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Abstract14

Fractures are frequently encountered in reservoirs used for geothermal heat extraction,15

CO2 storage, and other subsurface applications. Their significant impact on flow and trans-16

port requires accurate characterisation for performance estimation and risk assessment.17

However, fractures, and particularly their apertures, are usually associated with large18

uncertainties. Data assimilation (or history matching) is a well-established tool for re-19

ducing uncertainty and improving simulation results. In recent years, ensemble-based20

methods like the ensemble smoother with multiple data assimilation (ESMDA) have gained21

popularity. A key aspect of those methods is a well-constructed prior ensemble that ac-22

curately reflects available knowledge. Here, we consider a geological scenario where frac-23

ture opening is primarily created by shearing and assume a known fracture geometry.24

Generating prior realisations of aperture with geomechanical simulators might become25

computationally prohibitive, while purely stochastic approaches might not incorporate26

all available geological knowledge. We therefore introduce the far-field stress approxi-27

mation (FFSA), a proxy model in which this stress is projected onto the fracture planes28

and shear displacement is approximated with linear elastic theory. We thereby compen-29

sate for modelling errors by introducing additional uncertainty in the underlying model30

parameters. The FFSA efficiently generates reasonable prior realisations at low compu-31

tational costs. The resulting posterior ensemble obtained from our ESMDA framework32

matches the flow and transport behaviour of the synthetic reference at measurement lo-33

cations and improves the estimation of the fracture apertures. These results markedly34

outperform those obtained from prior ensembles based on two näıve stochastic approaches,35

thus underlining the importance of accurate prior modelling.36

Plain Language Summary37

Fractures are often present in subsurface reservoirs, but detecting and character-38

ising them can be challenging. Understanding their location, size, and aperture (i.e., their39

opening) is crucial for predicting heat production in geothermal reservoirs or prevent-40

ing leaks during CO2 storage. This study focuses on the fracture apertures as an unknown41

quantity. We use ensemble-based data assimilation, which involves running numerous42

simulations with varying parameter values, to get a more complete and accurate under-43

standing of the system, particularly of the fracture apertures. We simulate tracer tests44

(i.e., injecting fluid with a tracer into the reservoir) using different aperture values and45

investigate how the initial guess for the aperture values impacts the results. Generat-46

ing those initial aperture values with geomechanical simulations is accurate but can be47

computationally expensive. As a fast and reasonably accurate alternative, we use the far-48

field stress approximation (FFSA), which approximates the costly aspects of the geome-49

chanical simulation. Initial guesses of the aperture values from FFSA outperform the ones50

from näıve stochastic approaches in our framework, leading to better aperture estima-51

tion at lower computational costs. This helps us to accurately model and predict the be-52

haviour of fractures in subsurface reservoirs, contributing to more effective and reliable53

energy and environmental solutions.54

1 Introduction55

Proper reservoir characterisation is crucial to accurately model flow and transport,56

evaluate performance and assess risks in subsurface applications. These applications in-57

clude geothermal energy extraction (Pruess, 2002; Kumagai et al., 2004; Häring et al.,58

2008; Amann et al., 2018), geological carbon sequestration (Lu et al., 2013; Bui et al.,59

2018; Shao et al., 2021), groundwater flow (Flury et al., 1994; Bear & Cheng, 2010), oil60

and gas reservoirs (Parker, 1989; Ahr, 2008), and nuclear waste disposal (Tsang et al.,61

2015). Many of these reservoirs contain pre-existing natural fractures or fractures cre-62

ated during construction and operation, which can significantly impact flow and trans-63
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port (Matthäi & Belayneh, 2004; Geiger et al., 2004; Johnston et al., 2005; Geiger et al.,64

2010). The extent of their influence depends on fracture parameters such as length, ori-65

entation, apertures, location, connectivity, and density. As an example, highly conduc-66

tive and interconnected fractures can serve as shortcuts for the flow, causing early break-67

through, while small and isolated fractures may have little effect on flow and transport.68

Precisely estimating these fracture parameters is thus essential.69

However, direct measurement of fracture parameters is usually difficult. Several es-70

tablished techniques exist that detect and characterise fractures in the vicinity of bore-71

holes, such as image logging, core analysis or spinner logs (Genter et al., 1997; Prensky,72

1999; Al-Dhafeeri & Nasr-El-Din, 2007; Ali et al., 2021). However, boreholes are typi-73

cally sparse and the space between them is not covered by those methods. Measuring74

seismic anisotropy on the other hand provides statistical or average information about75

fractures in the whole reservoir, but only the fracture orientation, density, and, to some76

extent, length distribution can be deduced, while the apertures and exact geometry of77

fractures remain unknown (E. Liu & Martinez, 2012). Outcrops show concrete realisa-78

tions of the fracture geometry, albeit only at the earth’s surface. They serve as analogues79

from which statistical information about the fracture geometry in the subsurface reser-80

voir can be inferred (Casini et al., 2016; Gutmanis et al., 2018). Geostatistical tools such81

as variograms and (co)kriging analyse and predict distributions of spatially correlated82

subsurface properties (Chilès & Delfiner, 2012). As a consequence, the fracture param-83

eters, in particular the fracture apertures, are often subject to a high level of uncertainty.84

It is therefore necessary to reduce the uncertainty in the fracture parameters for85

accurate flow and transport modelling in fractured reservoirs. Data assimilation (DA)86

or history matching is a common tool for reducing uncertainties in model parameters and87

subsequently improving simulation results by incorporating measurement data. In sub-88

surface applications, often flow and transport measurements from well tests or dynamic89

production data are used. Popular DA methods include variational data assimilation based90

on the adjoint method, ensemble-based methods such as the ensemble Kalman filter (EnKF)91

or particle filter, and hybrid forms thereof (for a review see e.g. Asch et al., 2016; Ban-92

nister, 2017; Carrassi et al., 2018; Evensen et al., 2022). The EnKF, introduced by Evensen93

(1994), is an ensemble approximation of the original Kalman filter (Kalman, 1960) and94

does not require linearised or adjoint versions of the model or the observation operator.95

There exists a wide variety of EnKF versions, for a review see e.g. Houtekamer and Zhang96

(2016), Keller et al. (2018), or Evensen et al. (2022). While the classical EnKF updates97

the model parameter whenever new measurements are available, ensemble smoothers (ES)98

collect all measurements in space and time and perform updates only at the end of sim-99

ulations (van Leeuwen & Evensen, 1996; Skjervheim et al., 2011). This simplifies the im-100

plementation as the reservoir simulator does not need to be interrupted. Iterative ver-101

sions of the ES, such as the ensemble randomised maximum likelihood method (EnRML)102

(Chen & Oliver, 2012, 2013) or the ensemble smoother with multiple data assimilation103

(ESMDA) (A. A. Emerick & Reynolds, 2013), were developed for weakly to modestly104

non-linear systems and have gained popularity in recent years.105

Several studies have applied DA to fracture apertures. Some studies assume an iden-106

tical and known aperture value for all fractures and focus on reducing the uncertainty107

in other fracture parameters (Ping et al., 2017; Chai et al., 2018; Yao et al., 2018). How-108

ever, it is known that fracture apertures vary considerably throughout the domain (C. A. Bar-109

ton et al., 1995; Baghbanan & Jing, 2008; N. Barton & Quadros, 2015; X. Zhang et al.,110

