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Abstract—The bag-of-words (BoW) model is one of the most
popular representation methods for image classification. How-
ever, the lack of spatial information, change of illumination,
and inter-class similarity among scene categories impair its
performance in the remote-sensing domain. To alleviate these
issues, this paper proposes to explore the spatial dependencies
between different image regions and introduce a neighborhood-
based collaborative learning (NBCL) for remote-sensing scene
classification. Particularly, our proposed method employs mul-
tilevel features learning based on small, medium, and large
neighborhood regions to enhance the discriminative power of
image representation. To achieve this, image patches are selected
through a fixed-size sliding window where each image is repre-
sented by four independent image region sequences. Apart from
multilevel learning, we explicitly impose Gaussian pyramids to
magnify the visual information of the scene images and optimize
their position and scale parameters locally. Motivated by this, a
local descriptor is exploited to extract multilevel and multiscale
features that we represent in terms of codewords histogram by
performing k-means clustering. Finally, a simple fusion strategy
is proposed to balance the contribution of these features, and
the fused features are incorporated into a Bidirectional Long
Short-Term Memory (BiLSTM) network for constructing the
final representation for classification. Experimental results on
NWPU-RESISC45, AID, UC-Merced, and WHU-RS datasets
demonstrate that the proposed approach not only surpasses the
conventional bag-of-words approaches but also yields signifi-
cantly higher classification performance than the existing state-
of-the-art deep learning methods used nowadays.

Index Terms—Scene classification, Bag-of-words (BoW) model,
Gaussian pyramids, Neighborhood-based learning, Bidirectional
Long Short-Term Memory (LSTM).

I. INTRODUCTION

EMOTE sensing has received unprecedented attention

due to its role in mapping land cover, geographic image
retrieval, natural hazards detection, and monitoring changes in
land cover. The currently available remote sensing satellites
and instruments (e.g., IKONOS, unmanned aerial vehicles
(UAVs), synthetic aperture radar, etc.,) for observing earth not
only provide high-resolution scene images but also give us an
opportunity to study the spatial information with a fine-grained
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(a) within-class dive

(b) between-class similarity: stadium vs. playground, church vs.
commercial, beach vs. port, square vs. center, medium
residential vs. dense (from top to bottom)

Figure 1. The challenging scene images of AID dataset [68]. (a) the intraclass
diversity and (b) interclass similarity are the main obstacles that limit the
scene classification performance. This encourages us to learn multilevel spatial
features that have small within-class scatter but large between-class separation.

detail. However, within-class diversity among scene categories
is one of the main challenges that brings new obstacles in
image analysis as shown in Fig.1 (a). The first and second
row represents resort and park scenes, respectively. A large
diversity can be observed even within the same class. Here,
the “scenes” belong to different types of subareas extracted
from large satellite images. These subareas could be different
types of land covers or objects and possess specific semantic
meaning, such as commercial area, dense residential, sparse
residential and parking lot in a typical urban area satellite
image [68]. With the development of modern technologies,
scene classification has been an active research field, and
correctly labeling it to a predefined class is still a challenging
task.

In the early days, most of the approaches focused on hand-
crafted features which can be computed based on shape, color,
or textual characteristics where commonly used descriptors
are local binary patterns (LBPs) [26], scale invariant feature
transform [42]], color Histogram [56], and histogram oriented
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Figure 2. The main idea of the proposed work. Given a remote sensing image,
BoW model is designed with different neighborhood regions to incorporate
spatial information. Left column: Example images from NWPU dataset. Right
column: SURF features of light, medium and dark green colors represent
different spatial locations. These samples can significantly improve the scene
classification performance.

gradients (HOG) [[I8]. A major shortcoming of the low-level
descriptors is that not fulfilling the entire scene understanding
due to high diversity and non-homogeneous spatial distribu-
tions of the scene classes. Moreover, they require complex
engineering skills that rely on expert experience. In compar-
ison to handcrafted features, the bag-of-words (BoW) model
is one of the famous mid-level (global) representations and is
extremely popular in image analysis and classification, while
providing an efficient solution for aerial or satellite image
scene classification. It was first proposed for text analysis
and then extended to images by a spatial pyramid method
(SPM) because the vanilla BoW model does not consider
spatial and structural information. The SPM method divides
the images into several parts and computes BoW histograms
from each part based on the structure of local features. The
histograms are then concatenated from all image parts to make
the final representation [33]]. Although these mid-level features
are highly efficient, they may not be able to characterize
detailed structures and distinct patterns. For instance, some
scene classes are represented mainly by individual objects,
e.g., runway and airport in remote-sensing datasets. As a
result, the BoW model has limited performance in dealing
with complex and challenging scene images.

