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ABSTRACT 

Carbon-Nitride (CNx) coatings deposited by means of plasma vapour deposition led to the formation of 

g-C3N4 phase in a mainly amorphous matrix, Nanoindentation was performed on these coatings deposited 
on 304 SS (stainless steel) substrates. The positioning of the indentation i.e inside the grain formed and 

at the boundary showed prolific features pertaining to the understanding of extension of plastic volume 

and variations in interfacial fracture energies and the role played by ductile substrates in preventing 

damage to a component. The amorphous nature of the gain boundary is detrimental to the overall 

performance of the system as confirmed by the strain rate variations and has been suggested to get rid of 

by post deposition treatment 
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INTRODUCTION 

Carbon Nitride (CNx) coatings have applications as conductive wear resistant protective coatings for 

magnetic devices, bioimplants and sensors [1, 2]. They have a band gap of 2.7 eV and are used for 

photocatalysis [3, 4] Their sensing applications comes from the N-H groups formed [6]. The 

polymer Triazine (C3N3) is the first ever compound out of C and N derivatives In the general 

chemical structure C3N4, the C atoms are in both sp3 and sp2 states with the former being 

tetrahedrally whereas the later as a planar structure bonded to N atoms.  

 

Carbon nitrides can exist in different phases viz., α-C3N4, β-C3N4, cubic C3N4, pseudocubic C3N4, 

and graphite C3N4 The β-C3N4 phases has been theoretically predicted to have hardness 

comparable to diamond [6], experimental evidence of which has been found in congruence 

with other phases in a nanocomposite film giving high hardness.  The formation of isolated β-

C3N4 phase has still not been achieved [7-9]. The CNx system being deposited in the form of 

films having various complexion of phases help their use in device fabrication and performance 

[10-14].There is however ambiguity and lack of control on the complexion of the phases obtained on 

being deposited as a thin coating. The nanomechanical characterizations performed have been mostly 

case-specific and biased towards showing the effectiveness of the techniques and not equally devoted to 

find the material properties. An attempt here has therefore been made to understand the material 

(CNx)properties more based on the indentation involving depth sensing techniques. 

 

MATERIALS & METHODS 

CNx Coatings were deposited on Si (100) and 304 SS substrates by magnetron sputtering using a graphite 

target and N2 gas ss well as plasma enhanced chemical vapour deposition (PECVD) using N2/C2H2 

precursor gases with a Nitrogen gas flow. Both the methods consisted of an initial evacuation to a high 

vaccum (~10-5-10-6 Torr) using diffusion and turbomolecular pumps [15, 16]. XRD was done to detect 

the crystallinity. The microstructure of the films was obtained by optical microscope (Leica, Germany) 

Nanoindentation studies were performed by XP (MTS, USA) to determine the mechanical properties.  
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RESULTS & DISCUSSIONS  
The XRD plot of PVD (Sputtered) CNx showed highly amorphous nature with no prominent peak apart 

from a broad peak around 30o. The CVD-CNx films however showed hints of crystallinity as some peaks 

were detectable and given in Table (inset). The most intense peak at 73 o was due Si (100) substrate. The 

growth of mainly g-C3N4 phase took place while deposition [17]. The broad peak indicating amorphous 

nature was centered around a higher 2θ value of 36o compared to the PVD-CNx films which occurs due 

to lower lattice parameters (Fig 1a). Crystallites of larger sizes were formed in CVD-CNx films as 

observed in the optical images (Fib 1b, c)  

 

Nanoindentations performed on PVD-CNx coatings have been reported earlier. The CVD-CNx films 

having larger crystallite size showed variations in the P-h plot based on the indenter positioning and 

consequently the hardness (H) and modulus (E) as also reported previously [18]. Indentations performed 

inside the grains (A) gave a better mechanical response than at the grain boundaries (B) (Fig 2a, b) 

Formation of soft g-C3N4 phase as found from XRD provided reduced H and E values compared to 

conventional protective coatings The hardness was found to increase after 100 nm inside the grain region 

indicating strain hardening. The effect was not that prolific at the GBs. An increase of 50 MPa in 

hardness due to penetration of 300 nm can be seen (Fig 2c). The higher plastic deformation was also 

associated with changed tip-sample contact from Hertzian (P=kh) to P=khn (1 ≤ n ≤ 2) as the sharper 

sides of the three sides of the indenter come in contact (shown in the inset). The change in elastic modulus 

E on the other hand is related to the damage that is occurring during the indentation and is the pre-

requisite phenomenon before fracture (Fig 2d). The fracture process manifests itself by means of 

discontinuity in the loading portions in the form of pop-ins. Although no such evidence was found in the 

P-h plot, the derivative of the loading portion of the plots showed formation of subsurface micro-cracks 

for indentations inside the grains. (A) during the steady increase in the rate of indentation loading. The 

indentation rate was much subtle at the GB (B) and distinct transformation in the tip-sample contact 

nature can be seen to occur at 200 nm (Fig 3 a, b, c).  