2021). Other studies have used relatively simple, unconditional distributions to model111

the apertures (Zhe et al., 2016; Liem & Jenny, 2020; Q. Liu et al., 2022) or set them pro-112

portional to the fracture length (K. Zhang et al., 2021). However, these models may not113

accurately represent the complex relationship between aperture values and stress state,114

displacement history and fracture parameters such as orientation, length, and surface115

roughness. In Seabra et al. (2023), those complex relations are included, albeit without116
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shear displacement. They calculate fracture apertures as a function of effective normal117

stress obtained from a geomechanical simulation and subsequently reduce the uncertainty118

in the global model parameters with DA. In Wu et al. (2021), the authors follow an al-119

together different approach and model aperture variations within the fracture plane of120

a single fracture.121

The performance of ensemble-based DA strongly depends on the quality of the prior122

ensemble. In the above-mentioned studies, typically either the number of fractures is small123

or when a moderate number of fractures is used, the apertures only depend on a few un-124

derlying uncertain parameters. Ensemble-based DA usually performs well under such125

conditions; however, it becomes more challenging when considering a large number of126

fractures each with an individual aperture. The ensemble size is usually limited by com-127

putational resources and therefore the prior distribution is likely undersampled. This re-128

stricts the solution space as the posterior ensemble is a linear combination of the prior129

ensemble (Evensen, 2003) and can lead to spurious correlations. Those issues are by no130

means unique to DA in fractured reservoirs, but they arise in any other application where131

a huge number of parameters is represented by a limited ensemble size, such as in me-132

teorology, oceanography, or groundwater flows. A common strategy is to apply locali-133

sation and inflation methods in the update step (e.g. Anderson & Anderson, 1999; Houtekamer134

& Mitchell, 2001; Chen & Oliver, 2010; A. Emerick & Reynolds, 2011; Luo & Bhakta,135

2020; Evensen et al., 2022).136

In this work, we pursue a different (and possibly complementary) approach to im-137

proving the prior ensemble by incorporating additional physical knowledge. We thereby138

consider a situation where the fracture apertures are predominantly created by shear-139

ing driven by the tectonic far-field stresses. Toolkits with geomechanical capabilities such140

as ABAQUS (Smith, 2009; Agheshlui et al., 2018), COMSOL (Multiphysics, 2013), DARTS141

(Y. Wang et al., 2020; Boersma et al., 2021), ICGT (Thomas et al., 2020; Paluszny et142

al., 2020), MRST (Ucar et al., 2018; Lie & Møyner, 2021), OpenCSMP (Pezzulli et al.,143

2022a, 2022b), or XFVM (Deb & Jenny, 2017a, 2017b) can been used to calculate shear144

displacement and fracture apertures for this scenario. However, it might be computa-145

tionally expensive to generate a whole ensemble of realisations that are needed as pri-146

ors for a DA framework, especially when considering a decent number of fractures. A147

purely stochastic approach on the other hand is unlikely to include all available phys-148

ical knowledge and cannot represent the complex relationship between apertures and other149

modal parameters.150

We therefore look for a method that produces physically meaningful prior realisa-151

tions at little computational cost. For this, we build upon existing proxy models (Milliotte152

et al., 2018; Agheshlui et al., 2019; J. Wang et al., 2023) and propose a method based153

on far-field stress approximation (FFSA). FFSA projects the tectonic far-field stresses154

onto the fracture planes and estimates the shear displacements based on linear elastic155

theory. Thus, we do not need to solve differential equations, which makes the method156

computationally attractive. We account for the errors introduced by those approxima-157

tions by additional uncertainty in a model parameter. We combine the FFSA with the158

constitutive relations of Barton and Bandis (N. Barton & Choubey, 1977; N. Barton, 1982;159

Bandis et al., 1983; N. Barton et al., 1985; Lei & Barton, 2022) and integrate it into our160

ESMDA framework. We use flow and transport data to improve the estimation of the161

fracture apertures. While a preliminary version of this approach has already been pub-162

lished (Liem et al., 2022), this work refines and extends the method and presents more163

extensive and impactful results. In particular, we obtain the synthetic reference flow and164

transport data from a realisation generated with a geomechanical reservoir simulator,165

and we compare the performance of our DA framework when using prior ensembles gen-166

erated with the FFSA to two stochastically generated prior ensembles.167

This paper is organised as follows: Section 2 introduces our data assimilation frame-168

work including the FFSA for generating prior ensembles. In Section 3, we discuss the169
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fracture geometry, and in Section 4, the model parameters, some of which are assumed170

to be uncertain. The results of this study, which are presented in Section 5 and discussed171

in depth in Section 6, show that reasonable prior ensemble realisations can be obtained172

with FFSA. Ensembles generated with FFSA outperform the ones from two näıve stochas-173

tic approaches in our DA framework.174

2 Method175

In this work, we consider a geological scenario that consists of two phases. In Phase 1,176

the fracture apertures are generated. We study a thin layer of fractured rock embedded177

between two impermeable and rigid layers. All fractures are present from the beginning,178

and we do not consider any fracture propagation. The fractures are initially closed and179

there is no history of tectonic folding, uplifting, or cooling. We apply a tectonic far-field180

stress and steadily increase the fluid pressure within the fractures. As the effective nor-181

mal stress decreases, some fractures begin to slip and consequently dilate due to asper-182

ities on the fracture surface. As a result, the apertures vary considerably from fracture183

to fracture. Due to numerous sources of uncertainty, e.g. in the stress state, rock prop-184

erties or fracture roughness, the fracture apertures cannot be calculated deterministi-185

cally but are also associated with some uncertainty. In Phase 2, we perform a tracer test186

to characterise the reservoir, while we assume that the fluid injection does not affect the187

fracture apertures. We use an iterative ensemble-based data assimilation (DA) frame-188

work (Figure 1) to history match the fracture apertures and obtain a posterior aperture189

estimate with reduced uncertainty. In the following, the individual building blocks of the190

DA framework are explained in detail.191

Geomechanical Reference

Reference Measurements

Reservoir Simulator

Prior Ensemble of Apertures

Reservoir Simulator

Measurements

Data Assimilation

Posterior Ensemble of

FFSA (Section 2.1) or
XFVM (Section 2.2)

OpenCSMP (Section 2.3) OpenCSMP (Section 2.3)

ES-MDA (Section 2.4)

Iterate

Phase 1: Generation of Fracture Apertures

Phase 2: Reservoir Characterisation

Stochastically (Section 5.1)

Synthetic Flow & Transport Computed Flow & Transport

Apertures

Realisation of Apertures

Figure 1. Iterative data assimilation framework used in this work
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2.1 Prior Ensemble of Apertures with Far-Field Stress Approximation192

(FFSA)193

Here, we present a simple and fast method for estimating fracture apertures that194

can be used to generate a reasonable prior ensemble with little computational cost. We195

approximate the stress state at the fractures from the far-field stress using Cauchy’s equa-196

tions197

σn = σH cos2 θ + σh sin2 θ and (1)198

σs = (σh − σH) sin θ cos θ , (2)199
200

where σH and σh are the maximum and minimum principal horizontal stresses and θ is201

the angle between σH and the fracture normal (Figure 2). Those equations are only valid202

for a virtual plane in an intact material, as is the case when all fractures are closed and203

shear stress is fully transmitted over the fractures. They ignore fracture interactions and204

hence only provide approximate solutions when shear displacement or tensile opening205

occurs in other fractures.206

σH

σh

σnσs
θ

Figure 2. Projection of principal horizontal far-field stresses, σH and σh, onto a fracture

A fracture begins to slip when shear stress exceeds shear strength, i.e. when |σs| > τmax.207

The shear strength according to Coulomb’s friction law is208

τmax =

{
σeff · tan(φ′), σeff > 0

0, otherwise ,
(3)209

where σeff = σn − pf is the effective normal stress, φ′ the friction angle, and pf the fluid210

pressure. As the fracture slips, the shear stress relaxes until the arrest criterium211

|σs| ≤ τmax (4)212

is satisfied. We approximate the decrease ∆σs in shear stress for an increment ∆δs of213

shear displacement with linear elastic theory (Eshelby & Peierls, 1957; Chinnery, 1969;214

Willis-Richards et al., 1996; Rahman et al., 2002), i.e., we assume215

∆σs
G

= Cg
∆δs
L

, (5)216

where G is the shear modulus of the surrounding material, L the fracture length and Cg217

a proportionality factor. This then allows us to calculate the total shear displacement218
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δs of a fracture. The amount of shear dilation δd is then obtained by integrating the tan-219

gent of the dilation angle φd over shear displacement, i.e.,220

dδd = dδs tan (φd) → δd =

δs∫
0

tan (φd) dδs . (6)221

In this work, we use the constitutive model of Barton and Bandis (N. Barton & Choubey,222

