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Abstract— COVID-19 is a rapidly spreading viral disease
and has affected over 100 countries worldwide. The numbers of
casualties and infected cases have been escalated particularly in
vulnerable states with weakened healthcare systems. Recently,
reverse transcription-polymerase chain reaction (RT-PCR) is
the test of choice for diagnosing COVID-19. However, current
evidence suggests that COVID-19 infected patients are mostly
stimulated from a lung infection after coming in contact with
this virus. Therefore, chest X-ray (i.e., radiography) and chest
CT can be a surrogate in some countries where PCR is not
readily available. This has forced the scientific community to
detect COVID-19 infection from X-ray images and recently
proposed machine learning methods offer great promise for fast
and accurate detection. Deep learning with convolutional neural
networks (CNNs) has been successfully applied to radiological
imaging for improving the accuracy of diagnosis. However, the
performance remains limited due to the lack of representative
X-ray images available in public benchmark datasets. To alle-
viate this issue, we propose an attention mechanism for data
augmentation in the feature space rather than in the data space
using reconstruction independent component analysis (RICA).
Specifically, a unified architecture is proposed which contains a
deep convolutional neural network (CNN), an attention mecha-
nism, and a bidirectional LSTM (BiLSTM). The CNN provides
the high-level features extracted at the pooling layer where the
attention mechanism chooses the most relevant features and
generates low-dimensional augmented features. Finally, BiLSTM
is used to classify the processed sequential information. We
conducted experiments on two publicly available databases to
show that the proposed approach achieves the state-of-the-art
results with an accuracy of 97% and 84% while being able to
generate explanations. Explainability analysis has been carried
out using feature visualization through PCA projection and t-
SNE plots.

Index Terms—COVID-19 detection, Attention mechanism, Fea-
ture augmentation, Transfer learning, BiLSTM

I. Introduction
Coronavirus disease (COVID-19) is a viral respiratory dis-

ease that initially emerged in China when a cluster of patients
with unknown pneumonia was reported in the capital of Hubei
Province (Wuhan). The virus that caused the disease was
identified to be severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2) by the International Committee on
Taxonomy of Viruses based on phylogeny, taxonomy, and
established practice [26]. At the time of writing, the World
Health Organization (WHO) reported that approximately 185
million people are affected and 4 million people have died
worldwide. Moreover, animals such as cats and dogs have
also been reported to be infected with SARS-CoV-2 in many

countries, including the United States. Thus, WHO declared
this virus a “Public health emergency of international con-
cerns” and classified it as a pandemic on Mar-ch 2020 [3].
Most infected people develop mild to moderate illness and
common symptoms are runny nose, body aches, cough, fever,
sore throat, and shortness of breath [52].

Since the beginning of the pandemic, several diagnostic
methods have been approved by several international and
country-specific agencies. However, there is no clear con-
sensus on the correct tests to be used related to any acute
complaints to yield a correct diagnosis in a timely constraint.
In EU member countries, there are 365 different commer-
cialized devices that have been used for conducting a such
research. Among them, 168 are Immunoassays, three are
sequencing-based methods, 192 are PCR-based methods, and
two commercialized tools are based on different medical
devices [17]. WHO recommended RT-PCR test (developed
by Corman), which is nowadays considered as the current
standard for detecting a coronavirus infection. However, the
false-negative rate was found to be approximately 20% to 40%
in the infected cases in China due to inappropriate sample
collection, personnel operation, storage, and low sensitivity
test kits [15].

Along with laboratory testing, chest CT scans with the
help of a radiologist can be considered as a screening tool
with RT-PCR [57]. COVID-19 infected patients show groun-
d-glass opacities in the periphery of both lungs, and appear
more grey or hazy as opposed to the normally dark-appearing
lungs. It is also stated that those patients who recovered from
COVID-19 pneumonia, lung disease was observed ten days
after the onset of symptoms [40]. In the early days of the
pandemic, clinical centers in Wuhan were working with an
insufficient number of often malfunctioning test kits, resulting
in a concerning amount of false negatives. To counteract these
challenges, doctors were persuaded to make diagnoses based
only on laboratory and chest CT results [6]. In developing
countries, such as India, where the number of test kits remains
low, CT is also used for COVID-19 detection.