Recently, deep learning based methods have been suc-
cessfully utilized in scene classification, and proven to be
promising in extracting high-level features. For instance, Wang
et al. [66] proposed a domain adaptation method based on the
deep neural network, where the manifold alignment is adopted
on the target domain to avoid distortion. Chen et al.
proposed an associative learning-based domain adaptation that
does not require target labeled information and can achieve
unsupervised classification of the target image. A combined
CNN-based recurrent neural network is proposed in [57]] to
exploit both local and long-range spatial relation information
to enhance the classification performance of the model. How-

ever, the backpropagation process, hyperparameter setting, or
training a CNN from the scratch remains challenging, and
a small number of training samples often cause overfitting
in deep learning models. To address these limitations, most
works tend to use a pre-trained model as a feature extractor,
such as VGGNet, which can easily get deep features without
high computational cost [44]. However, the deep learning
based methods generally analyze an individual patch, and treat
different scene categories equally. Thus, they fail to capture
contextual dependencies for better representation. To illustrate
this observation, some images from AID dataset are displayed
as an example in Fig.1 (b). One can see that both stadium
and playground scenes display high appearance similarity and
the diversity within the scene varies largely. Moreover, natural
images can be mainly captured by cameras with manual or
auto-focus options and it makes them to be center-biased [28].
However, in the case of remote sensing scene classification,
images are usually captured overhead. Therefore, using a CNN
as a “black box” to classify remote sensing images may be not
good enough for complex scenes. Even though several works
[44] 6] attempted to focus on the critical local image patches
and discard the useless information, they still only utilize the
visual information [37].

Despite the success of deep learning and BoW algorithms,
the intraclass diversity and interclass similarity are two big
challenges that still needed to be addressed. To alleviate these
issues, we propose a multilevel learning approach to extract
image features region by region based on small, medium, and
large neighborhood patches to fully exploit spatial structure
information in BoW model. This is motivated by the fact
that even patch sizes are different in size, they exhibit good
learning ability of spatial dependencies between image region
features that may help to interpret the scene [60]. Our proposed
method also magnifies the visual information by utilizing
Gaussian pyramids and combine these two approaches to solve
the problem of remote-sensing scene classification. In order
to balance the contribution of these two types of features, we
propose a simple fusion strategy based on three motivations.
First, even though a considerable amount of literature on
fusion of multiscale or multilayer features is available in scene
classification, there is currently no clear consensus on the
best features for large-scale scene recognition. Our second
motivation is to introduce a simple fusion strategy that can
surpass the previous performance without utilizing state-of-
the-arts fusion methods such as DCA [10], PCA [33], CCA
[46], etc., as previously utilized in remote sensing domain.
The third motivation is to evade the disadvantages of tradi-
tional dimensionality reduction techniques such as principle
component analysis (PCA): its data-dependent characteristic,
the computational burden of diagonalize the covariance matrix,
and the lack of guarantee that distances in the original and
projected spaces are well retained. In summary, we want to
develop a simple bag-of-words method to make full use of
spatial and visual information, which can effectively improve
the classification performance.

Therefore, in this paper, we propose a simple, yet very
effective approach called neighborhood-based collaborative
learning (NBCL) that builds on fusion of the corresponding



multilevel and multiscale features. In particular, the NBCL en-
codes spatial and visual information based on small, medium,
and large neighborhood regions. The extracted spatial locations
which are used in our work are visualized in Fig 2. The
final representation for an image is achieved by fusing small,
medium, and large scale spatial and visual histograms. For
classification purpose, the BiLSTM approach is adopted due
to its proven efficient classification performance. In contrast
with previous works which choose a certain sampling (sparse,
dense, random, etc.) approach [29, 28], the proposed work
defines an artificial fixed-size sliding window not only for
the original image but also extend in scale space pyramid
to accommodate all the multiscale patches of the image and
extract local features from each patch. In summary, our main
contributions in this paper are summarized as follows:

1) We present a neighborhood-based collaborative learning
(NBCL) to combine all the surrounding features into a
new single vector and address the problem of intraclass
diversity and interclass similarity.

2) To improve the visual information, a smoothing and
downsampling is preformed by convolving the image
with Gaussian kernels. Simultaneously, we propose to
integrate the fixed neighborhood regions into multiple
downscaled versions of the input image in a scale space
pyramid. In this way, we can explore more content and
important information.

3) The proposed method not only surpasses the pre-
vious BoW methods but also several state-of-the-art
deep learning-based methods on four publicly available
datasets and achieves state-of-the-art results.

The rest of this work is organized as follows. Section II
discusses the related literature work of this study. Section
IIT introduces the proposed NBCL for remote sensing scene
classification. Section IV shows the experimental results of the
proposed NBCL on several public benchmark datasets. Section
V summarizes the entire work and gives suggestions for future
research.

II. RELATED WORK

Early attempts heavily depend on the hand-crafted features
and focus on different types of color features for remote sens-
ing scene image analysis. Since only spectral information can
be utilized, the color features are more convenient to extract
in comparison with texture and shape features. The color
histograms and color moments provide discriminative features
and can be computed based on the local descriptors such
as local binary patterns (LBPs) [26]], scale invariant feature
transform (SIFT) [42], color histogram [56], and histogram
oriented gradients (HOG) [18]. Yu et al. [75] proposed a
new descriptor called color-texture-structure (CTS) to encode
color, texture and structure features. In their work, dense
approach is used to build the hierarchical representation of
the images. Finally, the co-occurrence patterns of regions are
extracted and the local descriptors are encoded to test the
discriminative capability. Chen et al. [11] evaluated the perfor-
mance of 13 features consists of color, structure, and texture
features. To perform classification, k-nearest-neighbor (KNN)

classifier and the support vector machine classifiers (SVM)
are employed and the decision level fusion is performed to
improve the performance of scene images. Tokarczyk et al.
[S9] proposed to use integral images and extract discriminative
textures at different scale levels of scene images. The features
are named as Randomized Quasi-Exhaustive (RQE) which
are capable of covering a large range of texture frequencies.