1977; N. Barton, 1982; Bandis et al., 1983; N. Barton et al., 1985; Lei & Barton, 2022)223

to calculate friction and dilation angles (Appendix A1). In this empirical model, these224

angles are algebraic functions of the shear displacement. They reach a peak value for a225

certain shear displacement and then decrease for larger displacements. Thus, Equations (3)226

to (5) form a non-linear system of equations. The fracture aperture227

a = a0 − δn + δd (7)228

is a combination of an initial fracture aperture a0, closure due to normal stress δn and229

shear dilation δd. In this work, we do not consider tensile opening and set the hydraulic230

aperture equal to the mechanical aperture.231

2.2 Geomechanical Reference Realisation of Apertures with XFVM232

To generate an accurate reference of the aperture field, we need a proper geome-233

chanical simulator. To this end, we employ an implementation of the extended finite vol-234

ume method (XFVM), an embedded discrete fracture method that includes lower-dimensional235

fracture manifolds in Cartesian grids (Deb & Jenny, 2017a, 2017b). In 2D, each fracture236

is divided into line segments, where each segment has one degree of freedom for shear237

slip, resulting in piecewise constant displacements along the fractures. Linear elasticity238

of the rock is assumed, the force balance is solved in an integral manner, and we use Coulomb’s239

friction law (Equation (3)) as a slip criterion. The displacement field is approximated240

by continuous basis functions at the grid points and discontinuous basis functions to rep-241

resent fracture manifolds. These special discontinuous basis functions ensure that the242

displacement gradient is continuous across the manifold, allowing the calculation of shear243

stress on the fracture without additional constraints. We then solve the system of lin-244

ear equations for the displacement at the grid points and the shear slip of the segments.245

As in our approach with FFSA, we calculate shear dilation with the constitutive model246

of Barton and Bandis described in Appendix A1. To this end, we adjust the dilation an-247

gle φd at each time step to account for changes in roughness while the shear dilation is248

coupled to the stresses and hence accounted for in the force balance, as described in Conti249

et al. (2023). The fracture aperture of each segment is obtained from Equation (7), where250

the initial aperture and normal closure are added in a post-processing step.251

2.3 Flow and Transport Computation based on OpenCSMP252

As a reservoir simulator, we use the Complex Systems Modelling Platform (OpenC-253

SMP) (Geiger et al., 2004; Matthäi et al., 2007), a finite element – finite volume frame-254

work. It offers a wide range of functionality to calculate flow and transport processes with255

a focus on fractured porous media. In this work, we consider tracer transport by a steady-256

state velocity field. We calculate the volumetric flow field q of a single-phase fluid with257

dynamic viscosity µ through a porous medium with permeability k from Darcy’s law258

q = −k
µ
∇p (8)259

and the continuity equation ∇ · q = q̇source , which can be combined and result in the260

elliptic pressure equation261

∇ ·
(
k

µ
∇p
)

+ q̇source = 0 . (9)262
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Here, p is the steady-state pressure and q̇source is the source term which is positive for263

fluid injection and negative for extraction. At time t0, we start injecting a passive tracer264

which follows the flow field perfectly. The tracer does not alter the flow field and we ne-265

glect diffusion. We calculate the evolution of this tracer with the hyperbolic scalar trans-266

port equation267

φ
∂c

∂t
+ q · ∇c− q̇sourcecsource = 0 , (10)268

where c is the tracer concentration and φ the porosity. We solve tracer transport with269

a first-order version of discrete event simulation (DES) (Shao et al., 2019), a totally asyn-270

chronous local time stepping scheme.271

2.4 Data Assimilation with ESMDA272

In this work, we use the ensemble smoother with multiple data assimilation (ES-273

MDA) proposed by A. A. Emerick and Reynolds (2013). As an ensemble smoother, the274

ESMDA collects all measurements in time and space in one vector and performs a Kalman275

update once the reservoir simulation is completed. The ESMDA alternately performs276

update steps with the same reference measurements and reruns the reservoir simulator277

with the updated parameters (Figure 1). Those iterations are necessary due to the non-278

linear reservoir simulator.279

We create a prior ensemble xprior1:NE
of NE realisations with FFSA and one reference280

realisation xref with XFVM. In this work, the parameter vector of a certain realisation281

i,282

xi =
[

log10(ai1) , log10(ai2) , ... , log10(aiN )
]T

, (11)283

contains the logarithms of the aperture values of all N fractures. We run a reservoir sim-284

ulator developed on the basis of OpenCSMP for each realisation to obtain the correspond-285

ing measurement vector yi, which consists of pressure values, volume flow rates and tracer286

arrival times.287

We then get an updated posterior estimation of the fracture apertures with reduced288

uncertainty by combining the prior knowledge about the model parameter with the un-289

certainty in the measurements. We thereby integrate the stochastic EnKF of Algorithm290

6.3 in Asch et al. (2016) into the ESMDA as described in Liem et al. (2022). The up-291

date or analysis step of a standard stochastic EnKF is292

xai = xfi +K
(
yref − (yi + ui)

)
with ui ∼ N (0, R) , (12)293

where the superscripts f and a denote parameter vectors before and after the update294

step and the sets of all xfi and xai are called prior and posterior ensembles, respectively.295

R is the measurement error covariance matrix and following van Leeuwen (2020) we ap-296

ply the perturbations ui to the ensemble measurements. In order to ensure consistency,297

the measurement error covariance matrix must be inflated accordingly. This and the cal-298

culation of the Kalman gain K are explained in Appendix A2.299

3 Fracture Geometry300

This study uses a realistic fracture geometry with N = 4051 individual fractures301

(Figure 3a) identical to the one in Liem et al. (2022), except for minor changes in the302

classification of segments into individual fractures. The geometry was mapped by Odling303

(1997) from aerial photography of the Hornelen basin in western Norway. The mapped304

region extends over an area of 720 × 720 m, with aerial photos taken from a height of305

370 m. The smallest observable features were 30 cm wide depressions filled with soil, grass306

or water. More fractures became visible at smaller observation heights; thus, the geom-307

etry shown in Figure 3a represents merely a subset of the total fractures present.308
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The fracture geometry has approximately a log-normal distribution of fracture length309

(Figure 3b) and a bi-modal distribution of fracture orientation with the most prominent310

peak at around 40◦ (Figure 3c). The Hornelen basin is filled with fractured Devonian-311

age Old Red Sandstone (e.g. Torsvik et al., 1988) with a very low permeability. The frac-312

ture apertures observed at the surface are not representative of the ones at reservoir depth,313

as stress conditions are markedly different. Therefore, we rely on a geomechanical sim-314

ulator to calculate the reference apertures.315

(a) (b) (c)

Figure 3. Fracture trace map of Hornelen basin outcrop (a) and histogram of logarithm of

fracture length (b) and fracture orientation (c). The line in (b) shows a log-normal distribution

with same mean and standard deviation. The fracture geometry was mapped by Odling (1997)

and digitalised and discretised by Azizmohammadi and Matthäi (2017). Figure adapted from

Liem et al. (2022).