In addition to CT scans, chest X-ray scanning machines are
easily accessible in almost all hospitals, and have a potential
role in the diagnosis because X-ray images represent visual
indexes linked with SARS-CoV-2 [57]. In Fig. 1, we visualize
example images from normal, COVID-19, pneumonia, and
bacterial pneumonia classes, taken from two X-ray image
databases [11, 61, 40]. Thus, radiologic images obtained from
COVID-19 cases with laboratory results may help in the
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Figure 1: Samples images from chest X-ray database: (A) Nor-
mal, (B) COVID-19, (C) Pneumonia, D) Bacterial pneumonia.

early detection of SARS-CoV-2. The study conducted on
CT images by Kong et al. [32], demonstrates acute bilateral
airspace opacities in infected patients. Zhao et al.[65] reported
that most patients had a fever as the onset symptom. Based
on the result of X-ray scans, ground-glass opacities (GGO)
87%, vascular enlargement in the lesion 72% or mixed GGO,
and consolidation 65% appeared. Moreover, authors show
that lesions present on CT images are more likely to have
a peripheral distribution. Li et al. observed that chest CT
had a small rate of missed diagnosis of COVID-19. GGOs
and consolidation with or without vascular enlargement are
common CT features of COVID-19 and may be useful as a
standard method for the rapid diagnosis of COVID-19 [57].
Similarly, Zu et al. [69] concluded that 33 of chest CTs can
have rounded lung opacities.

Machine learning (ML) techniques are attracting substantial
interest in the medical field, where deep learning-based models
have been successfully utilized in many healthcare applications
such as depression detection [36], pain estimation [54], breast
cancer detection [10], Alzheimer’s disease classification [18],
and pneumonia detection from chest X-ray images [2]. Due
to the increase in COVID-19 cases, healthcare systems have
been overwhelmed and require alternative solutions for the
automated diagnosis of COVID-19. In this regard, many
attempts have been put forward to address such problems
using radiology images [40, 6, 57, 9, 32]. However, it is not
feasible to build a large labeled database for every disease, i.e.,
viral pneumonia, COVID-19, bacterial pneumonia, aspiration
pneumonia, etc. Thus, the bias in small datasets and the lack of
representative training and tuning data impair the performance
of such deep learning models.

A simple way to deal with these challenges consists in
applying data augmentation techniques, which enable resear-
chers to significantly increase the diversity of data, without
collecting new data. However, augmented data that could
be borrowed from unlabeled data [19], random erasing [67]
or randomly masking regions [13] are heavily dependent on
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Figure 2: The main idea of the proposed work. RICA is
designed to augment the feature space. The augmented features
are used as a sequence input to train the BiLSTM network for
final detection. Three different colors in RICA represent three
augmented features.

training parameters. For instance, a slight rotation between
1 to 30 or a random cropping ((288, 288) → (224, 224)),
could be useful on digit recognition tasks such as MNIST,
but as the rotation degree increases, the label of the data
is no longer preserved under post-transformation [51]. The
dominant approaches such as Generative adversarial networks
(GANs) [21], Bidirectional GANs [14], the DCGAN [42],
Progressively Growing GANs [30], the CycleGAN [68], gen-
erate synthetic images but require careful domain adaptation
to transfer the knowledge and features to the real image do-
main. On the other hand, existing CNN-LSTM based COVID-
19 detection methods [5] treat the convolutional features as
equally important and ignore the interference information (e.g.,
mutual exclusion and redundancy), which can prevent learning
of long data sequences. Moreover, the high-dimensional vector
generated by CNN can increase the network parameters of
LSTM and make the network difficult to optimize.

Therefore, in this paper, an attention mechanism is proposed
and integrated with CNN-BiLSTM architecture to approximate
the real distribution in feature space rather than in data space,
where the generated features not only maintain the label in-
formation but also promise diversity. Especially, reconstruction
independent component analysis (RICA) has been utilized to
augment feature space but without performing any training
data augmentation strategy. An illustration of a such concept
is provided in Fig 2. Besides, the interference information or
redundancy is significantly eliminated by selecting the low-
dimensional augmented features. On other other hand, it is
worth mentioning that chest radiography analysis is known to
have inherent limitation in early stages of COVID-19 detec-
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tion, due to low sensitivity in GGO detection [69]. Moreover,
recovered patients are likely to be protected against reinfection
for several weeks but may still transmit the virus. However,
well-trained deep learning methods can focus on anomalies
that are not visible to the human eyes, and may encourage
their applications in health care system. In overall, our main
contributions in this paper are summarized as follows:

1) The proposed work explores the idea of feature aug-
mentation in COVID-19 detection. To achieve this,
reconstruction independent component analysis [33] is
utilized, and the features are augmented from the pooling
layer of a CNN model.