In bag-of-words (BoW) framework, conventional coding
methods focus on a single grid size or block based response to
extract spatial features while not taking into account the other
useful filter responses. An image often consists of a single
object, but sometimes several objects or particles also appear
in the surrounding. Although researchers showed that by
incorporating relative spatial information, such as distance or
angular directions, the technique becomes less effective as the
codebook size increases. To address these challenges, Savarese
et al. [51]] introduced integral correlograms to capture spatial
co-occurrences of features, which are easy to compute with
respect to basic geometric transformations. The combination
of correlograms and visual words is explored by forming
a co-occurrence matrix of visual words as a function of
distance. The co-occurrence matrix models the typical spatial
correlations between visual words in object classes, yielding
invariance to rotation and translation. In order to improve
the classification performance, the co-occurrence matrix with
the orderless BoW is also utlized in [74]. However, the
correlogram matrix takes expensive computation power and
memory cost [51].

Khan et al. [31] investigated multiple hand-crafted color
features in bag-of-word model. In their work, color and shape
cues are used to enhance the performance of the model. Yang
et al. [73] improved the BoW model based on the spatial co-
occurrence kernel, where two spatial extensions are proposed
to emphasize the importance of spatial structure in geographic
data. Vigo et al. [63]] proved that incorporating color and shape
in both feature detection and extraction significantly improves
the bag-of-words based image representation. Sande ef al. [61]]
proposed a detailed study about the invariance properties of
color descriptors. They concluded that the addition of color
descriptors over SIFT increases the classification accuracy by
8 percent. Lazebnik et al. [33] proposed a spatially hierarchical
pooling stage to form the spatial pyramid method (SPM). To
improve the SPM pooling stage, sparse codes (SC) of SIFT
features is merged in the traditional SPM [72]. To further
enhance the spatial information, a new coding algorithm called
Locality-constrained Linear Coding (LLC) is introduced that
utilizes the locality constraints to project each descriptor into
its local-coordinate system. Then, a max-pooling is used to
integrate projected coordinates [64]. Computational efficiency
is achieved by introducing a soft-assignment coding that
computes the distance from a local feature to each word, and
allows each feature vector to belong to multiple histogram bins
[38]. However, the classification performance is limited to the
newly generated sparse or local coding schemes. Boureau et al.
[8] analyzed the various combinations of coding and pooling
schemes through a comprehensive cross evaluation of several
types of pooling and coding stages: hard assignment vs. soft
assignment, the linear kernel vs. the histogram intersection
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Figure 3. Flowchart of the proposed method. The local patches are selected by a fixed-size sliding window, where green, orange, blue, and yellow rectangles
represent the sizes of 10 x 10, 8 X 8, 6 x 6, and 4 X 4, respectively. The dense interest points are encoded to a specific codeword through the k-means
clustering process. Finally, a concatenated histogram is used as an input for training the BiLSTM network.

kernel and average pooling vs. max-pooling.

Zhou et al. introduced a hierarchical Gaussian mixture
model for feature vectors at difference levels, and several
Gaussian maps for its spatial layout. To alleviate noise di-
rections and to further enhance the discrimination power, a
supervised dimension reduction technique is introduced called
Discriminant Attribute Projection (DAP). In contrast to k-
means clustering, a modified coding approach is introduced
in called Fisher vector coding. They extend BoW by
using a Gaussian mixture model to encode spatial layout.
To encode the appearance of local features, representation of
spatial layout is combined with the use of Fisher kernels.
While their representation is computationally efficient and
compact, their evaluations indicates marginal improvement
over SPM. Gabriel er al. [47] presented a new method, called
Sparse Spatial Coding (SSC). In their work, they build the
dictionary with a set of random patches and code a descriptor
using a spatial constraint. Their method is closely related to
LLC [64].

In recent years, a large number of studies have been con-
ducted to merge attention mechanism and multiscale learning
based on deep learning models. Ghanbari et al. proposed
a dense-global-residual network to reduce the loss of spatial
information and enhance the context information. The authors
used a residual network to extract the features and global
spatial pyramid pooling module to obtain more abundant
multiscale features at different levels. Zhao et al. proposed
a deep learning model which simultaneously captures spectral-
spatial features of the target pixel and its neighboring pixels
for classification. The authors used a center attention module
that pays more attention to the features correlated to target
pixels and reduce the number of parameters in the network via
weighted sum of the spectral-spatial features. Zuo et al. [81]]
proposed a convolutional recurrent neural network to learn
the spatial dependencies between image regions and enhance
the discriminative power of image representation. The authors

trained their model in an end-to-end manner where CNN
layers are processed to generate mid level features and RNN
layer is learned to encode spatial dependencies.Xue et al.
proposed a hierarchical residual network to extract multiscale
and spectral features at a granular level. The authors used an
attention mechanism to set adaptive weights for spatial and
spectral features of different scales for the further improvement
of the discriminative ability of extracted features. Ran et
al. [50] proposed a multiscale context and enhanced chan-
nel attention model that employs PeleeNet as the backbone
network. The authors improved the characterization ability
of the convolutional neural network by proposing channel
attention approach. Huang et al. [30] proposed an end-to-end
deep learning model and employ multiscale feature fusion,
a channel-spatial attention, and a label correlation extraction
module. Specifically, a channel-spatial attention mechanism
is used to fuse and refine multiscale features from different
layers of the CNN model. Moreover, a label co-occurrence
matrix is utilized to extract the label correlation information
and embedded into the multiscale attentive features which
increases the discriminative ability of their proposed model.
Mei et al proposed a sparse representation-based
model with deep feature fusion. Multilevel features are ex-
tracted from different layers of convolutional neural networks
to exploit the feature learning ability. Zhang er al. pro-
posed a multi-scale deep feature representation and the region-
based features selection. The model first filters the multi-scale
deep features extracted from pre-trained convolutional net-
works and then fuses those features via their proposed fusion
strategy. The authors utilized the complementarity between
local and global features by exploiting the features of different
scales and discarding the redundant information in features.
Liang et al. [37]] introduced a novel two-stream architecture
combining global-based visual features and object-based fea-
tures. The model first extracts the appearance visual features
from the scene image using convolutional neural network