4 Simulation Setup316

The thin horizontal layer of fractured rock is embedded between two rigid and im-317

permeable layers with fractures perpendicular to bedding. These assumptions enable us318

to approximate the model as 2D. We approximate the fractures by straight lines for the319

mechanical simulations (i.e. XFVM and FFSA). For the XFVM reference, we use a grid320

spacing of 2 m, resulting in roughly 46000 fracture segments.321

4.1 Uncertain Model Parameters322

While we assume that we know the fracture geometry exactly, other geomechan-323

ical model parameters of Phase 1 are associated with some uncertainty (Table 1). We324

distinguish parameters that are equal for all fractures within one realisation and sam-325

pled therefore only once per realisation (indicated with target ’R’) and parameters that326

are different for each fracture within each realisation (target ’F’). Consequently, the to-327

tal number of sampled model parameters per realisation is 8+5N = 20263. In the fol-328

lowing, we discuss the parameters and their uncertainty in more detail.329

We model a burial depth of the fractured reservoir of 1500 m, corresponding to an330

overburden stress σv of approximately 32 MPa based on an average rock density of around331

2.2 g/cm3. We assume a normal faulting regime (i.e. σv > σH > σh) and set the min-332
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Table 1. Uncertain geomechanical model parameters. We use scaled beta distributions defined

by mean µ, standard deviation σ and [upper bound, lower bound]. For generating the prior en-

semble with FFSA, we sample parameters with target ’R’ only once per realisation and those

with target ’F’ for every fracture individually. The last column lists the input parameters for the

reference simulation with XFVM.

Symbol Unit µ σ Bounds Target Ref

β degree 0 5 [-15, 15] R 0

σH MPa 30 0.6 [28, 32] R 29.7

σh MPa 23 0.3 [22, 24] R 23.3

pf MPa 21.5 0.15 [21, 22] R 21.8

φr degree 25 1 [22, 28] R 25

σc MPa 70 3 [61, 79] R 70

E MPa 5000 500 [3500, 6500] R 5000

ν – 0.25 0.0075 [0.2275, 0.2725] R 0.25

JRCsmall – 6 1 [2, 10] F sampled

JRClarge – 2 0.6 [0, 4] F sampled

Kni
MPa
mm 20 5 [10, 30] F sampled

vrelm – 0.5 0.125 [0.25, 0.75] F sampled

Cg – 1 0.1 [0.7, 1.3] F –

imal principal horizontal stress to σh ≈ 0.7σv. The orientation β of the maximum prin-333

cipal horizontal stress σH is described in Heidbach et al. (2018); here, we roughly align334

it to the x-axis of our coordinate system. We assume a constant fluid pressure pf across335

the entire field. We choose a fluid pressure close to σh to get a reasonable amount of shear-336

ing but ensure that it remains smaller than σh to prevent tensile opening. Although the337

material properties of the rock (here Young’s modulus E, Poisson’s ratio ν, shear mod-338

ulus G = E
2(1+ν) , unconfined compressive strength σc, and residual friction angle φr)339

are rarely uniform in a reservoir, we approximate them as such. The chosen values are340

loosely inspired by Ojo and Brook (1990) and Hawkins and McConnell (1991).341

The friction of the fracture planes plays a crucial role and represents a significant342

source of uncertainty. Two parameters describe friction in our constitutive model (Ap-343

pendix A1). The residual friction angle φr is a material property and describes friction344

of a planar rock surface. The joint roughness coefficient JRC, on the other hand, de-345

scribes the increase of friction due to surface roughness which differs from fracture to frac-346

ture. In this work, we consider surface roughness at two different length scales: small-347

scale roughness at the level of the asperities (e.g. Pollard & Aydin, 1988) as described348

by the original Barton and Bandis model and modelled here with JRCsmall, and an ad-349

ditional roughness compensating for idealising fractures as straight lines in our model.350

We calculate the combined joint roughness coefficient as351

JRC = JRCsmall + JRClarge · log10(L) , (13)352

where the fracture length L is in meters.353
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Additional fracture parameters in the Barton and Bandis model (Appendix A1)354

include the initial normal stiffness Kni and the maximum possible closure vm = vrelm a0.355

While the FFSA provides accurate results for a single fracture, it does not account for356

interactions between fractures (Appendix A3). To address the limitations of this approx-357

imation, we introduce additional uncertainty through the proportionality coefficient Cg358

that relates shear stress to shear displacement.359

The amount of shear displacement and consequently also fracture aperture obtained360

from FFSA corresponds to the maximum value along the fracture length. In the friction-361

less case, shear displacement follows an elliptic profile (Eshelby & Peierls, 1957). Due362

to the non-linear constitutive model of Barton and Bandis, the profiles of shear displace-363

ment and aperture are only approximately elliptic. Those profiles can have in general364

arbitrary shapes in the XFVM. For simplicity, however, we assume a constant aperture365

over the length of a fracture and assign it to the maximum aperture value.366

Ideally, we would compare the FFSA prior to a prior ensemble generated from XFVM.367

However, this is computationally too expensive. We therefore compare it to prior ensem-368

bles from two näıve stochastic approaches. They both sample from the unconditional prob-369

ability density function (PDF) of the FFSA prior.370

4.2 Parameters for Flow and Transport Simulation and ESMDA Up-371

dates372

In Phase 2 of the geological scenario, we alternately perform tracer tests and up-373

date the fracture apertures with ESMDA. For the tracer test, we inject fluid through a374

single fracture named ’well fracture’, which is located at the centre of the domain, and375

apply a constant pressure at all four boundaries (Figure 4a). Starting at time t0 = 0,376

a scalar tracer with concentration c = 1 is introduced into the injected fluid. We com-377

pute the steady-state velocity field and tracer transport using OpenCSMP (Section 2.3).378

The matrix domain is thereby discretised with an unstructured triangular mesh, and the379

fractures are represented as lower-dimensional line elements (Azizmohammadi & Matthäi,380

2017). In this work, we decouple flow and transport from the fracture mechanics, assum-381

ing that fluid injection does not affect the fracture apertures. While this assumption is382

often invalid in real-world scenarios, it is necessary in our framework due to computa-383

tional limitations. The relevant parameters for the flow and transport simulations are384

provided in Table 2. Note that we calculate the fracture permeabilities from the frac-385

ture apertures assuming plane Poiseuille flow between two parallel plates.386

Table 2. Parameters for flow and transport simulation with OpenCSMP

Fluid viscosity µ 1× 10−3 Pa s
Matrix permeability km 3× 10−13 m2

Matrix porosity φm 0.15
Fracture permeability kf a2/12
Fracture porosity φf 1.0
Pressure at all 4 boundaries pout 9 MPa

Inlet volume flow Q̇in/lw 2× 10−3 m2/s
Length of well fracture lw 56.48 m
CFL multiplier for DES 0.4

In this work, we assume that measurements along the domain boundary and in the387

well fracture are available (Figure 4b). Concretely, we measure the maximum value of388

the steady-state pressure pin along the well fracture and the volume flow rate Q̇out through389

20 model-boundray segments. Further, we monitor the evolution of the tracer concen-390
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tration at certain locations on the boundary and either use the concentration value af-391

ter 320 days, c320, or the time it takes to reach a concentration of 0.5, t0.5, as measure-392

ments. The number of measurements and their locations are arbitrary choices. To eval-393

uate the performance of the DA framework, we set 12 measurements (indicated in yel-394

low in Figure 4b) aside and use the remaining 60 measurements for the ESMDA updates.395

We call them test and training measurements, respectively. We scale the measurements396

as397

p̃in =
pin − pout
pout

, ˜̇Q
(i)
out =

Q̇
(i)
out

Q̇in/20
, t̃

(i)
0.5 =

t
(i)
0.5

640 days
, c̃

(i)
320 = c

(i)
320 (14)398

and collect them in the training and test measurement vectors399

y =
[
p̃in ,

˜̇Q
(1)
out , ... ,

˜̇Q
(16)
out , t̃

(1)
0.5 , ... , t̃

(19)
0.5 , c̃

(1)
320 , ... , c̃

(24)
320

]T
and (15)400

z =
[

˜̇Q
(17)
out , ... ,

˜̇Q
(20)
out , t̃

(20)
0.5 , ... , t̃

(25)
0.5 , c̃

(25)
320 , ... , c̃

(26)
320

]T
, (16)401

402

respectively. The superscript (i) denotes individual measurements of a certain quantity.403

(a) (b)

Figure 4. Boundary conditions for the flow and transport simulations (a) and location of

measurements for ESMDA updates (b). The labels M1-2 and T1-2 mark specific training and

test locations, respectively.