2) The need for annotated data in COVID-19 detection
is mitigated through the proposed feature augmentation
strategy.

3) The effectiveness and validation of our proposed meth-
od have been extensively explored on two publicly avai-
lable datasets and achieve state-of-the-art results.

4) PCA and t-SNE feature visualization has been utilized to
demonstrate the explainability of the proposed learning
model.

The rest of this paper is organized as follows. Section 2
deals with literature review in the field. Section 3 details
the proposed method highlighting the different phases of our
proposal, including deep-feature extraction, attention-based
learning module and the associated recurrent neural network.
Section 4 emphasizes the experiment results, including data-set
description, evaluation metrics, implementation details, results
and explainability analysis. Finally conclusive statements and
perspective works are provided in Section 5.

II. Literature Review
In recent months, researchers have evaluated SARS-CoV-2

infected chest X-ray images using convolutional neural net-
works (CNNs), recurrent neural networks (RNNs), generative
adversarial networks (GANs) and encoder-decoder models. A
brief overview about recent developments is provided in this
section.

Narin et al. [38] utilized five pre-trained deep learning
models (InceptionV3, Inception-ResNetV2, ResNet50, Res-
Net101 and ResNet152) to detect COVID-19, bacterial pneu-
monia and viral pneumonia. The final performance was 98%
accuracy using pre-trained ResNet-50 model. Rajaraman et
al. [44] proposed a method that increases training data using
weakly labeled data augmentation. A stage-wise approach was
used to train the CNN. The authors concluded weakly labeled
data augmentation is superior in comparison to baseline non-
augmented training.

Ozyurt et al. [41] used LBP, a traditional machine learning
descriptor, and a feature selector method that selects most
informative features together to achieve a better performance,
achieving a 95.84% classification accuracy on CT images.
Rahimzadeh and Attar [43] introduced a combined deep CNN
to identify 11302 chest X-ray images. In their study, Xception
and ResNet50V2 was used and claimed as a new strategy
to address the unbalanced dataset problem. They reported an
accuracy rate of 99.56%. Castiglioni et al. [8] utilized an

independent dataset of 110 patients suspected for COVID-19
infection, and developed a ten convolutional neural networks
(CNNs) to evaluate the performance.

Multiple state-of-the-art deep learning models including
DenseNet201, Resnet50V2 and Inceptionv3, were fine-tuned
individually to make independent predictions in [12]. Then, a
weighted average ensembling technique was used to combine
them to achieve a classification accuracy of 91.62%. Similarly,
Wang et al. [59] proposed a tailored deep convolutional neural
network for classifying chest X-ray images. Hemdan et al.
[24] examined seven different CNN architectures in their
experiment, including DenseNet-121, VGG-19, ResNet-V2,
Inception-V3, Xception, MobileNet-V2 and InceptionResNet-
V2. Their work revealed that the DenseNet and VGG-19
models achieved the best performance with 91% accuracy for
detecting COVID-19 and non-COVID-19 infections.

Berrimi et al. [7] fine-tuned two pre-trained models,
DenseNet and InceptionV3 to classify both X-ray and CT
chest scans. To increase the diversity of the training data,
the images were rotated, zoomed, horizontally flipped, and
shifted. Usman et al. [37] proposed to augment the feature
space by using sparse filtering. Nour et al.[39] designed a
five convolution layers (CNN) from the scratch. The extracted
CNN features are then evaluated with traditional machine
learning classifiers such as k-nearest neighbor, support vector
machine (SVM), and decision tree. The authors concluded that
the SVM classifier with an accuracy of 98.97% performs the
best among all of them. Yoo et al. [64] used the pre-trained
ResNet18 and different decision trees are utilized to detect
CXR images as normal, tuberculosis, and COVID-19.

M. Turkoglu [56] employed the transfer learning approa-
ch by using the AlexNet architecture. To choose the most
effective features, the Relief feature selection algorithm is
used. Finally, the Support Vector Machine (SVM) is applied
to detect COVID-19, and Pneumonia disease. An accuracy of
99.18% was reported. Sahlol et al. [45] proposed a combined
approach where Inception model is utilized to extract the
features and a swarm-based feature selection algorithm is
applied to choose the most relevant features. Two public
COVID-19 X-ray datasets are used and 99.18% accuracy
was reported. Mesut et al. [55] utilized MobileNetV2 and
SqueezeNet models to extract the deep features. Then, the So-
cial Mimic optimization method is proposed and the features
were combined and classified using SVM classifer. A slide
image approach is used for image normalization in [25]. To
overcome the limitation of chest X-ray samples, Karbhari et al.
[29] proposed an Auxiliary Classifier Generative Adversarial
Network (ACGAN) to generate synthetic images. Based on
obtained images, Convolutional Neural Networks (CNNs) is
utilized to detect COVID-19 in the CXRs.

