 used for pathway analysis with red as upregulated and blue as downregulated genes. No genes were differentially expressed when multiple testing was performed (FDR < 0.05).
Figure 2. KEGG 2021 and GO 2021 pathway analysis A) down- and B) upregulated pathways using KEGG 2021 gene set. C) Down- and D) upregulated pathways using GO 2021 gene set. The ten pathways with the lowest p-value are demonstrated. No individual genes were differentially expressed with an FDR<0.05. Pathway analysis used genes with p<0.05, which does not account for multiple testing.
Figure 3. Transcription factors regulators of genes from consensus ENCODE and ChEA datasets. A) down- and B) upregulated transcription factors. C) Heatmap of down- and D) upregulated pathways demonstrating common genes among enriched transcription factors. No individual genes were differentially expressed with an FDR<0.05. Transcription factor analysis was performed using genes with p<0.05, which does not account for multiple testing.
1. Combalia A, Carrera C. Squamous Cell Carcinoma: An Update on Diagnosis and Treatment. Dermatol Pract Concept . Jul 2020;10(3):e2020066. doi:10.5826/dpc.1003a66
2. Kauvar AN, Arpey CJ, Hruza G, Olbricht SM, Bennett R, Mahmoud BH. Consensus for Nonmelanoma Skin Cancer Treatment, Part II: Squamous Cell Carcinoma, Including a Cost Analysis of Treatment Methods.Dermatol Surg . Nov 2015;41(11):1214-40. doi:10.1097/dss.0000000000000478
3. Lewis KG, Weinstock MA. Trends in nonmelanoma skin cancer mortality rates in the United States, 1969 through 2000. J Invest Dermatol . Oct 2007;127(10):2323-7. doi:10.1038/sj.jid.5700897
4. Rogers HW, Weinstock MA, Harris AR, et al. Incidence estimate of nonmelanoma skin cancer in the United States, 2006. Arch Dermatol . Mar 2010;146(3):283-7. doi:10.1001/archdermatol.2010.19
5. Zhang W, Zeng W, Jiang A, et al. Global, regional and national incidence, mortality and disability-adjusted life-years of skin cancers and trend analysis from 1990 to 2019: An analysis of the Global Burden of Disease Study 2019. Cancer Med . Jul 2021;10(14):4905-4922. doi:10.1002/cam4.4046
6. Reinehr CPH, Bakos RM. Actinic keratoses: review of clinical, dermoscopic, and therapeutic aspects. An Bras Dermatol . Nov-Dec 2019;94(6):637-657. doi:10.1016/j.abd.2019.10.004
7. Salasche SJ. Epidemiology of actinic keratoses and squamous cell carcinoma. J Am Acad Dermatol . Jan 2000;42(1 Pt 2):4-7. doi:10.1067/mjd.2000.103342
8. Guy GP, Jr., Machlin SR, Ekwueme DU, Yabroff KR. Prevalence and costs of skin cancer treatment in the U.S., 2002-2006 and 2007-2011. Am J Prev Med . Feb 2015;48(2):183-187. doi:10.1016/j.amepre.2014.08.036
9. Morton C, Szeimies RM, Sidoroff A, et al. European Dermatology Forum Guidelines on topical photodynamic therapy. Eur J Dermatol . Jul-Aug 2015;25(4):296-311. doi:10.1684/ejd.2015.2570
10. Saini R, Lee NV, Liu KY, Poh CF. Prospects in the Application of Photodynamic Therapy in Oral Cancer and Premalignant Lesions.Cancers (Basel) . Sep 2 2016;8(9)doi:10.3390/cancers8090083
11. Morton CA, Szeimies RM, Basset-Seguin N, et al. European Dermatology Forum guidelines on topical photodynamic therapy 2019 Part 1: treatment delivery and established indications - actinic keratoses, Bowen’s disease and basal cell carcinomas. J Eur Acad Dermatol Venereol . Dec 2019;33(12):2225-2238. doi:10.1111/jdv.16017
12. Zeitouni NC, Bhatia N, Ceilley RI, et al. Photodynamic Therapy with 5-aminolevulinic Acid 10% Gel and Red Light for the Treatment of Actinic Keratosis, Nonmelanoma Skin Cancers, and Acne: Current Evidence and Best Practices. J Clin Aesthet Dermatol . Oct 2021;14(10):E53-e65.