After obtaining those measurements for every realisation, we update the param-404

eter vectors containing the logarithm of all 4051 fracture aperture values using ESMDA.405

For the scaled dimensionless measurements we assume a diagonal error covariance ma-406

trix R with each element of the diagonal set to 1× 10−5. In this work, we do not ap-407

ply any covariance localisation or inflation. We study the influence of ensemble size NE408

and the number of ESMDA iterations Niter on the results of the DA framework. For a409

quantitative evaluation, we utilise the mean root-mean-square error defined as410

M-RMSEξ =
1

Nξ

Nξ∑
i=1

√√√√ 1

NE

NE∑
j=1

(
ξ
(j)
i − ξ

(ref)
i

)2
, (17)411

where ξ can represent either the log-apertures x, training measurements y, or test mea-412

surement z. Here, ξ
(j)
i denotes the i-th entry in the corresponding vector of the j-th re-413

alisation, and Nξ refers to the length of that vector.414
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5 Results415

In this section, we first analyse the prior ensemble obtained from FFSA by com-416

paring it to the reference realisation from XFVM as well as to two prior ensembles from417

the näıve stochastic approaches. Subsequently, we show that the prior ensemble from418

FFSA outperforms the stochastic approaches in our DA framework.419

5.1 Prior ensemble420

We first compare the maximum aperture value of each fracture. The reference re-421

alisation obtained with XFVM is shown in Figure 5 and realisations 1 to 6 of the prior422

ensemble generated with FFSA are depicted in Figures 6a–f, each obtained from a dif-423

ferent set of sampled model parameter values. The realisations of the FFSA prior have424

a notable variability which reflects the uncertainty in the model parameters as defined425

in Table 1. Although none of the 6 prior realisations are particularly close to the refer-426

ence, they nevertheless capture trends and features of it.427

Figure 5. Reference realisation with XFVM. Line thickness corresponds to aperture width

and line colour to log10 of the fracture permeability.

From the prior ensemble with FFSA, we extract the unconditional PDF of the aper-428

tures and related quantities from all fractures in all realisations (black curves in Figure 7).429

The corresponding PDF from the reference simulation is shown in blue. Overall the two430

curves in Figure 7 agree very well, although there are distinct differences. Firstly and431

most notably, the FFSA prior underestimates the number of fractures with moderate frac-432

ture permeability in the range of 10−8 m2 to 10−7 m2 (Figure 7f). We attribute this to433

the slightly smaller mean shear displacement (Figure 7c) which we believe is a consequence434

of neglecting fracture interactions. Secondly, the maximum values of shear displacement435

and subsequently also aperture are significantly higher in the FFSA prior than in the436

XFVM reference (Figure 7c). This occurs when very small friction and Cg values are sam-437

pled for long and favourably oriented fractures in the FFSA prior. Such extreme values438

are not present in the parameter set of the reference. Lastly, fracture interaction can mod-439

ify the local stress field, resulting in situations where the effective normal stress can be-440

come small or even negative. Therefore, some fractures in the XFVM reference experi-441

ence little to no normal closure (Figure 7b). In contrast, all fractures in the FFSA prior442

have positive effective normal stress and consequently some amount of normal closure,443

as fracture interaction is neglected there. Even with these differences, we expect the en-444

semble generated with FFSA to be a suitable prior for our DA framework.445

We aim to compare the FFSA prior to two prior ensembles from näıve stochastic446

approaches. For the first approach, named here stochastic single value prior, we sample447

one value per realisation from the unconditional PDF of the FFSA prior (i.e. black curve448

in Figure 7e) and set all apertures in that realisation to this value. For the second ap-449
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(a) Realisation 1 (FFSA) (b) Realisation 2 (FFSA) (c) Realisation 3 (FFSA)

(d) Realisation 4 (FFSA) (e) Realisation 5 (FFSA) (f) Realisation 6 (FFSA)

(g) Realisation 1 (stoch. single value) (h) Realisation 4 (stoch. single value) (i) Realisation 3024 (stoch. single value)

(j) Realisation 1 (stochastic varying) (k) Realisation 2 (stochastic varying) (l) Realisation 3 (stochastic varying)

Figure 6. Realisations of the prior ensemble with FFSA (a–f), stochastic single value (g–i)

and stochastic varying (j–l). Line thickness corresponds to aperture width and line colour to

log10 of the fracture permeability.
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(a) Initial aperture (b) Normal closure (c) Shear displacement

(d) Shear dilation (e) Fracture aperture (f) Fracture permeability

Figure 7. Combined histogram of the values of all 4051 fractures in 5000 realisations with

FFSA (black) and the reference simulation with XFVM (blue)

proach, named stochastic varying prior, we independently sample aperture values for ev-450

ery fracture in every realisation from the same PDF. Figures 6g–l show realisations of451

those two prior ensembles. Visually, the FFSA prior is much closer to the reference than452

the stochastic ones, even though all three prior ensembles follow the same unconditional453

PDF.454

5.2 Posterior ensemble455

Now we want to investigate how the three different prior ensembles perform in our456

DA framework. We first analyse the measurements and then the apertures of the pos-457

terior ensembles.458

We monitor the evolution of the tracer concentration over time at specific locations459

on the boundary of the domain (Figure 4b). Figure 8 shows the resulting breakthrough460

curves at two training and two test locations for three prior ensembles of different sizes461

generated with FFSA and corresponding posterior ensembles. At the training locations,462

either a concentration or arrival time measurement is taken for the ESMDA update, whereas463

at test locations, the breakthrough curve measurement is solely used for evaluating the464

performance of ESMDA but not in the update itself. The breakthrough curves of the465

prior ensembles have a considerable spread at all four locations as a result of the uncer-466

tain fracture apertures. At training locations, the posterior ensembles closely match the467

reference realisation from XFVM. We obtain a good match of the entire breakthrough468

curves even though only a single concentration or arrival time measurement per loca-469

tion is used. In test locations, the level of uncertainty is only slightly reduced, and a con-470

siderable spread remains in the posterior ensembles. With the FFSA prior we get essen-471

tially converged results already for an ensemble size of 500, as the results remain con-472

sistent for larger ensemble sizes.473

The same breakthrough curves for the stochastic varying prior are shown in Fig-474

ure 9. Here, the posterior of the smallest ensemble size (i.e., with NE = 500) collapsed475
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Figure 8. Breakthrough curves of the FFSA prior. The prior ensemble is in black, the poste-

rior ensemble in blue and the XFVM reference in red. The locations of two training and two test

locations are indicated in Figure 4. The columns correspond to different ensemble sizes and the

dashed lines indicate the measurements.

and converged to a wrong solution. Results with larger ensemble sizes are generally fine;476

however, test location T1 indicates that NE = 2000 is not large enough for full con-477

vergence regarding ensemble size. Compared to the FFSA prior, the ensemble spread is478

larger for the stochastic varying prior, both in the prior ensembles and consequently also479

in the posterior ensembles.480

We quantify the performance of the FFSA and stochastic varying priors with the481

mean root-mean-square error of the training and test measurements, as defined in Equa-482

tion (17), for different ensemble sizes and numbers of ESMDA iterations (Figure 10a–483

d). Comparing the FFSA posterior to its prior, we see that the error in the training mea-484

surements is drastically reduced, while the error in the test measurements is only slightly485

smaller. An ensemble size of 500 and 4 ESMDA iterations is sufficient to achieve satis-486

factory results for the FFSA prior. For the stochastic varying prior however, a combi-487

nation of ensemble size and number of ESMDA iterations beyond our computational ca-488
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Figure 9. Breakthrough curves of the stochastic varying prior. The prior ensemble is in black,

the posterior ensemble in blue and the XFVM reference in red. The locations of two training and

two test locations are indicated in Figure 4. The columns correspond to different ensemble sizes

and the dashed lines indicate the measurements.