Loey et al. [34] utilized a GAN architecture to synthesize
auxiliary images as a motivation to overcome the issue of
lack of datasets especially in chest X-rays images. Three
deep transfer models are selected to detect four classes, i.e.,
the COVID-19, normal, pneumonia bacterial, and pneumonia
virus. Googlenet performed the best in their work. The net-
work consists of encoder and decoder is proposed in [16],
to show that CORONA-Net performs the best for COVID-
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19 detection. MASC-Net consists of a multi-input encoder-
decoder, and introduced to automatically detect infected lung
regions from COVID-19 chest CT scans [58]. 3D U-Net
is proposed as encoder-decoder method in [62], where the
multi-task learning is applied and compared with four transfer
learning strategies. The authors concluded that using multiple
lung lesion datasets can extract more general features.

We are motivated by the fact that chest X-ray images
have been commonly used in most of the current works
and have an important role in the diagnosis of COVID-19
detection. However, learning from imbalanced data or lack
of necessary extracted features obtained from limited X-ray
training samples cannot provide the expected performance in
the COVID-19 detection. Thus, the proposed work focuses on
a data augmentation strategy where the label preserved features
are generated to improve the performance of deep learning
model.

III. The Proposed Method

The general framework of the proposed approach is divided
into three components: (1) extraction of deep features (2) an
attention-based learning module and (3) a BiLSTM-based sub-
network. We first describe the procedure of feature extraction
for guiding the process of feature generation. Next, we explain
the procedure of augmenting the training data in feature space.
Finally, the structure of BiLSTM network is discussed. The
overall procedure of the proposed approach is illustrated in
Fig 3.

A. Deep features extraction

Inspired by the performance of deep learning models, we
adapt ResNet-50, an architecture known for its stability and
performance, to extract high-level features for our task [23].
The model is fine-tuned by replacing the last fully-connected
layer with a new fully connected layer and setting the number
of outputs equal to the number of classes in the dataset. We
freeze the weights of the first ten layers so that the gradients
of these do not need to be computed. This is motivated by
the fact that earlier features of ResNet contain more generic
features (e.g. color blob detectors or edge detectors) and make
the remaining layers more specific to the details of the classes
contained in the original dataset. The weights of the new fully-
connected layer are increased by a learning factor 10 and a
bias factor 20. By doing so, earlier layers do not change that
much and swiftly learn the weights of the newer layer. The
softmax loss function, as denoted in Eq.1, is used as the loss
function.

σ(−→z )i =
ezi∑K
j=1 e

zj
(1)

where −→z is input vector to the softmax function, zi are the
elements of the input vector, ezi is the standard exponential
function, and K denotes the number of classes (in this paper,
c = 3 and c = 5).

B. An attention-based learning module

Data augmentation in the image space is a well estab-
lished technique that enhances the size and quality of training
datasets such that deep learning models can robustly mod-
el the training data. However, feature augmentation has not
yet acquired the same level of attention. This is crucial for
applications like COVID-19 detection, where the number of
training samples remain limited. To accomplish this, a feature
augmentation is conducted based on reconstruction indepen-
dent component analysis (RICA) [33]. The latter was designed
to overcome the drawbacks of independent component analysis
(ICA) by replacing ICA’s orthonormality constraint with a
soft reconstruction penalty, which turns out to be very useful
in learning sparse features. Therefore, the idea behind our
proposed attention mechanism is to extract more meaningful
information from generated ones to correctly classify target
samples.

In our case, RICA receives data as input from the last
pooling layer of RestNet-50, then it converts it into a new
lower-dimension representation. In order to apply a such trans-
formation, RICA is utilized by using the following equation:

v = Zk (2)

where v is the vector representing the CNN features, Z
denotes the matrix, and k are the independent components
for dimensionality reduction. The goal of RICA is to define
the observed data v by mixing the components k. We need to
determine both Z and k from the data v because we can not
directly extract the sources k, nor know the mixing matrix Z.
Let W be the inverse of Z, then the model can be expressed
as:

k =Wv (3)

Hence, using the original data v, the goal is to determine a
set of vectors (corresponding to the column vectors of matrix
W ) that will form the features k sparse; while being an
orthonormal basis. In this regard, our matrix W will assign the
data v to features k. Hence, the optimization problem defined
by RICA becomes [33]:

min
W

λ‖(Wv)‖1 +
1

2
‖WTWx− x‖22 (4)

where λ evaluates the objective and non-linear convex function
and W ∈ Rq×n (where q denotes the features and n is the
number of data vectors in v). L1 denotes the sparsity penalty
and has a tied reconstruction matrix W . To decrease the com-
putational cost of the optimization, L-BFGS method [46] is
used as a constrained optimizer that results in fast convergence.
Moreover, RICA can manage data with approximate whitening
or even without whitening [33].