and later detects the ground objects and finally constructs a
graph to learn spatial features using a graph convolutional
network. Tian et al.[58] proposed a multiscale dense network
based on squeeze and excitation attention, dense connections
and squeeze-and-excitation attention mechanism. The authors
imposed two settings with computational constraints including
budgeted batch classification (a fixed computational budget
setting for sample classification) and prediction module that
forces the network to predict the output.

Fu et al. [19] proposed a feature fusion architecture to
generate a multiscale features hierarchy that augments the
features of shallow layers with semantic representations and
combine the feature maps of top layers with low-level infor-
mation. The authors built a unified framework upon the region-
based convolutional neural network for arbitrary-oriented and
multi-scale object detection. Cheng et al. [17] proposed a
multi model fusion neural network with the combination of
a convolutional neural network and a multilayer perceptron
to estimate a fine-resolution population mapping. This model
takes the local spatial information and global information from
multisource data to estimate the fine-resolution population
where a first-order space matrix of a geographic unit is used
to characterize these information. Qu et al. [49] proposed
a novel multiscale deeply supervised convolutional feature
fusion module. The authors used multiscale feature fusion by
using the high-level features and the low-level features with
deep supervision that provides direct supervision to improve
the performance of the model. Li et al. [36] proposed an
adaptive multilayer feature fusion model to fuse different
convolutional features with feature selection operation, rather
than simple concatenation. The authors claimed that their
proposed method is flexible and can be embedded into other
neural architectures.

In overall, patch sampling or feature learning is a key step
for building up an intelligent system either for CNN model or
BoW-based approaches. In deep learning CNN models, convo-
lutional layers convolve the local image regions independently,
and pass its result to the next layer, whereas pooling layers
summarize the dimensions of data. Due to wide range of image
resolution and various scales of detail textures, fixed sized
kernels are inadequate to extract scene features of different
scales. Therefore, the focus has been shifted to multiscale
and fusion methods in scene image classification domain,
and existing deep learning methods are making full use of
multiscale information and fusion for better representation.

A sampling step is generally required to select uniform,
sparse, random, and dense representative subset of the images
for subsequent analysis. The most popular BoW methods
utilize a fixed grid size and extract features at different scales
[39, 24} 13]. This is because it is still not clear which sampling
strategy is suitable, and even no optimal patch size can be set
for the scene classification of high-resolution remote sensing
images. Due to the unique nature of remote sensing images,
discriminative patch sizes are needed that can focus on the
significant regions within the image itself in the procedure of
feature learning. Thus, it stimulates us to research whether the
correlation of scene categories can increase the discriminative
ability of BoW features. NBCL provides a natural approach to
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Figure 4. Predefined patch size (4 x 4) with the sliding step is set to be 1
pixel before representing features over entire image.

model the spatial dependencies among scene categories, where
we propose to merge the fixed patch size for all downscaled
versions of the original image in a scalespace pyramid.

III. PROPOSED METHOD

The proposed approach is divided into three indispensable
components: (1) estimation of multi-neighborhood regions (2)
information fusion and (3) a BiLSTM based sub-network
for classification purpose. We first describe the procedure of
neighborhood estimation with multi-scale filtering. Next, we
describe the proposed fusion along the classification process
of BiLSTM network. The overall procedure of the proposed
approach is illustrated in Fig 3.

A. Features extraction using multi-neighborhood regions

In order to explore the spatial relationship between scenes
or sub-scenes, we propose to extract multilevel features with
the objective that different regions contain discriminative char-
acteristics that can be used to extract more meaningful infor-
mation and to correctly classify target samples. Based on our
observation, the size of the neighborhood has a great impact
on the scene representations and classification performance.
To achieve this, we first define a region over the entire image,
where the patch sizes used are (4x4), (6x6), (8x8), (10x10),
and the sliding step is set to be 1 pixel. An example image
with the neighborhood patch (4 x 4) size is provided in Fig.4
to show how the local descriptor is exploited in each part of
the region. Here, the definition of different neighborhood size
is considered to be small, medium, or large regions. Thus,
four kinds of sizes are used for each image to ensure that the
output is full of content information. To achieve multiscale
information of each region, we propose to use multi-scale
filtering motivated by the fact that it can adaptively integrate
the edges of small and large structures by removing image
noise. Inspired by the Gaussian scale-space [67], images are
repeatedly smoothed with appropriately sized Gaussian kernels
by convolving over image:

I(aabv Ji) = I(a,b)*G(a,b, Ji)a (1)

where * is the convolution operator and G(a,b,o0;) is the
Gaussian kernel with the standard deviation * defined by

2 2 . . . .
G(a,b,0;) = ﬁexp— ‘12;2” . In this way, noise and illumi-
nation factors are suppressed by using these smoothed images




Table I
NEIGHBORHOOD-BASED ANALYSIS ON EACH DATASET.