pabilities is required for converged results. Compared to FFSA, the training and test er-489

rors of the stochastic varying prior are 1.8 and 3.0 times larger, respectively. For the com-490

bination with the smallest errors (i.e., with NE = 5000 and Niter = 4), the correspond-491

ing ratios in the posterior are 3.9 and 2.1. In short, the results from the FFSA prior match492

the measurements better than the ones from the stochastic varying prior, but the lat-493

ter also produces a posterior with substantially reduced measurement errors, given a suf-494

ficiently large ensemble size.495

A significant difference exists between the updated fracture apertures obtained with496

the two methods. Figure 11 shows some realisations of the posterior ensembles obtained497

from the FFSA and stochastic varying priors for NE = 5000 and Niter = 4. Gener-498

ally, the posterior realisations of FFSA (Figure 11a–f) are more similar to the reference499

than the corresponding realisations from the prior ensemble (Figure 6a–f), and the vari-500

ability of the realisations in the ensemble is reduced. For example, realisations 5 and 6501
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(a) (b)

(c) (d)

Figure 10. Mean root-mean-square error (M-RMSE) of training (a, b) and test (c, d) mea-

surements calculated with Equation (17). Figures (a, c) show results for Niter = 4 and (b, d) for

NE = 500.

show overall increased apertures, and the apertures of the prominent long fractures are502

slightly reduced in realisation 1. However, the posterior realisations are not an exact match503

to the reference, as the apertures of long and optimally oriented fractures are still over-504

estimated, while the ones of many short fractures are underestimated. These qualita-505

tive observations are supported by Figure 12a, which shows a slight improvement in the506

unconditional PDF of the FFSA posterior compared to the prior. Conversely, the pos-507

terior realisations of the stochastic varying priors (Figure 11g–i) appear to be almost iden-508

tical to the corresponding prior realisations (Figure 6j–l), and only fractures near mea-509

surement locations are visibly improved. The corresponding unconditional PDF shows510

extreme minimum and maximum permeability values which reach unphysical levels. The511

mean root-mean-square errors of the log-apertures (Figure 12b–c) show a marginal im-512

provement for FFSA but no improvement for the stochastic varying prior. The drastic513

increase in the posterior errors for the stochastic varying prior arises from an ensemble514

collapse to a wrong solution.515

The stochastic single value prior fails to produce satisfactory results in the DA frame-516

work, leading to ensemble collapse regardless of the ensemble size and number of ESMDA517

iterations. In light of this, we calculate the root-mean-square error of the training mea-518

surements for each prior realisation as519

RMSE(j)
y =

√√√√ 1

Ny

Ny∑
i=1

(
y
(j)
i − y

(ref)
i

)2
(18)520

and find the one with the smallest error (Figure 13a). The best realisation has an aper-521

ture of 0.16 mm and is shown in Figure 6i. Although some breakthrough curves obtained522

from this realisation show somewhat acceptable agreement with the reference (Figure 13c),523

others display substantial errors (Figure 13b). As expected, it is therefore not possible524
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(a) Realisation 1 (FFSA) (b) Realisation 2 (FFSA) (c) Realisation 3 (FFSA)

(d) Realisation 4 (FFSA) (e) Realisation 5 (FFSA) (f) Realisation 6 (FFSA)

(g) Realisation 1 (stochastic varying) (h) Realisation 2 (stochastic varying) (i) Realisation 3 (stochastic varying)

Figure 11. Realisations of the posterior ensemble obtained from the FFSA prior (a–f) and

the stochastic varying prior (g–i) for NE = 5000 and Niter = 4. Line thickness corresponds to

aperture width and line colour to log10 of the fracture permeability.
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(a)

(b) (c)

Figure 12. Combined histogram of fracture permeability values of all 4051 fractures for NE =

5000 and Niter = 4 (a) and mean root-mean-square error (M-RMSE) of log-apertures calculated

with Equation (17) for Niter = 4 (b) and NE = 500 (c)

to match the complex flow and transport behaviour of the reference when using only a525

single value for all fracture apertures.526

(a) RMSE of training data (b) Training location M1 (c) Training location M2

Figure 13. Root-mean-square error (RMSE) of the training data for the stochastic single

value prior shows that the realisation with a fracture aperture of 0.16 mm has the smallest error

(a). Breakthrough curves at two locations as indicated in Figure 4 for this best realisation in blue

and the XFVM reference in red (b, c).

6 Discussion527

The FFSA provides reasonable approximations of the fracture apertures in a sce-528

nario dominated by shear dilation. It is thereby substantially faster than a geomechan-529

ical simulator like XFVM. For the presented fracture model, the FFSA takes less than530

a minute while the XFVM runs for several days. However, neither code is fully optimised531

for speed, and there is potential to significantly improve the computational efficiency of532

XFVM. The speed of FFSA makes it an attractive option for generating prior ensem-533
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bles for DA purposes, as typically a large number of realisations is required. In contrast,534

using geomechanical simulators for this task might become computationally prohibitive.535

The FFSA is only exact for a single isolated fracture with constant friction angle536

and it neglects fracture interactions. This leads to modelling errors (see Appendix A3537

for a direct comparison to XFVM), particularly as shearing of a fracture can change the538

local stress field considerably. To compensate for those errors, we introduce additional539

uncertainty through the parameter Cg, a proportionality factor between shear stress and540

shear displacement. While this approach gives overall satisfactory results, moderate frac-541

ture permeabilities are under-represented in the PDF of the FFSA prior ensemble com-542

pared to the one of the reference realisation obtained with XFVM (Figure 7f), indicat-543

ing that the chosen approach is not yet optimal.544

With the current approach, the fracture length has a much larger influence on the545

shear displacement than the parameter Cg because the uncertainty in Cg is much smaller546

than the variation of the fracture length in our model (Equation (5)). Increasing the un-547

certainty in Cg would however lead to more extreme values for long fractures. There-548

fore, an improved approach should increase the probability of moderate apertures for short549

fractures without generating extremely high apertures for long fractures. For example,550

we could model the uncertainty of Cg as a function of fracture length or introduce an551

additive uncertainty directly to the fracture aperture in Equation (7). Another approach552

is adding additional uncertainty to the stress state, thereby modelling the change in the553

local stress state at one fracture due to the shearing of other fractures. Further, we could554

improve the FFSA itself by incorporating knowledge of the surrounding fracture geom-555

etry or using a hierarchical approach, i.e., first estimating shear displacement and aper-556

tures of the large fractures, and then deriving the local stress field at the smaller ones.557

Even without the above-mentioned improvements, the FFSA produces prior real-558

isations that are much closer to the reference than the two näıve stochastic approaches.559

Subsequently, the FFSA prior also leads to a better posterior ensemble than the stochas-560

tic approaches. We can state that, at least in our setting, a better prior leads to a bet-561

ter posterior and it is therefore crucial to model the prior appropriately.562

In this work, we confirm that it is not possible to retrieve the complex flow and trans-563

port behaviour of the reference when using only a single value for all fracture apertures.564

