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Abstract 13 

Global Hydrological and Land Surface Models (GHM/LSMs) embody numerous interacting 14 

predictors and equations, complicating the diagnosis of primary hydrological relationships. We propose 15 

a model diagnostic approach based on Random Forest feature importance to detect the input variables 16 

that most influence simulated hydrological processes. We analyzed the JULES, ORCHIDEE, HTESSEL, 17 

SURFEX and PCR-GLOBWB models for the relative importance of precipitation, climate, soil, land cover 18 

and topographic slope as predictors of simulated average evaporation, runoff, and surface and 19 

subsurface runoffs. The machine learning model could reproduce GHM/LSMs outputs with a coefficient 20 

of determination over 0.85 in all cases and often considerably better. The GHM/LSMs agreed  21 

precipitation, climate and land cover share equal importance for evaporation prediction, and mean 22 

precipitation is the most important predictor of runoff. However, the GHM/LSMs disagreed on which 23 

features determine surface and subsurface runoff processes, especially with regards to the relative 24 

importance of soil texture and topographic slope. 25 

1. Introduction 26 

Global Hydrological Models (GHM) and Land Surface Models (LSM) embody the current state of 27 

knowledge in simulating the water cycle on land and its interactions with the atmosphere (Döll et al., 28 

2016; Fisher & Koven, 2020). LSMs are often coupled with atmospheric and ocean models for numerical 29 



weather predictions (Pappenberger et al., 2010; Zhang et al., 2011) and climate projections (Collins et 30 

al., 2011; Dufresne et al., 2013). In that sense, they provide valuable weather and climate forecasts for 31 

the short to long term, as well as historical re-analyses (Hersbach et al., 2020). In addition, GHMs 32 

characterize the global water balance, quantifying the amount of freshwater that reaches the oceans, 33 

the anomalies of groundwater level and the anthropogenic water use (Clark et al., 2015; Müller Schmied 34 

et al., 2021). 35 

However, global simulations present significant uncertainties. Global models oversimplify the 36 

hydrological cycle by constraining a complex environmental system to a limited set of equations 37 

calculated over a grid that has a horizontal spatial resolution in the order of kilometers (10-100) 38 

(Bierkens et al., 2015; Telteu et al., 2021). In addition, the uncertainty related to input parameters and 39 

driving data propagates to the model results. Consequently, different models frequently provide 40 

diverging or even conflicting predictions. Climate change impact assessments suggest that the 41 

GHM/LSMs model selection is a major source of uncertainty for evaporation (Hagemann et al., 2013) 42 

and low discharge (Giuntoli et al., 2015; Krysanova et al., 2017) projections, and the ensemble spread of 43 

GHM/LSMs is considerably larger than catchment hydrological models for discharge (Gosling et al., 44 

2017). 45 

Since the 90’s, Model Intercomparison Projects (MIP) have been proposed to establish 46 

evaluation frameworks for LSMs (Henderson-Sellers et al., 1993) usually by comparing model outputs to 47 

an observation database (Best et al., 2015). Throught the year, MIPs have contributed to improved 48 

closure of the water and energy balance, and to improving soil wetness for climate predictions 49 

(Dirmeyer, 2011; van den Hurk et al., 2011). Recent MIPs have identified reduced performance of 50 

GHM/LSMs in snow and tropical regions (Giuntoli et al., 2015; Haddeland et al., 2011; Schellekens et al., 51 

2017) and a general overestimation of runoff from GHMs (Beck, Van Dijk, De Roo, et al., 2017; 52 

Zaherpour et al., 2018). As such, conventional modeling comparisons have shown to be valuable 53 

approaches for identifying modelling weaknesses. However, it is complicated to address these issues 54 

when there is a limited understanding of the multitude of processes and variables interactions within a 55 

GHM/LSM.  56 

Progressively, data-driven techniques have been assuming a leading role in hydrological 57 

modeling (Nearing et al., 2021). Machine learning (ML) has already been successful in predicting surface 58 

water and groundwater stores and flows at catchment level (Shen, 2018; Zounemat-Kermani et al., 59 