| Different Neighborhood combinations | Accuracy(%)
UC Merced dataset

1 4 x4 88.10
2 6 X6 86.79
3 8x 8 85.43
4 10 x 10 84.52
WHU-RS dataset
1 4 x4 86.10
2 6 X6 88.70
3 8x 8 91.52
4 10 x 10 89.52

and coarser structures are emphasized since no new structures
are created after smoothing. Therefore, the proposed idea takes
the advantages of both schemes. We experimentally study the
outcome of this choice in ablation study section. Once the
scale space has been built, we utilize SURF descriptor [4]
to extract the features within a bounded search area. For an
image I, image scales m; = (i = 1,2,...,n) are denoted as
Tmi = (i = 1,2,...,n). Formally, for each smoothed image
the feature extracted from the SUREF is illustrated as below:

fom, = SURF (zn3), i=1,2,....n 2

where n is the number of scales, ¢ is the index of scale, x,,;
is the i*" scale, x,,; is the region at i*" scale, and f,,,, is the
SUREF feature for x,,;.

In order to construct the visual vocabulary, SURF features
are clustered through the k-means clustering process and
mapped to a specific codeword, thus, can be represented by
a histogram of visual words. The histogram becomes a final
representation of the image.

B. Information fusion

Information fusion is the process of combining multiple
pieces of information to provide more consistent, accurate,
and useful information than a single piece of information. In
general, it is divided into four categories: decision level, scale
level, feature level, and pixel level [S5]. Among them, the
feature level fusion has comparatively a shorter history but is
an emerging topic in a remote-sensing domain. The spatial
relation between the proposed regions can improve scene
classification in two aspects. First, aggregating the information
of a neighborhood and its adjacent neighborhoods assists in
recognizing the features that accurately represent the scene
type of the image. For instance, determining whether farmland
belongs to a forest field or a meadow requires information
about its neighboring area. Second, the natural relationship of
the spatial distribution pattern of a scene helps to infer the
scene category. Industrial area, for instance, is likely planar,
and the runway is always linear. Therefore, we select to
combine four different regions based on multiscale features,
in the aim to obtain more informative and relevant features
to represent the input image. Each input image I produced
four sets of multiscale features, that is @y, @2, @3, and
@4 representing four sets of features. The final fused vector
illustration is obtained as:

Qq(I) = Q1(1) +iQ2(1) +iQ3(I) +iQu(I),  (3)

where ¢ is the imaginary unit.

C. Recurrent Neural Network (RNN)

The multiscale histograms from different regions provide
crucial information for understanding the spatial structure. We
concatenate them into a final representation, which is then
used as an input to Bidirectional neural network [52]]. The
Bidirectional Long Short-Term Memory Networks learns the
correlations of features and encodes the feature histograms
based on the memory cell (M), and are competent for
retaining track of the dependencies between the elements in
the input sequence. It consists of an input gate (i), an output
gate (0;) and a forget gate (f;). The input gate controls the
information flow into the cell by multiplying the cell’s non-
linear transformation of inputs n,. The output gate governs
how much information from the cell is employed to calculate
the output activation of the LSTM unit. The forget gate decides
the amount to which a value remains in the cell. The LSTM
unit updates for time step ¢ are:

ft o

it o g .

N - tanh H [pt717 xt] (4)

O¢ g

My=fiOMi_1+n, Ot )
p¢ = tanh(M;) © oy (6)

where x; denotes the input at the current time-step, ¢; denotes
the current cell state. f, ¢ and n represent the input gate
activation, forget gate activation and output gate activation
respectively, o illustrates the logistic sigmoid function and ®
represents element-wise multiplication.

IV. DATASETS AND EXPERIMENTAL SETUP

In this section, we first provide a brief description of four
databases that are used to evaluate our method. Then, the
implementation details and ablation analysis are discussed and
the results are compared with state-of-the-art methods.

A. Datasets

UC Merced Land Use Dataset (UC-Merced): This dataset
was obtained from the USGS National Map Urban Area with
a pixel resolution of one-foot [73]. It contains 21 distinctive
scene categories and each class consists of 100 images of size
256 x 256 x 3. Inter-class similarity, for example, highway
and architecture scenes can be easily mixed with other scenes,
such as freeways and buildings, which makes this dataset a
challenging one.

WHU-RS Dataset: It was collected from satellite images of
Google Earth [54]]. This dataset consists of 950 scene images
and 19 classes with a size of 600 x 600. Each image varies
greatly in high resolution, scale, and orientation, which makes
it more complicated than the UCM dataset.

Aerial Image Dataset (AID): There are 10000 images in
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Figure 5. Confusion matrix of our proposed method on WHU-RS dataset by fixing the training ratio as 80% (a) with one-stage learning, (b) with two-stage

learning, (c) with three-stage learning, and (d) with multi-stage learning. Zoom in for a better view.

AID dataset, which are categorized into 30 scene classes [68].
Each class contains images ranging from 220 up to 420 with
the fixed size of 600 x 600 pixels in the RGB space. The pixel
resolution changes from about 8 m to about half a meter.

NWPU-RESISC45 Dataset: It consists of 31,500 remote
sensing images divided into 45 scene classes, covering more
than 100 countries and regions all over the world [13]. Each
class contains 700 images with the size of 256 x 256 pixels.
This dataset is acquired from Google Earth (Google Inc.),
where the spatial resolution varies from 30 to 0.2 m per
pixel. This is one of the largest datasets of remote sensing
images and is 15 times larger than the most widely-used UC
Merced dataset. Hence, the rich image variations, high inter-
class similarity, and the large scale make the dataset even more
challenging.