Even when the optimal single aperture is used, the resulting realisation still has a con-565

siderable error in the measurements, leading to completely wrong estimates of some break-566

through curves (Figure 13). The stochastic single value prior led to an ensemble collapse567

in our DA framework irrespective of the ensemble size. We believe this collapse results568

from a combination of factors. Firstly, the relations between the single aperture value569

and certain measurements become constant above or below specific thresholds, result-570

ing in a loss of ensemble variation for those measurements and, in extreme cases, an iden-571

tical measurement value for all realisations. Secondly, some of those relations exhibit non-572

monotonic behaviour such that realisations can be attracted by non-optimal local min-573

ima. Thirdly, the stochastic single value prior generates realisations confined to a lim-574

ited subset with highly correlated measurements, leading to numerical issues when cal-575

culating the Kalman gain (Equation (A8) in Appendix A2). Lastly, one reference mea-576

surement lies entirely outside the range of the prior ensemble. Consequently, we were577

unable to obtain any DA results for this prior.578

While the stochastic single value prior is too restrictive, the stochastic varying prior579

bears too much uncertainty. It does not incorporate all available knowledge, such as cor-580

relations of fracture aperture with length and orientation. As a consequence, a large en-581

semble size is required to avoid undersampling. In this study, undersized ensembles col-582

lapsed and converged to wrong solutions. Results suggest that a smaller ensemble size583

might be possible with more ESMDA iterations, but the required combination of ensem-584

ble size and number of ESMDA iterations is beyond our current computational capabil-585
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ities, and thus, our results with this prior are not fully converged. Nevertheless, we ex-586

pect that results with a much larger ensemble size are similar to the ones from our best587

combination (NE = 5000, Niter = 4). With this combination, we obtain a posterior588

ensemble that matches the training measurements, i.e., measurements that are used for589

the ESMDA update, quite well. The improvement in the test measurements, which are590

solely used for evaluating the outcome of the DA framework, is smaller and a consider-591

able amount of uncertainty remains. The apertures of the posterior realisations differ592

however significantly from the reference realisation, with updates predominantly occur-593

ring near measurement locations. This emphasises the importance of considering more594

than just the (training) measurements when evaluating the effectiveness of a DA frame-595

work.596

With the FFSA prior, we obtain posterior realisations with an improved estima-597

tion of the apertures compared to the ones from the prior ensemble, even though a con-598

siderable difference to the reference realisation remains. The posterior ensemble matches599

the training measurements of the reference realisation very well, while the test measure-600

ments are only marginally improved, indicating that the improvements in flow and trans-601

port are mostly limited to the vicinity of training measurements. More measurements,602

especially also from the interior of the domain, are needed to further improve the esti-603

mation of aperture as well as the flow and transport. However, the number of measure-604

ment locations already exceeds what one can expect in field studies and a complete ob-605

servation of flow and transport is only possible in lab experiments such as e.g. in Flemisch606

et al. (2023). While there is room for improvement, the posterior from the FFSA prior607

gives good estimates of the fracture apertures, which can be used for performance es-608

timation and risk assessment in subsurface applications. Concrete examples involve op-609

timal placement of boreholes for injection or extraction, expected heat extraction in a610

geothermal reservoir, or preventing potential contamination of nearby aquifers.611

Our results, especially the ones with the stochastic varying prior, suggest that most612

apertures only have a negligible influence on the measurements at the boundaries. While613

this is expected to some degree, we also identify three constraints in our study setup that614

artificially limit the influence of the fractures. Firstly, we use a first-order transport scheme615

which leads to a considerable amount of numerical diffusion. Diffusion smears out the616

concentration front and thus dampens the effects of the fractures. We could avoid this617

by using a higher-order scheme and only include a controlled amount of physical diffu-618

sion. Secondly, the sensitivity of the fracture apertures on the flow and transport mea-619

surements is highly dependent on the ratio of matrix to fracture permeability (Phillips,620

1991; Matthäi & Belayneh, 2004). In cases with very low matrix permeability, the flow621

is governed by the fracture topology, favouring flow paths with minimal matrix distances.622

In this regime, fracture aperture influences flow only when equivalent flow paths exist.623

Conversely, in cases with very high matrix permeability, flow predominantly occurs within624

the matrix, largely independent of fracture parameters. Only in the intermediate range625

of matrix permeabilities do the fracture apertures have a significant influence on flow and626

transport. We have not optimised the matrix permeability for maximum sensitivity of627

the apertures, as it is not a tuning parameter in practical scenarios. Lastly, boundary628

conditions might contribute to these limitations as well. By imposing a fixed pressure629

on the domain’s boundary, we disregard that the fractured rock typically extends beyond630

the region of interest. Flow and transport near the boundary are strongly influenced by631

the boundary condition. Alternative approaches, such as implementing infinite bound-632

ary conditions or using measurements only in the interior of the domain, might decrease633

the influence of the boundary conditions on the measurements and represent real-world634

conditions more accurately.635

Nevertheless, the posterior from the FFSA prior also shows slightly improved aper-636

tures in the interior of the domain. In such priors, apertures of fractures with similar length637

and orientation are correlated. Hence, fractures in the interior of the domain are corre-638
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lated to measurements through similar fractures near the measurement locations and there-639

fore also updated by ESMDA. In reality, apertures are correlated with length and ori-640

entation (C. A. Barton et al., 1995; Baghbanan & Jing, 2008; N. Barton & Quadros, 2015;641

X. Zhang et al., 2021), and such indirect updates are desired to some extent. However,642

the current implementation of the FFSA prior overestimates these correlations, leading643

to a posterior with deficient variability. We expect that these issues can be resolved by644

the above-mentioned improvements of FFSA.645

In this study, we used a geological scenario where the generation of the fracture aper-646

tures occurs before the reservoir characterisation with the tracer test. However, inject-647

ing fluid into the reservoir during the tracer test alters the effective normal stresses at648

the fractures and consequently fracture aperture, which in turn affects the flow field. In649

future works, it is therefore desirable to couple flow and mechanics and consider poroe-650

lasticity. A further step towards a more realistic setting is the extension to 3D, which651

is straightforward for FFSA. The far-field stresses can be projected onto the fracture planes652

with a 3D version of Equations (1) and (2), and the process of approximating the max-653

imum shear displacement is similar to that in 2D. For that purpose, Chinnery (1969) lists654

values of the proportionality factor Cg for various fracture shapes. Special attention must655

be given to the definition of fracture length, however. In future works, we could also con-656

sider additional model parameters as uncertain, such as matrix permeability and poros-657

ity, and allow for uncertainties in the boundary conditions of the tracer test. Here, we658

consider rock properties as spatially homogeneous, but we could also model them with659

e.g. Gaussian random fields as in Liem et al. (2022).660

Arguably the biggest assumption in this work is that we know the fracture geom-661

etry (i.e., location, orientation and length of each fracture) a priori and exactly. In re-662

ality, the fracture geometry is usually associated with substantial uncertainty, as only663

sparse borehole data and statistical information are available. Nevertheless, valuable in-664

sight is obtained from this study, as discussed above. We see this study as a necessary665

intermediate step towards a more realistic setup that eventually also includes uncertain666

fracture geometry. Several existing tools can be used or built upon to generate physi-667

cally meaningful realisations of a fracture geometry, e.g. as in Hyman et al. (2015), Lei668

et al. (2017), Gläser et al. (2020), and Paluszny et al. (2020). It should then be straight-669

forward to update input parameters of the fracture generator (such as statistics of e.g.670

fracture length or density). It is however very challenging to update the actual fracture671

geometry itself. Parametrising the generated fracture geometry efficiently and effectively672

for this purpose is complex as the number of fractures can vary between realisations, and673

a fracture from one realisation generally does not have a bijectively related fracture in674

other realisations. Existing approaches based on level set function or Hough transform675

(Ping et al., 2017; Chai et al., 2018; Yao et al., 2018), to our knowledge, have not been676

applied to complex large fracture geometries yet. The task becomes even more challeng-677

ing if the parameterisation should also reflect relations between fractures, including frac-678

tures terminating against other fractures and formation history. Additionally, automatic679

remeshing of the updated fracture geometry might be challenging as arbitrary small dis-680

tances or angles may occur. For this purpose, non-conforming discretisation as in the681

embedded discrete fracture model (EDFM) is beneficial.682

7 Conclusion683

In this work, we suggest using the far-field stress approximation (FFSA), a proxy684

model designed to estimate fracture apertures in shear-dominated scenarios, to gener-685

ate prior ensembles for data assimilation (DA). The FFSA captures the general trends686

effectively, albeit with some inherent errors due to neglecting fracture interactions. We687

use FFSA to generate realistic and computationally efficient prior ensembles for ensemble-688

based data assimilation. To compensate for modelling errors, we introduce supplemen-689

tary uncertainty in one model parameter. Comparing FFSA priors to those from two näıve690
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stochastic approaches reveals notable differences. While all methods share the same un-691

derlying unconditional PDF, FFSA-derived realisations are much closer to the reference692

realisation from a geomechanical simulator.693

Employing ESMDA, we update fracture apertures with flow and transport data.694

The posterior ensemble obtained from the FFSA prior matches the flow and transport695

behaviour as well as the apertures, although some differences remain. In contrast, the696

posterior ensemble obtained from an unconditional sampling of the apertures (i.e., a stochas-697

tic varying prior) yields apertures that substantially deviate from the reference despite698

matching training measurements. In addition, a significantly larger ensemble size is re-699

quired than for the FFSA prior, increasing overall computational cost. The third prior,700

which uses the same value for all fracture apertures in a realisation, cannot match the701

complex flow and transport behaviour of our synthetic reference. Our results show a cor-702

relation between the prior and posterior uncertainties and highlight the importance of703

a good estimation of the prior ensemble. We expect that those results also apply to other704

ensemble-based DA methods, for example particle filters.705

While the current form of FFSA already produces reasonable results, opportuni-706

ties for improvement, particularly in addressing modelling errors through additional un-707

certainties, remain. To achieve this, we plan to conduct a more detailed study with the708

