Figures
Figure 1. PCA and heatmap analysis of RNA-Seq. A) PCA of the
SCC-13, A431, AG13145, and CRL-2617 following PDT color-coded by cell
type. B) PCA of 4 sample cell lines color-coded by treatment; red as
control and blue as ALA PDT. C) Heatmap analysis of SCC-13, A431,
AG13145, and CRL-2617 following PDT. D) Set of genes with p-value
< 0.05 used for pathway analysis with red as upregulated and
blue as downregulated genes. No genes were differentially expressed when
multiple testing was performed (FDR < 0.05).
Figure 2. KEGG 2021 and GO 2021 pathway analysis A) down- and
B) upregulated pathways using KEGG 2021 gene set. C) Down- and D)
upregulated pathways using GO 2021 gene set. The ten pathways with the
lowest p-value are demonstrated. No individual genes were differentially
expressed with an FDR<0.05. Pathway analysis used genes with
p<0.05, which does not account for multiple testing.
Figure 3. Transcription factors regulators of genes from
consensus ENCODE and ChEA datasets. A) down- and B) upregulated
transcription factors. C) Heatmap of down- and D) upregulated pathways
demonstrating common genes among enriched transcription factors. No
individual genes were differentially expressed with an
FDR<0.05. Transcription factor analysis was performed using
genes with p<0.05, which does not account for multiple
testing.
1. Combalia A, Carrera C. Squamous Cell Carcinoma: An Update on
Diagnosis and Treatment. Dermatol Pract Concept . Jul
2020;10(3):e2020066. doi:10.5826/dpc.1003a66
2. Kauvar AN, Arpey CJ, Hruza G, Olbricht SM, Bennett R, Mahmoud BH.
Consensus for Nonmelanoma Skin Cancer Treatment, Part II: Squamous Cell
Carcinoma, Including a Cost Analysis of Treatment Methods.Dermatol Surg . Nov 2015;41(11):1214-40.
doi:10.1097/dss.0000000000000478
3. Lewis KG, Weinstock MA. Trends in nonmelanoma skin cancer mortality
rates in the United States, 1969 through 2000. J Invest Dermatol .
Oct 2007;127(10):2323-7. doi:10.1038/sj.jid.5700897
4. Rogers HW, Weinstock MA, Harris AR, et al. Incidence estimate of
nonmelanoma skin cancer in the United States, 2006. Arch
Dermatol . Mar 2010;146(3):283-7. doi:10.1001/archdermatol.2010.19
5. Zhang W, Zeng W, Jiang A, et al. Global, regional and national
incidence, mortality and disability-adjusted life-years of skin cancers
and trend analysis from 1990 to 2019: An analysis of the Global Burden
of Disease Study 2019. Cancer Med . Jul 2021;10(14):4905-4922.
doi:10.1002/cam4.4046
6. Reinehr CPH, Bakos RM. Actinic keratoses: review of clinical,
dermoscopic, and therapeutic aspects. An Bras Dermatol . Nov-Dec
2019;94(6):637-657. doi:10.1016/j.abd.2019.10.004
7. Salasche SJ. Epidemiology of actinic keratoses and squamous cell
carcinoma. J Am Acad Dermatol . Jan 2000;42(1 Pt 2):4-7.
doi:10.1067/mjd.2000.103342
8. Guy GP, Jr., Machlin SR, Ekwueme DU, Yabroff KR. Prevalence and costs
of skin cancer treatment in the U.S., 2002-2006 and 2007-2011. Am
J Prev Med . Feb 2015;48(2):183-187. doi:10.1016/j.amepre.2014.08.036
9. Morton C, Szeimies RM, Sidoroff A, et al. European Dermatology Forum
Guidelines on topical photodynamic therapy. Eur J Dermatol .
Jul-Aug 2015;25(4):296-311. doi:10.1684/ejd.2015.2570
10. Saini R, Lee NV, Liu KY, Poh CF. Prospects in the Application of
Photodynamic Therapy in Oral Cancer and Premalignant Lesions.Cancers (Basel) . Sep 2 2016;8(9)doi:10.3390/cancers8090083
11. Morton CA, Szeimies RM, Basset-Seguin N, et al. European Dermatology
Forum guidelines on topical photodynamic therapy 2019 Part 1: treatment
delivery and established indications - actinic keratoses, Bowen’s
disease and basal cell carcinomas. J Eur Acad Dermatol Venereol .
Dec 2019;33(12):2225-2238. doi:10.1111/jdv.16017
12. Zeitouni NC, Bhatia N, Ceilley RI, et al. Photodynamic Therapy with
5-aminolevulinic Acid 10% Gel and Red Light for the Treatment of
Actinic Keratosis, Nonmelanoma Skin Cancers, and Acne: Current Evidence
and Best Practices. J Clin Aesthet Dermatol . Oct
2021;14(10):E53-e65.
13. Austin E, Jagdeo J. An In Vitro Approach to Photodynamic Therapy.J Vis Exp . Aug 17 2018;(138)doi:10.3791/58190
14. Kwiatkowski S, Knap B, Przystupski D, et al. Photodynamic therapy -
mechanisms, photosensitizers and combinations. Biomed
Pharmacother . Oct 2018;106:1098-1107. doi:10.1016/j.biopha.2018.07.049
15. Josefsen LB, Boyle RW. Photodynamic therapy and the development of
metal-based photosensitisers. Met Based Drugs . 2008;2008:276109.
doi:10.1155/2008/276109
16. Ohgari Y, Nakayasu Y, Kitajima S, et al. Mechanisms involved in
delta-aminolevulinic acid (ALA)-induced photosensitivity of tumor cells:
relation of ferrochelatase and uptake of ALA to the accumulation of
protoporphyrin. Biochem Pharmacol . Dec 19 2005;71(1-2):42-9.