B. Implementation details

To evaluate the performance on the above-mentioned
datasets, the BoW is used as the base architecture with
four distinct neighborhood sizes and seven adjacent Gaussian
scaled images, i.e., [1.6,2.5,3.5,4.5,5.5,6.0, 6.4]. The vocab-
ulary size of k in the remote-sensing domain varies from a few
hundred to thousands. We set the size of visual vocabulary to
15000 for UC Merced, AID, NWPU, and 10000 for the WHU-
RS dataset. The BiLSTM is trained using the Adam optimizer
with gradient threshold 1, while the minibatch size of 32
with hidden layer dimension of 80. Initializing the BiLSTM
with the right weights is a challenging task because standard
gradient descent from random initialization can hamper the
training of BiLSTM. Therefore, we set the recurrent weights
with Glorot initializer (Xavier uniform) which performs
the best in all scenarios of our experiments. To decrease the
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Figure 6. Classification accuracy of the proposed method under different
Gaussian scales for four datasets.

computation complexity on AID and NWPU datasets, we only
use four Gaussian scaled images where the highest filter image
takes a weight of 4.5, and the lowest 1.6.

C. Ablation study

We thoroughly validate the performance of each neighbor-
hood size by performing an ablation study. In Table I, we
have reported results of estimating the proposed NBCL on UC
Merced and WHU-RS datasets. Note that, these experiments
are performed by using four different neighborhood sizes
with six Gaussian scaled [1.6,2.5,3.5,4.5,5.5,6.0] images.
Our one-stage detection method on WHU-RS dataset with the
size of (4 x 4) achieves 86.10% accuracy and the numerical
results of each category are shown in Fig.5 (a). It can be
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All points in the scatterplots are class coded.

seen that several classes such as bridge 63%, viaduct 71%,
railway station 71%, meadow 78%, and desert 76% are highly
misclassified. In Fig.5 (b), we show that when the neighbor-
hood size (6 x 6) increases, the classification performance is
improved up to 88%, 80%, 77%, and 90% for bridge, viaduct,
railway station, meadow, and desert, respectively. The overall
classification is improved up to 89%, which is 3% higher than
the (4 x 4) size. We further increase the size up to (8 x 8)
and notice that viaduct, railway station, meadow are 100%
correctly classified and achieve 92% classification accuracy.
Results demonstrate that different neighborhood sizes play
different roles in classifying remote sensing scene images, and
it is hard to determine an optimal size to obtain the best result.
On the other hand, 4 x 4 block size outperforms other block
sizes in UC Merced dataset while 8 x 8 block size is more
effective for the WHU-RS dataset as shown in Table I.

1) Scale Factor of Gaussian Kernel: Fig.6 shows the clas-
sification performance of each scaled image based on 10 x 10
neighborhood size. The NBCL extracts multiscale dense fea-
tures according to the scale factor o to control the Gaussian
kernel. It can be observed that with the increase of scale factor,
the performance first improves and than gradually decreases
after the 6.0 scaled image. We conclude that including a
certain range of Gaussian smoothed images can improve the
performance, but too much of them degrade the performance.

2) Codebook learning: We quantitatively analyze the per-
formance with the SURF descriptor and SPM method in the
bag-of-words framework. An engaging question is how much

the performance can be improved by defining the proposed
spatial locations with multiscale information. With this in
mind, we set different vocabulary sizes for WHU, UC Merced,
and NWPU datasets. The respective outcomes can be found in
Fig.7 (a) (b) and (c). One can see that even the proposed one-
stage detection method with the neighborhood size of (4 x 4)
significantly outperforms the SPM method. Similarly, using
the SURF descriptor in the BoW framework cannot achieve the
best performance and provides more than 20% lower accuracy
with ours on all databases.

3) Visualization of Feature Structures: One of the ad-
vantages of the proposed approach is that we can interpret
the classification process of the model. Especially for each
stage, we can see how the features are structured into data
space and their impact along the different classification stages.
Taking this into consideration, we employed the “t-distributed
stochastic neighboring embedding” (t-SNE) algorithm [62]
and illustrated the derived embeddings into three separated
processing stages: 1) one-stage learning, 2) combined learning
(NBCL), and 3) BILSTM classified features for the WHU
dataset. The features with the patch size of 4 x 4 in Fig.8
(a) show that most classes are strongly correlated, which
makes the classifier (BiILSTM) hard to separate them. We also
visualize the clusters by fusing all the neighborhood features in
Fig.8 (b). The derived clusters indicate that the proposed fusion
reduces the correlation between similar classes and can capture
more variability in the feature space. Moreover, it could be
noticed from Fig.8 (c) that all the classes are well separable



Table 11
CLASSIFICATION ACCURACY (%) FOR THE NWPU DATASET WITH TWO
TRAINING RATIOS.

