References
Agrawal, A. A. (2020). A scale‐dependent framework for trade‐offs,
syndromes, and specialization in organismal biology. Ecology ,
101(2), e02924.
Agrawal, A.A., Hastings, A.P., Johnson, M.T.J., Maron, J.L. & Salminen,
J.P. (2012). Insect herbivores drive real-time ecological and
evolutionary change in plant populations. Science , 338, 113–116.
Agrawal, A.A., Kotanen, P.M., Mitchell, C.E., Power, A.G., Godsoe, W. &
Klironomos, J. (2005). Enemy release? An experiment with
congeneric plant pairs and diverse above‐and belowground
enemies. Ecology, 86 (11), 2979-2989.
Aldorfová, A., Knobová, P. & Münzbergová, Z. (2020). Plant–soil
feedback contributes to predicting plant invasiveness of 68 alien plant
species differing in invasive status. Oikos , 129, 1257–1270.
Allen, W.J., Meyerson, L.A., Cummings, D., Anderson, J., Bhattarai, G.P.
& Cronin, J.T. (2017). Biogeography of a plant invasion: drivers of
latitudinal variation in enemy release. Global Ecology and
Biogeography , 26, 435–446.
Beaulieu, C., Lavoie, C. & Proulx, R. (2019). Bookkeeping of insect
herbivory trends in herbarium specimens of purple loosestrife
(Lythrum salicaria ). Philosophical Transactions of the
Royal Society B: Biological Sciences , 374, 20170398.
Bezemer, T.M., Harvey, J.A. & Cronin, J.T. (2014). Response of native
insect communities to invasive plants. Annu Rev Entomol , 59,
119–141.
Blossey, B. & Notzold, R. (1995). Evolution of Increased Competitive
Ability in Invasive Nonindigenous Plants: A Hypothesis. Journal of
Ecology , 83, 887–889.
Blumenthal, D., Mitchell, C. E., Pyšek, P., & Jarošík, V. (2009).
Synergy between pathogen release and resource availability in plant
invasion. Proceedings of the National Academy of
Sciences , 106 (19), 7899-7904.
Blumenthal, D.M. (2006). Interactions between resource availability and
enemy release in plant invasion. Ecol Lett, 9 (7), 887-895.
Bossdorf, O., Auge, H., Lafuma, L., Rogers, W.E., Siemann, E. & Prati,
D. (2005). Phenotypic and genetic differentiation between native and
introduced plant populations. Oecologia , 144, 1–11.
Buckley, Y. M., & Catford, J. (2016). Does the biogeographic origin of
species matter? Ecological effects of native and non‐native species and
the use of origin to guide management. Journal of Ecology ,
104(1), 4-17.
Cadotte, M.W., Davies, T.J., & Peres‐Neto, P.R. (2017). Why phylogenies
do not always predict ecological differences. Ecol Monogr, 87 (4),
535-551.
Cappuccino, N. & Carpenter, D. (2005). Invasive exotic plants suffer
less herbivory than non-invasive exotic plants. Biol Lett ,1 (4), 435-438.
Carroll, S.P., Loye, J.E., Dingle, H., Mathieson, M., Famula, T.R. &
Zalucki, M.P. (2005). And the beak shall inherit - Evolution in response
to invasion. Ecol Lett , 8, 944–951.
Castells, E., Morante, M., Blanco-Moreno, J.M., Sans, F.X., Vilatersana,
R. & Blasco-Moreno, A. (2013). Reduced seed predation after invasion
supports enemy release in a broad biogeographical survey.Oecologia , 173, 1397–1409.
Catford, J.A., Jansson, R. & Nilsson, C. (2009). Reducing redundancy in
invasion ecology by integrating hypotheses into a single theoretical
framework. Divers Distrib, 15 (1), 22-40.
Catford, J. A., Bode, M., & Tilman, D. (2018). Introduced species that
overcome life history tradeoffs can cause native extinctions. Nat
Comm , 9(1), 2131.
Catford, J.A., Smith, A.L., Wragg, P.D., Clark, A.T., Kosmala, M.,
Cavender-Bares, J., et al. (2019). Traits linked with species
invasiveness and community invasibility vary with time, stage and
indicator of invasion in a long-term grassland experiment. Ecol
Lett, 22 (4), 593-604.
Catford, J.A., Wilson, J.R.U., Pyšek, P., Hulme, P.E. & Duncan, R.P.