2021) and at global scales within a hybrid hydrological model (Kraft et al., 2022). Besides its primary 60 



purpose, ML are data-driven models that can provide important statistical information and process 61 

understanding. Specifically, detecting features’ importance is a secondary outcome that can indicate the 62 

most relevant input features of an ML model (Hastie et al., 2009). In the hydrological field, the ML input 63 

features are equivalent to predictors, attributes and variables, while feature importance has also been 64 

termed variable ranking. Since the early work of (Beck et al., 2015), studies have used ML to identify the 65 

most important predictors for hydrological signatures (Addor et al., 2018), time series of discharge 66 

(Kratzert et al., 2019), flooding (Schmidt et al., 2020) and streamflow trends (Zeng et al., 2021). 67 

If feature importance is understood better, modelers can direct effort toward improving the 68 

quality of the input data that has the greatest impact on the hydrological model performance. In 69 

addition, when an ML model is used to emulate a conceptual/physical-based model (Razavi et al., 2012), 70 

feature importance assessment helps to recognize which variables and processes are being overlooked 71 

by the physical model and give them due attention (Cappelli et al., 2022; Wang et al., 2022).  72 

In this paper, we are proposing a new approach for global model comparison by using feature 73 

importance as a diagnostic tool in addition to the conventional assessment of the agreement of 74 

simulated outputs to observations. To achieve this goal, we trained random forest models to reproduce 75 

hydrological average fluxes from GHM/LSMs and infer about the importance of input data. In addition, 76 

we trained the ML models with swapped land cover and soil maps to understand if different input 77 

databases can explain equally the spatial variance of the hydrological fluxes and to identify biased 78 

importances. Finally, this study can provide guidance on further model development and help to 79 

indicate regions of high model disagreement in terms of process representation. 80 

2. Methodology 81 

We selected GHM/LSMs from the Earth2Observe project and downloaded the respective 82 

datasets. Time-dependent variables were averaged to create static maps. Thus, each grid cell in the 83 

global domain contains both input features and output of a given GHM/LSM. We fed this information to 84 

a Random Forest, which would act as a surrogate model or “metamodel” of the GHM/LSMs (Razavi et 85 

al., 2012). The advantage of this method is that the Random Forest algorithm is able to provide feature 86 

importance based on how features are selected for each node of the decision trees. To enable 87 

comparison between the GHM/LSMs, the input features were grouped into climate, precipitation, soil, 88 

land cover and topographic slope. In the following sections we describe the methodology in more detail. 89 



2.1. E2O models selection 90 

Earth2Observe - E2O (Schellekens et al., 2017) was a European Union-funded project to 91 

integrate different Earth Observations techniques and obtain an extensive re-analysis of global water 92 

resources. The project legacy provides an organized dataset with a common spatial-temporal resolution 93 

that facilitates comparisons and evaluations. We specifically used the Tier-2 dataset from the E2O 94 

project consisting of 8 GHM/LSMs simulated using the same forcing data. For this study, we selected the 95 

GHM/LSMs that were not regionally calibrated (according to the model description) so that the ML 96 

model could capture the response of global features without spatial biases. The selected global models 97 

are JULES (Walters et al., 2014), ORCHIDEE (Krinner et al., 2005), HTESSEL (Balsamo et al., 2009), SURFEX 98 

(Le Moigne, 2018) and PCR-GLOBWB (Van Beek & Bierkens, 2008). 99 

In Tier-2, both forcing and model horizontal resolution are 0.25°, with data available in daily or 100 

monthly time steps from 1980 to 2014. We downloaded GHM/LSMs monthly simulated results and the 101 

respective meteorological data. The precipitation data used was from MSWEP (Beck, Van Dijk, Levizzani, 102 

et al., 2017) and the remaining meteorological data was from the ERA-Interim dataset (Dee et al., 2011).  103 

2.2. Input and output data 104 

In this study, both inputs and outputs correspond to static variables, most commonly long-term 105 

average values. The hydrological fluxes (outputs) we analyzed are long-term mean evaporation (Evap), 106 

runoff (Q), surface runoff (Qs), and subsurface runoff (Qsb) obtained from the E2O datasets. We also 107 

calculated the long-term mean of the following meteorological variables: wind speed, temperature, 108 

specific humidity, air pressure at the surface, incident shortwave radiation, incident longwave radiation 109 

and precipitation. Because of its expected importance, we consider precipitation separately from the 110 

other meteorological variables, which we together term climate features. Our data domain is the 111 

common simulation domain among the GHM/LSMs, corresponding to 226,654 grid cells. 112 