FFSA in a separate work. Further potential improvements for the ESMDA framework709

include constructing a prior ensemble that combines realisations from different methods710

and the use of adaptive localisation. Moreover, we aim to make the framework more re-711

alistic by coupling flow and transport with mechanics, incorporating additional physics712

like heat transport, and eventually accounting for uncertainty in fracture geometry.713

Appendix A Appendix714

A1 Fracture Aperture Model of Barton and Bandis715

In this work, we use the constitutive model of Barton and Bandis (N. Barton &716

Choubey, 1977; N. Barton, 1982; Bandis et al., 1983; N. Barton et al., 1985) where the717

aperture of a fracture a is a combination of the initial aperture a0, closure due to nor-718

mal stress δn and dilation due to shearing δd (Equation (7)).719

The initial aperture720

a0 =
JRC

5

(
0.2

σc
JCS

− 0.1
)

(A1)721

corresponds to the fracture aperture under stress-free conditions. It is a function of the722

(peak) joint roughness coefficient JRC and the amount of joint alteration described by723

the ratio of unconfined compressive strength of the rock σc and joint wall compression724

strength JCS. In this work, we assume that the fractures are unaltered and unweath-725

ered (i.e. JCS = σc), and therefore the initial aperture depends on the surface rough-726

ness only.727

Assuming a positive effective normal stress σeff > 0, the amount of closure is728

δn =
σeffvm

Knivm + σeff
, (A2)729

where vm and Kni are the maximum possible closure and the initial normal stiffness, re-730

spectively. Under increasing normal stress, more and more asperities are in contact and731

consequently, the normal stiffness of the fracture increases. The model of Barton and Ban-732

dis is not applicable if fluid pressure exceeds normal stress (i.e. for negative σeff ) and733

tensile opening occurs.734

A key feature of the model of Barton and Bandis is that the friction angle735

φ′ = JRCmob log10

(
JCS

σeff

)
+ φr (A3)736
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and dilation angle737

φd =
1

M
(φ′ − φr) =

1

M
JRCmob log10

(
JCS

σeff

)
(A4)738

are not constant but vary with the amount of shear displacement. This dependency is739

modelled with the mobilised joint roughness coefficient JRCmob (Figure A1). The peak740

shear displacement δpeak corresponds to the amount of shearing when peak shear strength741

is reached. Here, we use742

δpeak = 0.0077L0.45
( σeff
JCS

)0.34
cos

(
JRC · log10

(
JCS

σeff

))
, (A5)743

as proposed by Asadollahi and Tonon (2010). For pre-peak shearing (δs < δpeak), the744

degradation of the few asperities that are in contact increases the interlocking between745

the two fracture surfaces and consequently increases the friction. For post-peak shear-746

ing (δs > δpeak) on the other hand, roughness is getting destroyed and smoothed out.747

Subsequently, shear strength and dilation angle are steadily reduced. For an infinite amount748

of shearing, the friction angle is equal to the residual friction angle and the dilation an-749

gle approaches zero.750
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(
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Figure A1. Mobilised joint roughness coefficient JRCmob as a function of shear displace-

ment δs. Figure reproduced from Liem et al. (2022), original figure from N. Barton (1982) and

N. Barton et al. (1985).

For the damage coefficient M in Equation (A3) we use the formula proposed by751

N. Barton and Choubey (1977)752

M = 0.7 + JRC

/[
12 log10

(
JCS

σeff

)]
. (A6)753

In this work, we neglect the decrease in aperture for small shear displacements and there-754

fore integrate only over positive dilation angles in Equation (6). The model of Barton755
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and Bandis has been developed for fractures with a constant fluid pressure and thus a756

relatively constant effective normal stress. In our simulation however, the fluid pressure757

is steadily increased and the effective normal stress might become very small in some frac-758

tures or even locally negative for some segments in the reference simulation with XFVM.759

We therefore approximate σeff in Equations (A3) to (A6) as760

σeff ≈ σn −
1

2

(
|σs|

tanφr
+ pendf

)
, (A7)761

where we calculate σn and σs with Cauchy’s equations (Equations (1) to (2)) and pendf762

is the target fluid pressure.763

A2 Details of ESMDA764

In Equation (12), we use a stochastic version of the Kalman update in the ESMDA.765

Following Asch et al. (2016), we approximate the Kalman gain766

K = P fHT
[
HP fHT +R

]−1 ' Xf
(
Y f
)T [

Y f
(
Y f
)T ]−1

(A8)767

with the normalised anomalies768

[
Xf
]
i

=
1√

NE − 1

xfi − 1

NE

N∑
j=1

xfj

 and (A9)769

[
Y f
]
i

=
1√

NE − 1

(yfi + ui

)
− 1

NE

N∑
j=1

(
yfj + uj

) . (A10)770

771

Here, P f is the forecast error covariance matrix and H the linearised version of the ob-772

servation operator H(.), which maps the input vector xi to the measurement vector yi.773

In order to guarantee a correct posterior distribution in a linear model with Gaus-774

sian error statistics, the ESMDA inflates the measurement error covariance matrix R in775

Equation (12), i.e.,776

R̃m = αmR such that
M∑
m=1

1

αm
= 1 , (A11)777

where M is the number of ESMDA iterations (A. A. Emerick & Reynolds, 2013). In this778

study, we use a constant inflation factor αm = M ∀m.779

A3 Comparison of XFVM and FFSA780

Figure A2 shows the results of XFVM and FFSA for the exact same underlying781

model parameters (i.e. the values from the last column of Table 1) and Cg = 1. The782

FFSA captures the general trends and some apertures agree quite well. However, there783

are also quite large differences for many fractures. Most notably, the apertures of long,784

optimally oriented fractures are overestimated while the apertures of some short frac-785

tures are underestimated. We intend to compare those two methods thoroughly in a sep-786

arate publication.787

Open Research Section788

MATLAB scripts of the far-field stress approximation (FFSA), the ANSYS mesh789

of the fracture geometry, input and output files of the reference simulation with extended790

finite volume method (XFVM), and prior and posterior ensembles of the data assimi-791

lation framework based on the ensemble smoother with multiple data assimilation (ES-792

MDA) are available at ETH Zurich via https://doi.org/10.3929/ethz-b-000632502793

(Liem et al., 2023).794
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(a) (b)

Figure A2. Results with XFVM (a) and FFSA (b) for the same underlying model parame-

ters. Line thickness corresponds to aperture width and line colour to log10 of the fracture perme-

ability.
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enhanced j-integral for hydraulic fracture mechanics [Journal Article]. Interna-1064

tional Journal for Numerical and Analytical Methods in Geomechanics, 46 (11),1065

2163-2190. doi: 10.1002/nag.33831066

Pezzulli, E., Nejati, M., Salimzadeh, S., Matthäi, S. K., & Driesner, T. (2022b).1067
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