Method 10% 20%
BoW with dense SIFT [15] 41.724+0.21 44.9740.28
BOCEF [15] 82.65+0.31  84.3240.17
BoVW+SPM [14] 27.83+0.61  32.96+0.47
D-CNN [16] 89.224+0.50  91.8940.22
Triple networks [40] - 92.3340.20
MDER [77] 83.374+0.26  86.89+0.17
APDC-Net [3] 85.944+0.22  87.8440.26
BoWK [46] - 66.871+0.90
SFCNN [69] 89.894+0.16  92.55+0.14
Attention GANs [76] 86.11£0.22  89.4440.18
MDER [77] 83.374+0.26  86.89+0.17
CNN + GCN [37] 90.75+0.21  92.87+0.13
Color fusion [1]] - 87.5040.00
Graph CNN [20] 91.394+0.19  93.62+0.28
AlexNet+SAFF [9] 80.05+0.29  84.0040.17
VGG-VDI16+SAFF [9] 84.384+0.19  87.86+0.14
IDCCP [63] 91.55+0.16  93.76+0.12
SEMSDNet [58] 91.684+0.39  93.89+0.63
NBCL (The proposed) 94.20+0.81 97.13+0.92

Table III
CLASSIFICATION ACCURACY (%) FOR THE AID DATASET WITH TWO
TRAINING RATIOS.

Method 20% 50%
Fusion by addition [10] - 91.87+0.36
D-CNN [16] 90.82+0.16  96.8940.10
MDER [77] 90.62+0.27  93.3740.29
APDC-Net [5] 88.56+0.29  92.15+0.29
SFCNN [69] 94.93+0.31  96.8940.10
Attention GANSs [76] 93.97+£0.23  96.03£0.16
CNN + GCN [37] 94.93+0.31  96.8940.10
Color fusion [1] - 94.00+£0.00
AlexNet+SAFF [9] 87.51£0.36  91.83+0.27
VGG-VDI16+SAFF [9]  90.25+0.29  93.8340.28
Graph CNN [20] 93.06£0.26  95.78+0.37
IDCCP [65] 94.80£0.18  96.95+0.13
SEMSDNet [58] 94.23+0.63  97.6440.51
NBCL (The proposed)  96.11+0.81  98.43+0.33

which could potentially lead to a better performance when
training BiLSTM on remote sensing dataset.

D. Performance comparison with state-of-the-art methods

1) NWPU-RESISC45 Dataset: To demonstrate the superi-
ority of the proposed method, we evaluate the performance
against several state-of-the-art classification methods on the
NWPU dataset is shown in Table II. Especially, we choose
mainstream deep learning and BoW based methods and com-
pare the performance of scene classification. It could be
observed from Table II, the proposed approach, by combining
all neighborhood-based features, achieved the highest overall
performance of 94.20% and 97.13% using 10% and 20%
training ratios, respectively. It is worth mentioning that NWPU
is much more difficult than the other three datasets and
our proposed method outperforms the previous state-of-the-art
method by a margin of 4% under the training ratio of 20%.
The classification performance of the proposed NBCL shows
the effectiveness of combining global-based visual features on
the NWPU dataset.

Fig.10 illustrates the confusion matrix produced by our
proposed method (NBCL) with the 20% training ratio. Each

Table IV
COMPARISON OF CLASSIFICATION ACCURACY (%) FOR THE UC-MERCED
DATASET WITH 80% RATIOS.

Method Accuracy (Mean=std)
AlexNet+sum pooling [2] 94.10£0.93
VGG-VD16+sum pooling [2] 91.67£1.40
SPP-Net [25] 96.67+0.94
GoogleNet [68] 94.31+0.89
VGG-VD16 [68] 95.21+1.20
DCA fusion [10] 96.90+0.77
MCNN [41] 96.66+0.90
D-CNN [16] 98.93+0.10
Triple networks [40] 97.9940.53
VGG-VDI16 +AlexNet [35] 98.81+0.38
Fusion by concatenation [45] 98.104+0.20
MDER [77] 98.02+0.51
APDC-Net [5] 97.05+0.43
BoWK [46] 97.5240.80
Attention GANSs [76] 97.69+0.69
AlexNet+SAFF [9] 96.13+0.97
VGG-VD16+SAFF [9] 97.02+0.78
Color fusion [1] 98.1040.00
Graph CNN [20] 99.00+0.43
IDCCP [65] 99.05+0.20
SEMSDNet (58] 99.41+0.14
NBCL (The proposed) 99.57+0.36

row represents the percentages of correctly and incorrectly
classified observations for each true class. Similarly, each
column displays the percentages of correctly and incorrectly
classified observations for each predicted class. One can
see that the classification performance of 41 categories is
greater than 95% where only the 14 categories have achieved
more than 95% in the previous methods [37]. However, one
common challenge is found that the church and palace are
two confusing categories which limits many existing works to
surpass the performance [37]. In our case, 25% of images from
church are mistakenly classified as a palace which is 1% high
misclassification than the CNN + GCN [37/]]. On the other side,
only 0.3% of images from the palace are mistakenly classified
as an industrial area where the previous methods achieve
67% [69] and 70% [37] performance for the palace class. By
analyzing the confusion matrix on NBCL, the airport, church,
and commercial area are the only challenging classes for our
proposed method. Thus, the experimental results demonstrate
the proposed method improves the discriminative ability of
features and works well on the large-scale NWPU-RESISC45
dataset.

2) AID Dataset: We evaluate and report the comparison
results against the existing state-of-the-art classification meth-
ods for the AID dataset in Table III. It could be observed
that NBCL achieved the overall accuracy of 96.11% and
98.43% using 20% and 50% training ratios, respectively. As
can be seen from Table III, our method outperformed the
SEMSDNet [58] with increases in the overall performance
of 1.88% and 0.79% under both training ratios. Thus, our
proposed method, by combining all the neighborhood features,
verifies the effectiveness of multilevel and multiscale feature
fusion.