(2022). Addressing context dependence in ecology. Trends Ecol
Evol , 37, 158–170.
Chauvin, K.M.M., Asner, G.P., Martin, R.E., Kress, W.J., Wright, S.J. &
Field, C.B. (2018). Decoupled dimensions of leaf economic and
anti-herbivore defense strategies in a tropical canopy tree community.Oecologia , 186, 765–782.
Chiuffo, M.C., Moyano, J., Policelli, N., Torres, A., Vitali, A., Nuñez,
M.A., et al. (2022). Importance of invasion mechanisms varies
with abiotic context and plant invader growth form. Journal of
Ecology, 110 (8), 1957-1969.
Chun, Y.J., van Kleunen, M. & Dawson, W. (2010). The role of enemy
release, tolerance and resistance in plant invasions: Linking damage to
performance. Ecol Lett , 13, 937–946.
Cipollini, D., Walters, D. & Voelckel, C. (2014). Costs of resistance
in plants: from theory to evidence. Annual Plant Reviews , 47,
263–308.
Clewley, G.D., Eschen, R., Shaw, R.H. & Wright, D.J. (2012). The
effectiveness of classical biological control of invasive plants.Journal of Applied Ecology , 49, 1287–1295.
Colautti, R.I., Ricciardi, A., Grigorovich, I.A. & MacIsaac, H.J.
(2004). Is invasion success explained by the enemy release hypothesis?Ecol Lett, 7 (8), 721-733.
Connolly, B.M., Pearson, D.E. & Mack, A.R.N. (2014). Granivory of
invasive, naturalized, and native plants in communities differentially
susceptible to invasion. Ecology, 95 (7), 1759-1769.
Coverdale, T.C. & Agrawal, A.A. (2022). Experimental insect suppression
causes loss of induced, but not constitutive, resistance inSolanum carolinense . Ecology, 103 (11), e3786.
Davidson, T.M., Smith, C.M. & Torchin, M.E. (2022). Introduced
mangroves escape damage from marine and terrestrial enemies.Ecology,103 (3), e3604.
Dewalt, S.J., Denslow, J.S. & Ickes, K. (2004). Natural‐enemy release
facilitates habitat expansion of the invasive tropical shrubClidemia hirta . Ecology , 85 (2), 471-483.
Díaz, J. G., de la Riva, E. G., Martín-Forés, I., & Vilà, M. (2023).
Which features at home make a plant prone to become invasive?.NeoBiota , 86, 1-20.
Doncaster, C.P. & Spake, R. (2018). Correction for bias in
meta-analysis of little-replicated studies. Methods Ecol Evol , 9,
634–644.
Ebeling, A., Strauss, A.T., Adler, P.B., Arnillas, C.A., Barrio, I.C.,
Biederman, L.A., et al. (2021). Nutrient enrichment increases
invertebrate herbivory and pathogen damage in grasslands. Journal
of Ecology, 110 (2), 327-339.
Ebeling, S.K., Hensen, I. & Auge, H. (2008). The invasive shrubBuddleja davidii performs better in its introduced range.Divers Distrib , 14, 225–233.
Endara, M.J. & Coley, P.D. (2011). The resource availability hypothesis
revisited: A meta-analysis. Funct Ecol , 25, 389–398.
Enders, M., Havemann, F., Ruland, F., Bernard-Verdier, M., Catford,
J.A., Gómez-Aparicio, L., et al. (2020). A conceptual map of
invasion biology: Integrating hypotheses into a consensus network.Global Ecology and Biogeography , 29, 978–991.
Enders, M., Hütt, M.-T. & Jeschke, J.M. (2018). Drawing a map of
invasion biology based on a network of hypotheses. Ecosphere , 9,
e02146.
Evans, H.C. (2008). The endophyte-enemy release hypothesis: implications
for classical biological control and plant invasions.
In Proceedings of the XII International Symposium on Biological
Control of Weeds, La Grande Motte, France, 22-27 April, 2007 (pp.
20-25). Wallingford UK: CAB International.
Fan, S., Yu, H., Dong, X., Wang, L., Chen, X., Yu, D., et al.(2016). Invasive plant Alternanthera philoxeroides suffers more severe
herbivory pressure than native competitors in recipient communities.Sci Rep , 6, 1-11.
