References
[1] G. Hughes, M.A. Webber, Novel approaches to the treatment of bacterial biofilm infections, British Journal of Pharmacology 174(14) (2017) 2237-2246.
[2] H.K. Kang, H.Y. Kim, J.D. Cha, Synergistic effects between silibinin and antibiotics on methicillin‐resistant Staphylococcus aureus isolated from clinical specimens, Biotechnology Journal 6(11) (2011) 1397-1408.
[3] R.A. Aleinein, H. Schäfer, M. Wink, Secretory ranalexin produced in recombinant Pichia pastoris exhibits additive or synergistic bactericidal activity when used in combination with polymyxin B or linezolid against multi‐drug resistant bacteria, Biotechnology Journal 9(1) (2013) 110-119.
[4] C. Ferriol-González, P. Domingo-Calap, Phage Therapy in Livestock and Companion Animals, Antibiotics 10(5) (2021) 559.
[5] Y. Sang, W. Li, H. Liu, L. Zhang, H. Wang, Z. Liu, J. Ren, X. Qu, Construction of Nanozyme‐Hydrogel for Enhanced Capture and Elimination of Bacteria, Advanced Functional Materials 29(22) (2019) 1900518.
[6] Y. Li, W. Ma, J. Sun, M. Lin, Y. Niu, X. Yang, Y. Xu, Electrochemical generation of Fe3C/N-doped graphitic carbon nanozyme for efficient wound healing in vivo, Carbon 159 (2020) 149-160.
[7] Z. Wang, K. Dong, Z. Liu, Y. Zhang, Z. Chen, H. Sun, J. Ren, X. Qu, Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection, Biomaterials 113 (2017) 145-157.
[8] S. Lethongkam, J. Glaser, A.V. Ammanath, S.P. Voravuthikunchai, F. Götz, In vitro and in vivo comparative analysis of antibacterial activity of green‐synthesized silver nanoparticles, Biotechnology Journal (2023) .
[9] S. Paosen, S. Bilhman, S. Wunnoo, S. Ramanathan, A.W. Septama, S. Lethongkam, S.P. Voravuthikunchai, Control of biomaterial‐associated infections through biofabrication of gold nanoparticles using Musa sapientum extract, Biotechnology Journal 18(10) (2023).
[10] A.M. Khalil, A.H. Hashem, S. Kamel, Bimetallic hydrogels based on chitosan and carrageenan as promising materials for biological applications, Biotechnology Journal 18(10) (2023).
[11] Y. Qin, Y. Liu, L. Yuan, H. Yong, J. Liu, Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract, Food Hydrocolloids 96 (2019) 102-111.
[12] S. Paosen, S. Lethongkam, S. Wunnoo, N. Lehman, E. Kalkornsurapranee, A.W. Septama, S.P. Voravuthikunchai, Prevention of nosocomial transmission and biofilm formation on novel biocompatible antimicrobial gloves impregnated with biosynthesized silver nanoparticles synthesized using Eucalyptus citriodora leaf extract, Biotechnology Journal 16(9) (2021).
[13] P. Nie, Y. Zhao, H. Xu, Synthesis, applications, toxicity and toxicity mechanisms of silver nanoparticles: A review, Ecotoxicol Environ Saf 253 (2023) 114636.
[14] K. Vijayaraghavan, S.P.K. Nalini, Biotemplates in the green synthesis of silver nanoparticles, Biotechnology Journal 5(10) (2010) 1098-1110.
[15] G. Gahlawat, A.R. Choudhury, A review on the biosynthesis of metal and metal salt nanoparticles by microbes, RSC Advances 9(23) (2019) 12944-12967.
[16] J. Xi, G. Wei, Q. Wu, Z. Xu, Y. Liu, J. Han, L. Fan, L. Gao, Light-enhanced sponge-like carbon nanozyme used for synergetic antibacterial therapy, Biomaterials Science 7(10) (2019) 4131-4141.