In addition to precipitation and climate features, there are input features that contribute to the 113 

spatial parametrization of a global model, such as soil properties, land cover and topographic slope. 114 

These input features were not provided by the E2O project, but were mentioned in the E2O report 115 

(Dutra et al., 2017). Therefore, we retrieved specific datasets used by each GHM/LSM individually. Since 116 

the E2O report was not conclusive on the employed parameter datasets used by the different 117 

GHM/LSMs, we had to search in published papers and contact modelers of the E2O project for 118 

confirmation. The land cover and soil properties features selected for this study are summarized in S1. 119 



We assumed that the topographic slope used would be the same for each model, as the differences 120 

between topographic datasets at the model scale would be small. We used 5-minute Gridded Global 121 

Relief Data ETOPO5 (National Geophysical Data Center, 1993) to obtain a “slope proxy” (m), estimated 122 

as the standard deviation of the nine ETOPO5 cells within a 0.25° GHM/LSM cell. 123 

Most original land cover and soil datasets needed to be resampled to be used as input feature 124 

for the ML model. We followed a hybrid aggregation method: most dominant class for higher 125 

resolutions and class fractions for lower resolutions. Due to computational limitations, maps with higher 126 

resolution (e.g. HWSM, soil map) were first upscaled to 0.025o using the mode of the sample (dominant 127 

class) after which the classes fractions were calculated within the model grid resolution (0.25o × 0.25o). 128 

Note that the GHM/LSMs had their own approaches to treat subgrid-variability. 129 

In addition, we had to eliminate high correlations between input variables. Highly correlated 130 

variables can interfere on the estimate of feature importance, as both can reduce errors by a similar 131 

amount. More details about the features removal on S2. 132 

2.3. Random Forest and Feature Importance 133 

Random Forest (RF) is essentially an ensemble of decision trees trained with sub-samples of the 134 

training data and a subset of the input features (Breiman, 2001). In parameterizing the algorithm we 135 

specified that each tree could go as far as necessary (i.e., the number of leaves and nodes was not 136 

limited); that each tree would only be trained with 1/3 of the total input features; and that the Random 137 

Forest would consist of 200 decision trees. Feature importance was estimated by the Mean Decrease in 138 

Impurity (MDI) algorithm, which gives higher importance to the input features selected for the nodes of 139 

the decision trees that decrease the model impurity, i.e. the modeling errors, by the highest amount. 140 

The Random Forest and Feature Importance algorithms were available in the Python sklearn 1.2.1 141 

library. 142 

We split the data (grid cells) into 70% for training and 30% for testing. To increase confidence in 143 

our results, we performed a robustness test by splitting the data into three different training and testing 144 

datasets and subsequently running the Random Forest algorithm with three different initializations for 145 

bootstrapping and feature selection. In total, the robustness test therefore included nine models for 146 

each combination of hydrological fluxes and GHM/LSM. This approach allowed us to evaluate the 147 

sensitivity of the Random Forest model performance and Feature Importance to randomization (See S3). 148 



2.4. Analysis 149 

Our goal was to identify the importance of feature groups for different GHM/LSMs. However, 150 

given natural correlation between some input features (e.g. rainforest landcover and precipitation), 151 

there remains a challenge in confirming that the differences observed between GHM/LSMs are related 152 

to their structure and not to the correlation between input features. To tackle this, we conducted a 153 

cross-feature evaluation. This consisted of training Random Forest with the input features of one 154 

GHM/LSM and hydrological fluxes from another. More specifically, the land cover and soil maps were 155 

swapped between GHM/LSMs, since the remaining input features are exactly the same. More 156 

explanation about the purpose of the cross-feature evaluation in S4.  157 

Thus, in addition to the ‘Regular Case’, where the output and input features belong to the same 158 

model, we analyzed a ‘General Case’ – which consists of every possible combination of GHM/LSM input 159 

and output, and the ‘Cross Case’ – where we averaged the features importance of different land cover 160 

and soil maps. In formula: 161 

• Regular case: 162 𝐹𝐼௜ = 𝑓௜௜ሺ 𝑂𝑢𝑡௜ , 𝐼𝑛௜ሻ                             𝑖 =   1 … 5 ∶  𝑚𝑜𝑑𝑒𝑙𝑠 