Felker-Quinn, E., Schweitzer, J.A. & Bailey, J.K. (2013). Meta-analysis
reveals evolution in invasive plant species but little support for
Evolution of Increased Competitive Ability (EICA). Ecol Evol , 3,
739–751.
Fridley, J. D., & Sax, D. F. (2014). The imbalance of nature:
revisiting a Darwinian framework for invasion biology. Global Ecol
Biogeog , 23(11), 1157-1166.
Gallien, L., Carboni, M. & Münkemüller, T. (2014). Identifying the
signal of environmental filtering and competition in invasion patterns -
a contest of approaches from community ecology. Methods Ecol
Evol , 5, 1002–1011.
García, M.B. & Ehrlén, J. (2002). Reproductive effort and herbivory
timing in a perennial herb: Fitness components at the individual and
population levels. Am J Bot , 89, 1295–1302.
Geppert, C., Boscutti, F., la Bella, G., de Marchi, V., Corcos, D.,
Filippi, A., et al. (2021). Contrasting response of native and
non-native plants to disturbance and herbivory in mountain environments.J Biogeogr , 48, 1594–1605.
Gioria, M., Hulme, P. E., Richardson, D. M., & Pyšek, P. (2023). Why
are invasive plants successful?. Annual Review of Plant Biology ,
74, 635-670.
González-Browne, C., Murúa, M.M., Navarro, L. & Medel, R. (2016). Does
plant origin influence the fitness impact of flower damage? A
meta-analysis. PLoS One , 11, e0146437.
Goodall, J., Witkowski, E.T.F., McConnachie, A.J. & Keen, C. (2012).
Altered growth, population structure and realised niche of the weedCampuloclinium macrocephalum (Asteraceae) after exposure to the
naturalised rust Puccinia eupatorii (Pucciniaceae). Biol
Invasions , 14, 1947–1962.
Gsell, A.S., Biere, A., de Boer, W., de Bruijn, I., Eichhorn, G.,
Frenken, T., et al. (2023). Environmental refuges from disease in
host‐parasite interactions under global change. Ecology, e4001.
Gundale, M.J. & Kardol, P. (2021). Multi-dimensionality as a path
forward in plant-soil feedback research. Journal of Ecology,
109 (10), 3446-3465.
Gurevitch, J., Fox, G.A., Wardle, G.M., Inderjit & Taub, D. (2011).
Emergent insights from the synthesis of conceptual frameworks for
biological invasions. Ecol Lett , 14 (4), 407-418.
Hahn, P.G., Keefover-Ring, K., Nguyen, L.M.N. & Maron, J.L. (2021).
Intraspecific correlations between growth and defence vary with resource
availability and differ within and among populations. Funct Ecol ,35 (11), 2387-2396.
Halliday, F.W., Jalo, M. & Laine, A.-L. (2021). The effect of host
community functional traits on plant disease risk varies along an
elevational gradient. eLife, 10, 67340.
Harvey, K.J., Nipperess, D.A., Britton, D.R. & Hughes, L. (2013). Does
time since introduction influence enemy release of an invasive weed?Oecologia , 173, 493–506.
Hawkes, C.V. (2007). Are invaders moving targets? The generality and
persistence of advantages in size, reproduction, and enemy release in
invasive plant species with time since introduction. American
Naturalist , 170, 832–843.
Heckman, R.W., Halliday, F.W. & Mitchell, C.E. (2019). A
growth–defense trade-off is general across native and exotic grasses.Oecologia , 191, 609–620.
Heger, T. & Jeschke, J.M. (2014). The enemy release hypothesis as a
hierarchy of hypotheses. Oikos , 123, 741–750.
Heimpel, G.E. & Mills, N.J. (2017). Biological control.Cambridge University Press, Cambridge.
Hinman, E.D., Fridley, J.D. & Parry, D. (2019). Plant defense against
generalist herbivores in the forest understory: a phylogenetic
comparison of native and invasive species. Biol Invasions , 21,
1269–1281.
Hite, J.L., Pfenning-Butterworth, A. & Auld, S.K.J.R. (2023).
Commentary: Infectious disease — the ecological theater and the
evolutionary play. Evol Ecol, 37, 1-11.
Honor, R. & Colautti, R.I. (2020). EICA 2.0: a general model of enemy
release and defence in plant and animal invasions. In. In: Plant
Invasions: The Role of Biotic Interactions (eds. Traveset, A. &
Richardson, D.M.). CABI, pp. 192–207.