[17] L. Gao, K.M. Giglio, J.L. Nelson, H. Sondermann, A.J. Travis, Ferromagnetic nanoparticles with peroxidase-like activity enhance the cleavage of biological macromolecules for biofilm elimination, Nanoscale 6(5) (2014) 2588-2593.
[18] H. Chen, X. Zhao, B. Cui, H. Cui, M. Zhao, J. Shi, J. Li, Z. Zhou, Peroxidase-like MoS2/Ag nanosheets with synergistically enhanced NIR-responsive antibacterial activities, Frontiers in Chemistry 11 (2023).
[19] A. Shafiq, A.R. Deshmukh, K. AbouAitah, B.-S. Kim, Green Synthesis of Controlled Shape Silver Nanostructures and Their Peroxidase, Catalytic Degradation, and Antibacterial Activity, Journal of Functional Biomaterials 14(6) (2023) 325.
[20] V.-D. Doan, V.-C. Nguyen, T.-L.-H. Nguyen, A.-T. Nguyen, T.-D. Nguyen, Highly sensitive and low-cost colourimetric detection of glucose and ascorbic acid based on silver nanozyme biosynthesized byGleditsia australis fruit, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 268 (2022) 120709.
[21] Y. Wu, J.-Y. Chen, W.-M. He, Surface-enhanced Raman spectroscopy biosensor based on silver nanoparticles@metal-organic frameworks with peroxidase-mimicking activities for ultrasensitive monitoring of blood cholesterol, Sensors and Actuators B: Chemical 365 (2022) 154125.
[22] X. Tan, S. Liu, X. Hu, R. Zhang, X. Su, R. Qian, Y. Mai, Z. Xu, W. Jing, W. Tian, L. Xie, Near-Infrared-Enhanced Dual Enzyme-Mimicking Ag-TiO(2-x)@Alginate Microspheres with Antibactericidal and Oxygeneration Abilities to Treat Periodontitis, ACS Appl Mater Interfaces 15(1) (2023) 391-406.
[23] A. Mohammadzadeh, P. Pashazadeh-Panahi, M. Hasanzadeh, Visual monitoring and optical recognition of digoxin by functionalized AuNPs and triangular AgNPs as efficient optical nano-probes, J Mol Recognit 34(10) (2021) e2917.
[24] A. Xiao, B. Wang, L. Zhu, L. Jiang, Production of extracellular silver nanoparticles by radiation-resistant Deinococcus wulumuqiensis R12 and its mechanism perspective, Process Biochemistry 100 (2021) 217-223.
[25] X. Xu, L. Jiang, Z. Zhang, Y. Shi, H. Huang, Genome Sequence of a Gamma- and UV-Ray-Resistant Strain, Deinococcus wulumuqiensisR12, Genome Announc 1(3) (2013) e00206-13.
[26] Y. Chen, Z. Yang, X. Zhou, M. Jin, Z. Dai, D. Ming, Z. Zhang, L. Zhu, L. Jiang, Sequence, structure, and function of the Dps DNA-binding protein from Deinococcus wulumuqiensis R12, Microb Cell Fact 21(1) (2022) 132.
[27] S. Sun, B. Shen, L. Jiang, L. Zhu, Potential for efficient microbial remediation of Cr(VI) in wastewater using Deinococcus wulumuqiensis R12, Journal of Applied Microbiology 134(6) (2023).
[28] Y. Wu, J.-M. Zhou, Y.-S. Jiang, W. Li, M.-J. He, Y. Xiao, J.-Y. Chen, Silver nanoparticles@metal-organic framework as peroxidase mimics for colorimetric determination of hydrogen peroxide and blood glucose, Chinese Journal of Analytical Chemistry 50(12) (2022).