• General case: 163 𝐹𝐼௜௝ = 𝑓௜௝൫𝑂𝑢𝑡௜ , 𝐼𝑛௝൯                       𝑖, 𝑗 =   1 … 5 ∶  𝑚𝑜𝑑𝑒𝑙𝑠 

• Cross case: 164 

𝐹𝐼௜ = 15 ෍ 𝑓௜௝ ൫𝑂𝑢𝑡௜, 𝐼𝑛௝൯ହ
௝ୀଵ                  𝑖, 𝑗 =   1 … 5 ∶  𝑚𝑜𝑑𝑒𝑙𝑠  

Where 𝑂𝑢𝑡 and 𝐼𝑛 are related to the outputs (hydrological fluxes) and input features, 165 

respectively. 𝑓 is the function to calculate the features’ importance – 𝐹𝐼 (from the Random Forest 166 

fitting). The methodological scheme can be visualized in Figure 1. 167 
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irrigation and hydrogeological maps, which are employed by PCR-GLOBWB but were not considered 210 

here. On the other hand, LSMs are traditionally most concerned with the vertical water balance and 211 

land-atmosphere interactions, which might be easier to replicate by the RF models with the given input 212 

feature groups. 213 

3.2. Feature Importance 214 

Figure 3 summarizes the main results of our study by showing the importance of each of the five 215 

feature groups for all combinations of GHM/LSMs outputs and inputs, General Case, and 2 other cases 216 

to guide the analysis. The Regular Case represents the ideal case where the RF was trained with input 217 

features and outputs from the same GHM/LSM. We also calculated the average importances from 218 

different soil and land cover maps, named Cross Case. Where RF performance has not changed 219 

significantly (see Figure 2), it means that the different maps can explain the variance of a hydrological 220 

flux from a specific GHM/LSM to the same amount. So we assume that there is no great loss in averaging 221 

importances, and thus the Cross Case would be providing an approximately ‘unbiased’ importance, since 222 

it eliminates an inflated importance that may happen in one of the soil/land cover maps due to 223 

correlation with a more important feature (like precipitation).  224 

In general, land cover, precipitation and climate share the importance for evaporation estimate 225 

equally (Figure 3). By contrast, when estimating runoff more than 50% of the importance is associated 226 

to precipitation. Soil texture and topographic slope overall seemed weakly related to the simulated long-227 

term water balance given by Q and Evap. This corresponds with results from ML studies based on 228 

observed data that already asserted a relatively minor influence of soil texture on mean discharge 229 

(Addor et al., 2018; Beck et al., 2015), and a high importance of land cover and climate/precipitation for 230 

the water balance components (Cheng et al., 2022). 231 

Besides identifying the general agreement between GHM/LSMs, we also want to evaluate their 232 

differences. In doing so, additional caution is required as feature importances may be biased. A 233 

noticeable bias example is the land cover importance of JULES. Evaluating the Regular Case alone, we 234 

are led to conclude that JULES Evap is highly influenced by land cover compared to other GHM/LSMs. 235 

However, when considering the General Case, Land Cover is predominant in each of the first of each 236 

group of columns, which means that when using the land cover map of JULES to predict Evap from any 237 

GHM/LSM, land cover will always be assigned a higher importance. The JULES land cover bias can be 238 

visualized by the contrast between the Regular Case and the Cross Case. In summary, the high 239 
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include slope as a predictor of surface runoff generation occurred during the E2O project as an 258 

improvement from Tier 1 to Tier 2 phases (Dutra et al., 2017; Martínez-De La Torre et al., 2019). 259 

HTESSEL already considered topographic slope indirectly through the b coefficient of the ARNO model 260 

(Balsamo et al., 2009; Todini, 1996) while PCR-GLOBWB considered slope explicitly through the 261 

representation of subsurface stormflow termed “interflow” (Van Beek & Bierkens, 2008). ORCHIDEE and 262 

SURFEX do not seem to consider slope effects on surface runoff generation, at least for the E2O project. 263 

As an example the spatial difference between JULES and SURFEX in terms of surface runoff and 264 

precipitation ratio (Qs/P) is shown in Figure 4 (e.g. Andes Cordillera). 265 

 266 

Figure 4. Global maps of the studied domain presenting the Slope Proxy, Annual Precipitation (mm), Surface and Subsurface 267 
Runoff Precipitation ratio (Qs/P and Qsb/P) estimated with outputs from JULES and SURFEX. 268 