Howe, G. A., & Jander, G. (2008). Plant immunity to insect herbivores.Annu. Rev. Plant Biol., 59, 41-66.
Inderjit, Cadotte, M.W. & Colautti, R.I. (2005). The ecology of
biological invasions: past, present and future. In: Invasive
Plants: Ecological and Agricultural Aspects (ed. Inderjit). Basel, pp.
19–44.
Iqbal, M.F., Feng, Y.L., Feng, W.W., Liu, M.C. & Lu, X.R. (2021).
Ecological impacts of the invasive plant Xanthium strumarium and
the impacts of three aboveground herbivores on the invader. Ecol
Indic , 131, 108140.
Ivison, K., Speed, J.D.M., Prestø, T. & Dawson, W. (2023). Testing
enemy release of non‐native plants across time and space using herbarium
specimens in Norway. Journal of Ecology, 111 (2), 300-313.
Jeschke, J., Gómez Aparicio, L., Haider, S., Heger, T., Lortie, C.,
Pyšek, P., et al. (2012). Support for major hypotheses in
invasion biology is uneven and declining. NeoBiota , 14, 1–20.
Jeschke, J.M. (2014). General hypotheses in invasion ecology.Divers Distrib, 20 (11), 1229-1234.
Jeschke, J.M. & Heger, T. (2018). Invasion Biology: Hypotheses
and Evidence . CABI.
Johnston, A. S., Boyd, R. J., Watson, J. W., Paul, A., Evans, L. C.,
Gardner, E. L., & Boult, V. L. (2019). Predicting population responses
to environmental change from individual-level mechanisms: towards a
standardized mechanistic approach. Proceedings of the Royal
Society B, 286(1913), 20191916.
Joshi, J. & Vrieling, K. (2005). The enemy release and EICA hypothesis
revisited: Incorporating the fundamental difference between specialist
and generalist herbivores. Ecol Lett , 8, 704–714.
Kambo, D. & Kotanen, P.M. (2014). Latitudinal trends in herbivory and
performance of an invasive species, common burdock (Arctium minus).Biol Invasions , 16, 101–112.
Keane, R.M. & Crawley, M.J. (2002). Exotic plant invasions and the
enemy release hypothesis. Trends Ecol Evol , 17, 164–170.
van Kleunen, M., Dawson, W., Schlaepfer, D., Jeschke, J.M. & Fischer,
M. (2010a). Are invaders different? A conceptual framework of
comparative approaches for assessing determinants of invasiveness.Ecol Lett , 13, 947–958.
van Kleunen, M. & Fischer, M. (2009). Release from foliar and floral
fungal pathogen species does not explain the geographic spread of
naturalized North American plants in Europe. Journal of Ecology ,
97, 385–392.
van Kleunen, M., Weber, E. & Fischer, M. (2010b). A meta-analysis of
trait differences between invasive and non-invasive plant species.Ecol Lett, 13 (2), 235-245.
Koricheva, J. & Gurevitch, J. (2014). Uses and misuses of meta-analysis
in plant ecology. Journal of Ecology, 102 (4), 828-844.
Lau, J.A. & Schultheis, E.H. (2015). When two invasion hypotheses are
better than one. New Phytologist , 205, 958–960.
Levine, J.M., Adler, P.B. & Yelenik, S.G. (2004). A meta-analysis of
biotic resistance to exotic plant invasions. Ecol Lett, 7 (10),
975-989.
Lind, E.M., Borer, E., Seabloom, E., Adler, P., Bakker, J.D.,
Blumenthal, D.M., et al. (2013). Life-history constraints in
grassland plant species: A growth-defence trade-off is the norm.Ecol Lett , 16, 513–521.
Liu, H., & Stiling, P. (2006). Testing the enemy release hypothesis: a
review and meta-analysis. Biol Invasions , 8, 1535-1545.
Liu, Y., Zheng, Y., Jahn, L. v. & Burns, J.H. (2023). Invaders
responded more positively to soil biota than native or noninvasive
introduced species, consistent with enemy escape. Biol Invasions,
25 (2), 351-364.
Livingstone, S.W., Smith, S.M., Bourchier, R.S., Ryan, K., Roberto, A.
& Cadotte, M.W. (2020). An experimental application of Hypena
opulenta as a biocontrol agent for the invasive vine Vincetoxicum
rossicum . Ecological Solutions and Evidence , 1, e12022.