[29] E. Jamróz, P. Kopel, L. Juszczak, A. Kawecka, Z. Bytesnikova, V. Milosavljević, M. Kucharek, M. Makarewicz, V. Adam, Development and characterisation of furcellaran-gelatin films containing SeNPs and AgNPs that have antimicrobial activity, Food Hydrocolloids 83 (2018) 9-16.
[30] D. Feng, R. Zhang, M. Zhang, A. Fang, F. Shi, Synthesis of Eco-Friendly Silver Nanoparticles Using Glycyrrhizin and Evaluation of Their Antibacterial Ability, Nanomaterials 12(15) (2022) 2636.
[31] S.-P. Deng, J.-Y. Zhang, Z.-W. Ma, S. Wen, S. Tan, J.-Y. Cai, Facile Synthesis of Long-Term Stable Silver Nanoparticles by Kaempferol and Their Enhanced Antibacterial Activity Against Escherichia coli and Staphylococcus aureus , Journal of Inorganic and Organometallic Polymers and Materials 31(7) (2021) 2766-2778.
[32] Y. Wang, Y. Liu, N. Zhao, J. Wang, Y. Yang, D. Cui, M. Zhao, Fe3O4 nanozyme coating enhances light‐driven biohydrogen production in self‐photosensitizedShewanella oneidensis ‐CdS hybrid systems, Biotechnology Journal (2023).
[33] X. Tian, X. Jiang, C. Welch, T.R. Croley, T.Y. Wong, C. Chen, S. Fan, Y. Chong, R. Li, C. Ge, C. Chen, J.J. Yin, Bactericidal Effects of Silver Nanoparticles on Lactobacilli and the Underlying Mechanism, ACS Appl Mater Interfaces 10(10) (2018) 8443-8450.
[34] B. Lu, F. Lu, Y. Zou, J. Liu, B. Rong, Z. Li, F. Dai, D. Wu, G. Lan, In situ reduction of silver nanoparticles by chitosan-l-glutamic acid/hyaluronic acid: Enhancing antimicrobial and wound-healing activity, Carbohydrate Polymers 173 (2017) 556-565.
[35] M.S. Mechouche, F. Merouane, C.E.H. Messaad, N. Golzadeh, Y. Vasseghian, M. Berkani, Biosynthesis, characterization, and evaluation of antibacterial and photocatalytic methylene blue dye degradation activities of silver nanoparticles from Streptomyces tuirusstrain, Environmental Research 204 (2022) 112360-112373.
[36] Y. Zaman, M.Z. Ishaque, S. Ajmal, M. Shahzad, A.B. Siddique, M.U. Hameed, H. Kanwal, R.J. Ramalingam, M. Selvaraj, G. Yasin, Tamed synthesis of AgNPs for photodegradation and anti-bacterial activity: Effect of size and morphology, Inorganic Chemistry Communications 150 (2023) 110523-110529.
[37] G. Rajkumar, R. Sundar, Biogenic one-step synthesis of silver nanoparticles (AgNPs) using an aqueous extract of Persea americana seed: Characterization, phytochemical screening, antibacterial, antifungal and antioxidant activities, Inorganic Chemistry Communications 143 (2022) 109817.
[38] X. Li, M. Liu, H. Cheng, Q. Wang, C. Miao, S. Ju, F. Liu, Development of ionic liquid assisted-synthesized nano‑silver combined with vascular endothelial growth factor as wound healing in the care of femoral fracture in the children after surgery, J Photochem Photobiol B 183 (2018) 385-390.
[39] A.O. Fadaka, S. Meyer, O. Ahmed, G. Geerts, M.A. Madiehe, M. Meyer, N.R.S. Sibuyi, Broad Spectrum Anti-Bacterial Activity and Non-Selective Toxicity of Gum Arabic Silver Nanoparticles, Int J Mol Sci 23(3) (2022) 1799.
[40] S. Palithya, S.A. Gaddam, V.S. Kotakadi, J. Penchalaneni, V.N. Challagundla, Biosynthesis of silver nanoparticles using leaf extract ofDecaschistia crotonifolia and its antibacterial, antioxidant, and catalytic applications, Green Chemistry Letters and Reviews 14(1) (2021) 137-152.