 

There exists a plastic zone below the indentation region having a radius (rp) as per eq 1, (σy is the yield 

stress) from where the hardness is determined [19]. This radius is again related to the interfacial fracture 

energy Γi as per eq 2 [20]. The parameters for four indentation depth determined for test A are given in 

Table 1 The rp and Γi showed a steady increase with depth. New dislocations are created in front of crack 

tip in a zone defined by rp and therefore an increase in rp with depth of penetration suggest higher number 

of dislocations causing strain hardening  
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Table 1: Parameters and calculate plastic zone radius (rp) and interfacial fracture energies for 

nanoindentation carried inside the grain (A) and at the grain boundary (B) 

 
 
Depth 
h (nm) 

A(Grain) B (Grain boundary) 

Load P 
(mN) 

Hardness 
H (GPa) 

rp 
(µm) 

Γi  
(J/m2) 

Load P 
(mN) 

Hardness 
H (GPa) 

rp (µm) Γi  
(J/m2) 

100 0.05 0.075 0.33 78 0.01 0.037 0.21 24 

200 0.15 0.08 0.56 140 0.075 0.04 0.56 70 

300 0.35 0.11 0.73 252 0.12 0.049 0.64 98 

400 0.65 0.125 0.93 365 0.22 0.049 0.87 134 

 

For indentations performed at the GBs, the rp did not show a steady increase. There were instances where 

it seemed to attain saturation (300 nm) but increased thereafter. For films deposited on softer substrate, 

the effect of substrate starts at about 1/10th of the coating thickness causing the H and E values to start 

decreasing with higher depths of penetration. For cases where the coatings are of lower hardness than 

the substrate material, (as in this case) the effect of substrate can gets manifested in more than one way. 

The reinitiation of the increase in rp is one of them where it is now no longer confined to the coating 

region but gets extends to the 304SS substrate (as shown in the inset- Fig 3d). This causes the strain 
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hardening to start in the substrate itself where the coating has no role to play. The only effect it might 

have on the coating is its plastic flow surrounding the indent. In case of harder and brittle substrate, which 

will be able to accommodate the elastic strain gradient leading to strain hardening, radial and lateral 

cracks may appear as reported earlier. The interfacial fracture energy plot shows how the interface gets 

toughened as the dislocations pile up at the interface in case of grain centre testing. For grain boundary 

indents, the extent of plastic deformation is less as there is no specific crystallographic pattern developed. 

The region mainly consists of mixed hybridised (sp, sp2 and sp3) phases of carbon and are prone to brittle 

failure following damage as also depicted from the decrease of Γi (Fig 3e). 

 

The change is elastic modulus is associated with damage which can be visualized by a damage index D 

being the derivative dE/dh as shown in Fig 3f. The DB index associated with grain boundary indentation, 

The stainless-steel substrate accommodates the accumulated strains and plays a beneficial role in 

decreasing the developed damage index avoiding brittle failure. The strain rates which quantify the rate 

of deformations were also plotted for the two cases with respect to load and depth (Fig 4) and quite 

expectedly were higher for the GB indentations. The 304SS substrate was found absorbing the strain 

gradient in both the cases from depth of penetration of 220 nm at a consirable distance from the interface.  

 

The g-C3N4 phase has use in photocatalysis. It has also been applied over steel components for corrosion 

protection The inclusive amorphous carbon phase present having mixed hybridization therefore needs to 

be transformed into hard phases of carbon which requires nitriding and heat treatment post deposition. 

Another alternative approach can be using a tetramethyl silane i.e Si(CH3)4 precursor which nullifies the 

possibility of carbonaceous amorphous phases but keeps the possibility of g-C3N4 alive[21].  

 

 

CONCLUSIONS 

A comparative investigation of carbon nitride films deposited by PVD (magnetron sputtering) and CVD 

(PECVD) techniques was performed. The PVD-CNx were found amorphous while crystallinity persisted 

in CVD-CNx giving larger sized grains. Nanoindentation performed on CVD-CNx films showed 

variations based on positioning of the indenter. Indentations performed on the grains caused strain 

hardening and increased interfacial fracture energy. For indentations on the grain boundaries, the 

substrate was found to absorb the accumulated strain developed due to indentation and was instrumental 

in lowering down the damage. Strain rates showed higher variations for indentations made at the grain 

boundaries. A post deposition heat treatment, nitriding and usage of a different precursor is suggested to 

avoid the grain boundary affecting the overall mechanical strength of the system  
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Fig 1 (a) XRD and optical images of (b) CVD-CNx and (c) PVD-CNx coatings 
 
 
 
 
 
 
 
 
 
 

S. No 2θ  
(deg) 

Counts d space  
(Å) 

Relative 
Intensity 

Phase 

1 38.72 2093 2.698 26 g-C3N4(101) 

2 54.86 591 1.942 7 - 

3 56.58 766 1.887 9 g-C3N4(110) 

4 66.06 627 1.641 8 - 

5 73.50 8104 1.495 100 Si (100) 
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Fig 2 (a) Optical images of CVD-CNx and Nanoindentation (b) P-h plots at different regions 

of the microstructure with corresponding (c) Hardness and (d) Modulus variations  
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Fig 3 (a) Loading portions of the nanoindent P-h plots. Differential hardness for (b) grain 

boundary and (c) grain regions (d)variation of plastic depth and (e) interfacial fracture energies 

with depth of penetration and (f) the variation of damage index with depth for penetration inside 

grain and at the grain boundaries. 
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Fig 4. Strain rate variations with respect to (a) load applied and (b) depth of penetration  
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