Lu, X., Siemann, E., Shao, X., Wei, H. & Ding, J. (2013). Climate
warming affects biological invasions by shifting interactions of plants
and herbivores. Glob Chang Biol , 19, 2339–2347.
Lucero, J.E., Arab, N.M., Meyer, S.T., Pal, R.W., Fletcher, R.A., Nagy,
D.U., … & Weisser, W.W. (2020). Escape from natural enemies depends
on the enemies, the invader, and competition. Ecol Evol , 10(19),
10818-10828.
Medina-Villar, S., Vázquez de Aldana, B.R., Herrero Méndez, A.,
Pérez-Corona, M.E. & Gianoli, E. (2021). The green thorns of Ulex
europaeus play both defensive and photosynthetic roles: consequences
for predictions of the enemy release hypothesis. Biol Invasions,24, 385-398.
Meijer, K., Schilthuizen, M., Beukeboom, L. & Smit, C. (2016). A review
and meta-analysis of the enemy release hypothesis in plant-herbivorous
insect systems. PeerJ , 4 , e2778.
Mitchell, C.E., Agrawal, A.A., Bever, J.D., Gilbert, G.S., Hufbauer,
R.A., Klironomos, J.N., … & Vazquez, D.P. (2006). Biotic interactions
and plant invasions. Ecol Lett , 9(6), 726-740.
Mitchell, C.E., Blumenthal, D., Jarošík, V., Puckett, E.E. & Pyšek, P.
(2010). Controls on pathogen species richness in plants’ introduced and
native ranges: Roles of residence time, range size and host traits.Ecol Lett , 13, 1525–1535.
Mitchell, C.E. & Power, A.O. (2003). Release of invasive plants from
fungal and viral pathogens. Nature , 421, 625–627.
Mlynarek, J.J., Moffat, C.E., Edwards, S., Einfeldt, A.L., Heustis, A.,
Johns, R., et al. (2017). Enemy escape: A general phenomenon in a
fragmented literature? Facets , 2, 1015–1044.
Morrison, W.E. & Hay, M.E. (2011). Herbivore preference for native vs.
exotic plants: Generalist herbivores from multiple continents prefer
exotic plants that are evolutionarily naïve. PLoS One , 6, e17227.
Morrow, C.J., Jaeger, S.J. & Lindroth, R.L. (2022). Intraspecific
variation in plant economic traits predicts trembling aspen resistance
to a generalist insect herbivore. Oecologia, 199 (1), 119-128.
Müller-Schärer, H., Schaffner, U. & Steinger, T. (2004). Evolution in
invasive plants: Implications for biological control. Trends Ecol
Evol , 19, 417–422.
Novotony V, Miller S E, Cizek L, Leps J, Janda M, Basset Y, et
al. (2003). Colonising aliens: caterpillars (Lepidoptera) feeding onPiper aduncum and P. umbellatum in rainforests of Papua
New Guinea. Ecol Entomol , 28, 704–716.
Ojha, M., Naidu, D.G.T. & Bagchi, S. (2022). Meta‐analysis of induced
anti‐herbivore defence traits in plants from 647 manipulative
experiments with natural and simulated herbivory. Journal of
Ecology , 110 (4), 799-816.
Parker, I.M. & Gilbert, G.S. (2007). When there is no escape: the
effects of natural enemies on native, invasive, and noninvasive
plants. Ecology , 88 (5), 1210-1224.
Pinto‐Ledezma, J. N., Villalobos, F., Reich, P. B., Catford, J. A.,
Larkin, D. J., & Cavender‐Bares, J. (2020). Testing Darwin’s
naturalization conundrum based on taxonomic, phylogenetic, and
functional dimensions of vascular plants. Ecological Monographs ,
90(4), e01420.
Prior, K.M., Powell, T.H.Q., Joseph, A.L. & Hellmann, J.J. (2015).
Insights from community ecology into the role of enemy release in
causing invasion success: the importance of native enemy effects.Biol Invasions , 17, 1283–1297.
Ramula, S., Knight, T.M., Burns, J.H. & Buckley, Y.M. (2008). General
guidelines for invasive plant management based on comparative demography
of invasive and native plant populations. Journal of Applied
Ecology , 45, 1124–1133.
Reinhart, K. O., Packer, A., Van der Putten, W. H., & Clay, K. (2003).