The GHM/LSMs also disagree about the importance of soil for runoff partitioning. Soil features 269 

seem more important to ORCHIDEE than for the other GHM/LSMs. Soil importance for ORCHIDEE was 270 

15% for Qs and 7.5% for Qsb, double the importance for the second-ranked GHM/LSM (Qs – HTESSEL, 271 

Qsb – PCR-GLOBWB). For ORCHIDEE in particular, the feature importance shown by the Regular Case is 272 

more suitable since the RF performance considerably declined when using soil maps of other GHM/LSMs 273 

(Figure 2). (Tafasca et al., 2020) tested different soil texture maps in ORCHIDEE and observed a low 274 



sensitivity of the water balance but a considerable sensitivity of surface runoff and soil moisture, 275 

especially associated with soil clay percentage. Our findings seem in line with these conclusions. 276 

Previous ML studies based on observations have detected a weak but existing soil texture importance 277 

for streamflow properties with clay fraction ahead of sand and silt (Addor et al., 2018; Beck et al., 2015; 278 

Kratzert et al., 2019). Therefore, soil texture indeed appears to have some importance for runoff, but 279 

the real extent of soil importance is still in debate. GHM/LSMs clearly represent it differently and there 280 

is a recently open discussion about hydrological models overestimating the soil importance (Gao et al., 281 

2023). Nevertheless, there is still much room for improvements in soil process representation by global 282 

models (Vereecken et al., 2022), which may lead to greater consensus on soil importance in future.  283 

Finally, the GHM/LSMs disagreed on the importance of precipitation/climate for Qsb. SURFEX 284 

presented the highest precipitation importance (≈57%) and JULES the lowest (≈38%). Such a high 285 

influence of a single feature (mean precipitation) on Qsb from SURFEX explains why the RF performance 286 

(R2>0.98) was so high even when using different soil and land cover databases (see Figure 2). 287 

Nevertheless, the visual differences between JULES and SURFEX related to the spatial influence of 288 

precipitation on Qsb are not obvious (Figure 4), except on high latitudes. This could also be related to 289 

the way these models treat frozen soils, and water flow within and over these permafrost surfaces. 290 

4. Conclusion 291 

This paper proposed a novel model intercomparison study to quantify and visualize differences 292 

between GHM/LSMs regarding the importance of different inputs on hydrological simulations, many of 293 

which could be interpreted in the context of model structure. We presented a practical method of 294 

comparing global models with a consistent set of approaches that increased the reliability of the results, 295 

such as considerably high RF performance, robustness test, correlation analysis and cross-feature 296 

evaluation. 297 

Then we assessed the influence of five feature groups (precipitation, climate, soil texture, land 298 

cover and topographic slope) on explaining the variance of mean evaporation, runoff, surface runoff and 299 

subsurface runoff worldwide. In general, GHM/LSMs agree on the importance of features for water 300 

balance but not for runoff partitioning in fast and slow flow. Soil texture and slope were irrelevant for 301 

simulated water balance but relevant for surface and subsurface runoff, although GHM/LSMs disagreed 302 

on the degree of that importance.  303 



We noticed that soil maps are relevant, but to a degree that depends on the hydrological 304 

variable and GHM/LSM analyzed. (Tafasca et al., 2020) found a weak influence of soil mapping on the 305 

water balance for ORCHIDEE, which agrees with our conclusion. However, we found that, for surface 306 

and subsurface runoff calculated from ORCHIDEE itself, using different soil databases as predictors 307 

affected the RF model performance. On the other hand, we could not reach the same conclusion for 308 

other GHM/LSMs since the soil importance was lower compared to ORCHIDEE. Such findings are 309 

important for ongoing MIP projects such as the Soil Parameter MIP (Verhoef et al., 2022). 310 

The present study documents the diagnostic potential of ML methods, and shows that these or 311 

similar statistical/data-driven approaches can be valuable for MIPs. Our analysis also highlights the great 312 

and enduring value of projects like E2O, which took care to standardize the model run specifications 313 

(e.g., simulation period and spatiotemporal resolution) and which greatly facilitates comparisons 314 

between models and analyses such as the one presented here. 315 
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