Fig.11 represents the confusion matrix generated by NBCL
with the 50% training ratio. As can be seen from Fig. 11, the
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Figure 9. The influence of the training sample ratios with different methods
such as feature combination by MTJSLRC [80], Pretrained Alexnet [25], and
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classification performance of all the categories is higher than
95% and only the square category provides the lowest accuracy
up to 97%. Specifically, 4 of images from the square are
mistakenly classified as stadium, 3 of images from commercial
are misclassified as dense residential. The five categories such
as school, square, park, center, and resort are very confusing
categories, which leads many existing works to be unable
to get a competitive performance [S8]. For instance, SFCNN
[69] and the CNN + GCN [37] attain 70% to 91% accuracy
for the class of resort while our method achieves 100%
accuracy. It confirms that despite the high interclass similarity,
the proposed method is capable of extracting robust spatial
location information to distinguish these remote sensing scene
categories.

3) UC Merced Dataset: The evaluation results on the UC
Merced dataset are presented in Table IV by using 80%
training ratio. The proposed method achieves 99.57% accuracy
and competes the previous BoW [46] approach by a margin of
2.05%. Moreover, the effect of the number of training samples
on the UC Merced dataset is also examined by selecting
20%, 30%, 40%, and 80% as training samples and visualized
in Fig. 9. It can be noticed that in comparison with other
fusion methods, the proposed fusion method is superior from
the start even with a 10% training sample ratio. For further
evaluation, a confusion matrix of the UC Merced dataset is
shown in Fig.12. A total of 3 images are misclassified in this
dataset where buildings and mobile home parks are found to
be challenging categories for our proposed method. Thus, the
proposed method is effective to classify most of the scene
categories.

4) WHU-RS Dataset: Table V reports the comparison re-
sults of the WHU-RS dataset. As shown in Table V, the
NBCL achieves the highest classification (99.63%) accuracy
and outperforms all the previous methods for the 19 classes. In
addition, a confusion matrix of the WHU-RS dataset is shown
in Fig.5 (D). Tremendous improvements can be observed in
some classes such as residential, industrial, port, pond, park,
mountain, airport, and railway station. Only 2 images from
commercial and bridge categories are misclassified in this

Table V

COMPARISON OF CLASSIFICATION ACCURACY (%) FOR THE WHU-RS19
WITH 80% RATIOS.

Method

Accuracy (Mean=std)

Transferring CNNs (Case I) [27] 96.7040.00
Transferring CNNs (Case II) [27] 98.6040.00
Two-Step Categorisation [71] 93.70£0.57
CaffeNet [68] 94.80+0.00
GoogleNet [68] 92.9040.00
VGG-VDI6 [68] 95.10+0.00
MDDC [48] 98.27+0.53
salM3LBP-CLM [[7] 96.38+0.76
AlexNet-SPP-SS [25] 95.00+1.12
VGG-VDI19 [35] 98.16+0.77

DCA by addition [10] 98.70+0.22
MLF [34] 88.16+2.76

Fusion by concatenation [45) 99.1740.20
D-DSML-CaffeNet [23] 96.64+0.68
BoWK [46] 99.474+0.60

Color fusion [1] 96.6040.00

NBCL (The proposed) 99.63+0.42

dataset. Hence, based on experimental analysis, we argue that
a combination of neighborhood sizes and multi-scale filtering
is essential to produce robust feature representation for remote
sensing scene classification.

V. CONCLUSION

In this paper, we explore the spatial dependencies be-
tween different image regions and propose a discrimina-
tive neighborhood-based collaborative learning to address the
problem of interclass similarity in remote sensing scene im-
ages. Multi-neighborhood local patches are firstly proposed
to preserve the spatial information between scenes or sub-
scenes. Afterward, the preserved spatial locations are used
in downscaled versions of the input image to get dense
coverage of the entire scene in a scale-space pyramid. We show
that multi-neighborhood learning in BoW model significantly
improves the recognition performance compared to using the
single level BoW alone. By combining BoW and RNN, we
can learn discriminative feature representations. Experiments
are conducted on four publicly available datasets, and the
results demonstrate the different distribution of spatial location
and visual information is crucial for scene classification.
The proposed approach is expected to have advantages over
single scale BoW or traditional CNNs methods, especially
in the situation where a large number of training data is
not available. We concluded the spatial information plays an
important role and encourages multi-neighborhood strategy in
scene classification. Our future work is to design an end-to-
end method that can automatically obtain multilevel and multi-
scale features without human intervention.
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APPENDIX

Figure 10, Figure 11, and Figure 12 represent the confusion
matrices of NWPU-RESISC45, AID, and UC Merced datasets,
respectively. The source code for reproducing the results of
this research would be available to the research community
upon the publication of this work.
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Figure 10. Confusion matrix of our proposed method on NWPU-RESISC45 Dataset by fixing the training ratio as 20%. Zoom in for a better view.
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Figure 11. Confusion matrix of our proposed method on AID Dataset by fixing the training ratio as 50%. Zoom in for a better view.

agicutural

aplane

basebaldiamond

beach

buidings

chapara

densarsidentl

forest

rooway.

gotourse

True Class.

medumesiental

100%

mobishomapark

overpass

paringot

ronway

sparseresdontal

stoagetanks

miscoun

1008 10001 10001

I

e
w*"w o @ g o

Predicted Class

- P
o LA o

o

o

e

o

o

Figure 12. Confusion matrix of our proposed method on UC Merced Dataset by fixing the training ratio as 80%. Zoom in for a better view.
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