doi:10.1016/j.bcp.2005.10.019
17. Rkein AM, Ozog DM. Photodynamic therapy. Dermatol Clin . Jul
2014;32(3):415-25, x. doi:10.1016/j.det.2014.03.009
18. Austin E, Koo E, Jagdeo J. Thermal photodynamic therapy increases
apoptosis and reactive oxygen species generation in cutaneous and
mucosal squamous cell carcinoma cells. Sci Rep . Aug 22
2018;8(1):12599. doi:10.1038/s41598-018-30908-6
19. Joly F, Deret S, Gamboa B, et al. Photodynamic therapy corrects
abnormal cancer-associated gene expression observed in actinic keratosis
lesions and induces a remodeling effect in photodamaged skin. J
Dermatol Sci . May 17 2018;doi:10.1016/j.jdermsci.2018.05.002
20. Zeng Q, Liu J, Yan Y, et al. Modified 5-aminolevulinic acid
photodynamic therapy suppresses cutaneous squamous cell carcinoma
through blocking Akt/mTOR-mediated autophagic flux. Front
Pharmacol . 2023;14:1114678. doi:10.3389/fphar.2023.1114678
21. Liu J, Yan G, Chen Q, Zeng Q, Wang X. Modified 5-aminolevulinic acid
photodynamic therapy (M-PDT) inhibits cutaneous squamous cell carcinoma
cell proliferation via targeting PP2A/PP5-mediated MAPK signaling
pathway. Int J Biochem Cell Biol . Aug 2021;137:106036.
doi:10.1016/j.biocel.2021.106036
22. Zeng Q, Zhou C, Zhang Y, Yan G, Wang X. Modified 5-aminolevulinic
acid photodynamic therapy reduces pain and improves therapeutic effects
in cutaneous squamous cell carcinoma mouse model. Lasers Surg
Med . Jul 2022;54(5):804-812. doi:10.1002/lsm.23516
23. Austin E, Koo E, Merleev A, et al. Transcriptome analysis of human
dermal fibroblasts following red light phototherapy. Sci Rep . Apr
1 2021;11(1):7315. doi:10.1038/s41598-021-86623-2
24. Law CW, Chen Y, Shi W, Smyth GK. voom: Precision weights unlock
linear model analysis tools for RNA-seq read counts. Genome Biol .
Feb 3 2014;15(2):R29. doi:10.1186/gb-2014-15-2-r29
25. Kuleshov MV, Jones MR, Rouillard AD, et al. Enrichr: a comprehensive
gene set enrichment analysis web server 2016 update. Nucleic Acids
Res . Jul 8 2016;44(W1):W90-7. doi:10.1093/nar/gkw377
26. The Gene Ontology resource: enriching a GOld mine. Nucleic
Acids Res . Jan 8 2021;49(D1):D325-d334. doi:10.1093/nar/gkaa1113
27. Koo E, Austin E, Mamalis A, Jagdeo J. Thermal Ultra Short
Photodynamic Therapy: Heating Fibroblasts During Sub-30-Minute
Incubation of 5-Aminolevulinic Acid Increases Photodynamic
Therapy-Induced Cell Death. Dermatol Surg . Apr
2018;44(4):528-533. doi:10.1097/dss.0000000000001341
28. Liu Y, Li R-H, Ren G, Jiang J. Suppression of KIF22 inhibits cell
proliferation and xenograft tumor growth in tongue squamous cell
carcinoma. BioMed Research International . 2020;2020
29. Zhang X, Wu M, Peng G, et al. Aberrant kinesin family member 2A
signifies tumor size and invasion, and may help predict prognosis of
patients with papillary thyroid carcinoma. Oncol Lett . Aug
2022;24(2):256. doi:10.3892/ol.2022.13376
30. Zhong Y, Jiang L, Lin H, et al. Overexpression of KIF18A promotes
cell proliferation, inhibits apoptosis, and independently predicts
unfavorable prognosis in lung adenocarcinoma. IUBMB Life . Jul
2019;71(7):942-955. doi:10.1002/iub.2030
31. Zuo X, Meng P, Bao Y, et al. Cell cycle dysregulation with
overexpression of KIF2C/MCAK is a critical event in nasopharyngeal
carcinoma. Genes Dis . Jan 2023;10(1):212-227.
doi:10.1016/j.gendis.2021.05.003
32. Li Y, Huang Y, Li B, Yang K. Roles of E2F family members in the
diagnosis and prognosis of head and neck squamous cell carcinoma.BMC Medical Genomics . 2023;16(1):1-14.
33. Teh MT, Gemenetzidis E, Chaplin T, Young BD, Philpott MP.
Upregulation of FOXM1 induces genomic instability in human epidermal
keratinocytes. Mol Cancer . Feb 26 2010;9:45.
doi:10.1186/1476-4598-9-45
34. McHugh A, Fernandes K, Chinner N, et al. The identification of
potential therapeutic targets for cutaneous squamous cell carcinoma.Journal of Investigative Dermatology . 2020;140(6):1154-1165. e5.
35. Ha W, Hinde A, Xie L, Trager MH, Liu L. Biomarker function of HMGA2
in ultraviolet-induced skin cancer development. Exp Dermatol . Oct
2020;29(10):1021-1026. doi:10.1111/exd.14174
36. Shen Y, Chan G, Xie M, Zeng W, Liu L. Identification of master
regulator genes of UV response and their implications for skin
carcinogenesis. Carcinogenesis . Jul 4 2019;40(5):687-694.
doi:10.1093/carcin/bgy168
37. Schurch NJ, Schofield P, Gierliński M, et al. How many biological
replicates are needed in an RNA-seq experiment and which differential
expression tool should you use? Rna . 2016;22(6):839-851.