Plant–soil biota interactions and spatial distribution of black cherry
in its native and invasive ranges. Ecol Lett , 6(12), 1046-1050.
Ricciardi, A. & Ward, J.M. (2006). Comment on “Opposing effects of
native and exotic herbivores on plant invasions”. Science,313 (5785), 298-298.
Rotter, M.C. & Holeski, L.M. (2018). A meta-analysis of the evolution
of increased competitive ability hypothesis: genetic-based trait
variation and herbivory resistance trade-offs. Biol Invasions ,
20, 2647–2660.
Sarabeev, V., Balbuena, J. A., Desdevises, Y., & Morand, S. (2022).
Host-parasite relationships in invasive species: macroecological
framework. Biol Invasions , 24(9), 2649-2664.
Schultheis, E.H., Berardi, A.E., Lau, J.A. & Kellogg, W.K. (2015). No
release for the wicked: enemy release is dynamic and not associated with
invasiveness. Ecology , 96 (9), 2446-2457.
Schulz, A.N., Lucardi, R.D. & Marsico, T.D. (2019). Successful
invasions and failed biocontrol: The role of antagonistic species
interactions. Bioscience , 69, 711–724.
Smith L & et al. (2020). Global gene flow releases invasive plants from
environmental constraints on genetic diversity. Proceedings of the
National Academy of Sciences , 117, 4218–4227.
Spake, R., Bowler, D.E., Callaghan, C.T., Blowes, S.A., Doncaster, C.P.,
Antão, L.H., et al. (2023). Understanding ‘it depends’ in
ecology: a guide to hypothesising, visualising and interpreting
statistical interactions. Biological Reviews, 1-20.
Spake, R., O’Dea, R.E., Nakagawa, S., Doncaster, C.P., Ryo, M.,
Callaghan, C.T., et al. (2022). Improving quantitative synthesis
to achieve generality in ecology. Nat Ecol Evol, 6, 1818-1828.
te Beest, M., Stevens, N., Olff, H., & Van Der Putten, W.H. (2009).
Plant–soil feedback induces shifts in biomass allocation in the
invasive plant Chromolaena odorata . J Ecol , 97(6),
1281-1290.
Tilman, D. (2011). Diversification, biotic interchange, and the
universal trade-off hypothesis. Am Nat , 178(3), 355-371.
Torchin, M.E., Lafferty, K.D., Dobson, A.P., McKenzie, V.J. & Kuris,
A.M. (2003). Introduced species and their missing parasites.Nature , 421, 628–630.
Turcotte, M.M., Thomsen, C.J.M., Broadhead, G.T., Fine, P.V.A., Godfrey,
R.M., Lamarre, G.P.A., et al. (2014). Percentage leaf herbivory
across vascular plant species. Ecological Archives
E095‐065. Ecology , 95 (3), 788-788.
de Vries, J., Evers, J.B., Dicke, M. & Poelman, E.H. (2019). Ecological
interactions shape the adaptive value of plant defence: Herbivore attack
versus competition for light. Funct Ecol , 33, 129–138.
Walsh, G.C., Sosa, A.J., Mc Kay, F., Maestro, M., Hill, M., Hinz, H.L.,et al. (2023). Is Biological Control of Weeds Conservation’s
Blind Spot? Q Rev Biol , 98, 1–28.
Warren, R.J. & Bradford, M.A. (2021). Non-native Microstegium vimineum
populations collapse with fungal leaf spot disease outbreak. Plant
Ecol , 222, 107–117.
Wolfe, L.M., Elzinga, J.A. & Biere, A. (2004). Increased susceptibility
to enemies following introduction in the invasive plant Silene
latifolia. Ecol Lett , 7, 813–820.
Xu, M., Mu, X., Zhang, S., Dick, J.T.A., Zhu, B., Gu, D., et al.(2021). A global analysis of enemy release and its variation with
latitude. Global Ecology and Biogeography , 30, 277–288.
Zhang, D.Y., & Jiang, X.H. (2006). Interactive effects of habitat
productivity and herbivore pressure on the evolution of anti-herbivore
defense in invasive plant populations. Journal of Theoretical
Biology , 242(4), 935-940.
Zhang, Z., Pan, X., Blumenthal, D., van Kleunen, M., Liu, M. & Li, B.
(2018). Contrasting effects of specialist and generalist herbivores on
resistance evolution in invasive plants. Ecology , 99, 866–875.