13. Austin E, Jagdeo J. An In Vitro Approach to Photodynamic Therapy.J Vis Exp . Aug 17 2018;(138)doi:10.3791/58190
14. Kwiatkowski S, Knap B, Przystupski D, et al. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother . Oct 2018;106:1098-1107. doi:10.1016/j.biopha.2018.07.049
15. Josefsen LB, Boyle RW. Photodynamic therapy and the development of metal-based photosensitisers. Met Based Drugs . 2008;2008:276109. doi:10.1155/2008/276109
16. Ohgari Y, Nakayasu Y, Kitajima S, et al. Mechanisms involved in delta-aminolevulinic acid (ALA)-induced photosensitivity of tumor cells: relation of ferrochelatase and uptake of ALA to the accumulation of protoporphyrin. Biochem Pharmacol . Dec 19 2005;71(1-2):42-9. doi:10.1016/j.bcp.2005.10.019
17. Rkein AM, Ozog DM. Photodynamic therapy. Dermatol Clin . Jul 2014;32(3):415-25, x. doi:10.1016/j.det.2014.03.009
18. Austin E, Koo E, Jagdeo J. Thermal photodynamic therapy increases apoptosis and reactive oxygen species generation in cutaneous and mucosal squamous cell carcinoma cells. Sci Rep . Aug 22 2018;8(1):12599. doi:10.1038/s41598-018-30908-6
19. Joly F, Deret S, Gamboa B, et al. Photodynamic therapy corrects abnormal cancer-associated gene expression observed in actinic keratosis lesions and induces a remodeling effect in photodamaged skin. J Dermatol Sci . May 17 2018;doi:10.1016/j.jdermsci.2018.05.002
20. Zeng Q, Liu J, Yan Y, et al. Modified 5-aminolevulinic acid photodynamic therapy suppresses cutaneous squamous cell carcinoma through blocking Akt/mTOR-mediated autophagic flux. Front Pharmacol . 2023;14:1114678. doi:10.3389/fphar.2023.1114678
21. Liu J, Yan G, Chen Q, Zeng Q, Wang X. Modified 5-aminolevulinic acid photodynamic therapy (M-PDT) inhibits cutaneous squamous cell carcinoma cell proliferation via targeting PP2A/PP5-mediated MAPK signaling pathway. Int J Biochem Cell Biol . Aug 2021;137:106036. doi:10.1016/j.biocel.2021.106036
22. Zeng Q, Zhou C, Zhang Y, Yan G, Wang X. Modified 5-aminolevulinic acid photodynamic therapy reduces pain and improves therapeutic effects in cutaneous squamous cell carcinoma mouse model. Lasers Surg Med . Jul 2022;54(5):804-812. doi:10.1002/lsm.23516
23. Austin E, Koo E, Merleev A, et al. Transcriptome analysis of human dermal fibroblasts following red light phototherapy. Sci Rep . Apr 1 2021;11(1):7315. doi:10.1038/s41598-021-86623-2
24. Law CW, Chen Y, Shi W, Smyth GK. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol . Feb 3 2014;15(2):R29. doi:10.1186/gb-2014-15-2-r29
25. Kuleshov MV, Jones MR, Rouillard AD, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res . Jul 8 2016;44(W1):W90-7. doi:10.1093/nar/gkw377
26. The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res . Jan 8 2021;49(D1):D325-d334. doi:10.1093/nar/gkaa1113
27. Koo E, Austin E, Mamalis A, Jagdeo J. Thermal Ultra Short Photodynamic Therapy: Heating Fibroblasts During Sub-30-Minute Incubation of 5-Aminolevulinic Acid Increases Photodynamic Therapy-Induced Cell Death. Dermatol Surg . Apr 2018;44(4):528-533. doi:10.1097/dss.0000000000001341
28. Liu Y, Li R-H, Ren G, Jiang J. Suppression of KIF22 inhibits cell proliferation and xenograft tumor growth in tongue squamous cell carcinoma. BioMed Research International . 2020;2020
29. Zhang X, Wu M, Peng G, et al. Aberrant kinesin family member 2A signifies tumor size and invasion, and may help predict prognosis of patients with papillary thyroid carcinoma. Oncol Lett . Aug 2022;24(2):256. doi:10.3892/ol.2022.13376
30. Zhong Y, Jiang L, Lin H, et al. Overexpression of KIF18A promotes cell proliferation, inhibits apoptosis, and independently predicts unfavorable prognosis in lung adenocarcinoma. IUBMB Life . Jul 2019;71(7):942-955. doi:10.1002/iub.2030
31. Zuo X, Meng P, Bao Y, et al. Cell cycle dysregulation with overexpression of KIF2C/MCAK is a critical event in nasopharyngeal carcinoma. Genes Dis . Jan 2023;10(1):212-227. doi:10.1016/j.gendis.2021.05.003
32. Li Y, Huang Y, Li B, Yang K. Roles of E2F family members in the diagnosis and prognosis of head and neck squamous cell carcinoma.BMC Medical Genomics . 2023;16(1):1-14.
33. Teh MT, Gemenetzidis E, Chaplin T, Young BD, Philpott MP. Upregulation of FOXM1 induces genomic instability in human epidermal keratinocytes. Mol Cancer . Feb 26 2010;9:45. doi:10.1186/1476-4598-9-45
34. McHugh A, Fernandes K, Chinner N, et al. The identification of potential therapeutic targets for cutaneous squamous cell carcinoma.Journal of Investigative Dermatology . 2020;140(6):1154-1165. e5.
35. Ha W, Hinde A, Xie L, Trager MH, Liu L. Biomarker function of HMGA2 in ultraviolet-induced skin cancer development. Exp Dermatol . Oct 2020;29(10):1021-1026. doi:10.1111/exd.14174
36. Shen Y, Chan G, Xie M, Zeng W, Liu L. Identification of master regulator genes of UV response and their implications for skin carcinogenesis. Carcinogenesis . Jul 4 2019;40(5):687-694. doi:10.1093/carcin/bgy168
37. Schurch NJ, Schofield P, Gierliński M, et al. How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? Rna . 2016;22(6):839-851.