[41] H.-z. Qi, W.-z. Wang, J.-y. He, Y. Ma, F.-z. Xiao, S.-y. He, Antioxidative system of Deinococcus radiodurans , Research in Microbiology 171(2) (2020) 45-54.
[42] H. Sun, A. Zhao, N. Gao, K. Li, J. Ren, X. Qu, Deciphering a nanocarbon-based artificial peroxidase: chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots, Angew Chem Int Ed Engl 54(24) (2015) 7176-80.
[43] X. Shu, Y. Chang, H. Wen, X. Yao, Y. Wang, Colorimetric determination of ascorbic acid based on carbon quantum dots as peroxidase mimetic enzyme, RSC Advances 10(25) (2020) 14953-14957.
[44] K. Gudikandula, S. Charya Maringanti, Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties, Journal of Experimental Nanoscience 11(9) (2016) 714-721.
[45] M. Mousavi-Khattat, M. Keyhanfar, A. Razmjou, A comparative study of stability, antioxidant, DNA cleavage and antibacterial activities of green and chemically synthesized silver nanoparticles, Artificial Cells, Nanomedicine, and Biotechnology 46(sup3) (2018) 1022-1031.
[46] N. Yu, T. Cai, Y. Sun, C. Jiang, H. Xiong, Y. Li, H. Peng, A novel antibacterial agent based on AgNPs and Fe3O4 loaded chitin microspheres with peroxidase-like activity for synergistic antibacterial activity and wound-healing, International Journal of Pharmaceutics 552(1-2) (2018) 277-287.
[47] A.A. Dayem, B. Kim, S. Gurunathan, H.Y. Choi, G. Yang, S.K. Saha, D. Han, J. Han, K. Kim, J.H. Kim, S.G. Cho, Biologically synthesized silver nanoparticles induce neuronal differentiation of SH‐SY5Y cells via modulation of reactive oxygen species, phosphatases, and kinase signaling pathways, Biotechnology Journal 9(7) (2014) 934-943.
[48] M.A. Quinteros, C.A. Viviana, R. Onnainty, V.S. Mary, M.G. Theumer, G.E. Granero, M.G. Paraje, P.L. Páez, Biosynthesized silver nanoparticles: Decoding their mechanism of action inStaphylococcus aureus and Escherichia coli , The International Journal of Biochemistry & Cell Biology 104 (2018) 87-93.
[49] H. Wang, Y. Jiang, Y. Zhang, Z. Zhang, X. Yang, M.A. Ali, E.M. Fox, K.S. Gobius, C. Man, Silver nanoparticles: A novel antibacterial agent for control of Cronobacter sakazakii, Journal of Dairy Science 101(12) (2018) 10775-10791.
[50] S. Liao, Y. Zhang, X. Pan, F. Zhu, C. Jiang, Q. Liu, Z. Cheng, G. Dai, G. Wu, L. Wang, L. Chen, Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa , Int J Nanomedicine 14 (2019) 1469-1487.
[51] J.C. Ontong, S. Paosen, S. Shankar, S.P. Voravuthikunchai, Eco-friendly synthesis of silver nanoparticles using Senna alatabark extract and its antimicrobial mechanism through enhancement of bacterial membrane degradation, J Microbiol Methods 165 (2019) 105692.
[52] H.S. Jiang, Y. Zhang, Z.W. Lu, R. Lebrun, B. Gontero, W. Li, Interaction between Silver Nanoparticles and Two Dehydrogenases: Role of Thiol Groups, Small 15(27) (2019) 1900860.
[53] M.A. Quinteros, V. Cano Aristizábal, P.R. Dalmasso, M.G. Paraje, P.L. Páez, Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antimicrobial activity, Toxicology in Vitro 36 (2016) 216-223.