As illustrated in the formulation of RICA in equation (4), in
the first part, λ represents the weight assigned to the sparsity
constraint in relation to the recreation condition. The second
part emphasizes accurate recreation of the original features by
minimizing the recreation error

∥∥WTWx− x
∥∥. In this regard,

we fix the feature dimension of pooling layer features equal
to 400, and empirically set the λ weights to 80, 100, and
120 because the higher the weight we give to the sparsity
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Figure 3: Flowchart of the proposed method. First, fine-tuning is performed to train a convolutional neural network (CNN)
for COVID-19 detection. An attention mechanism based on reconstruction independent component analysis is used to leverage
the most relevant CNN features and form a sequence of augmented features, which are then fed into a Bidirectional Long
Short-Term Memory (LSTM) network for the final representation.

constraint the less precise will the recreation be, and vice-
versa. Hence, we obtained three augmented feature vectors
with different weights by keeping the same dimension 400 as
mentioned above. Similarly, we repeat the same procedure to
obtain three augmented features sets for the second dataset
by setting the feature dimension to 500. The representations
learned by the attention mechanism contain discriminative
information related to the classes, which allows the network
to accurately predict them.

C. Recurrent Neural Network (RNN)

Mainstream CNN frameworks are related to conventional
statistical models, thus lacking the capacity to map sequences
to sequences. BiLSTM [48] is one kind of RNN, which has the
ability to process sequences of arbitrary length, and has ob-
tained surprising performance in text classification. However,
the high dimensionality and sparsity of the data are one of the
major challenges that limit its performance. Taking advantage
of the low-dimensional RICA features, BiLSTM performs
better than using the raw CNN features (we further discuss
this argument in Section 4.4). The BiLSTM is implemented
similarly to the standard bi-directional LSTM except that the
input is based on three augmented features. We found that
the proposed strategy calculated on each time step resulted
in improved reconstructions, which we found to be vital to
accomplish our feature augmentation process.

BiLSTM Networks capture each sequence vector based on
the memory cell (Ce), and compete for retaining dependencies
between the elements in the input sequence. It is comprised of
an input gate (ie), an output gate (oe) and a forget gate (ge).
The input gate governs the information flow into the cell by
multiplying the cell’s non-linear transformation of inputs me.
The output gate decides how much information from the cell

is used to compute the output activation of the LSTM unit.
The forget gate regulates the extent to which a value remains
in the cell. The LSTM unit updates for time step e are:

ge
ie
me

oe

 =


σ
σ

tanh
σ

H · [pe−1, xe] (5)

Ce = ge � Ce−1 +me � ie (6)

pe = tanh(Ce)� oe (7)

where xe is the input at the current time-step, ie is the current
cell state, g, i and m is the input gate activation, forget gate
activation and output gate activation respectively, σ illustrates
the logistic sigmoid function and � represents element-wise
multiplication.

IV. Experiments and Results
In this section, we first provide a brief description of two

databases that are used to evaluate our method. Then, we
present evaluation metrics, implementation details, and exper-
imental results, which are later on discussed and compared to
state-of-the-art methods.

A. Datasets

X-ray image dataset: The first dataset used in the experi-
ments is obtained from the open access sources provided by
Cohen JP [11] and Wang et al.[61]. It contains three classes:
pneumonia, "no-findings", and COVID-19, where pneumonia,
and "no-findings" have 500 images each and COVID-19 has
125 X-ray scan images. A detailed explanation can be found
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Table I: The performance comparison results for the three-class
X-ray image database.

Method Performance Metrics (%)
Sensitivity Specificity Precision F1-Score Accuracy

SqueezeNet 70.00 80.90 82.87 69.59 75.66
SqueezeNet+BiLSTM 89.00 93.60 93.30 90.40 91.89
SqueezeNet+SA+BiLSTM 94.66 95.73 95.40 94.63 95.25
Googlenet 84.66 88.93 83.41 83.06 87.25
Googlenet+BiLSTM 92.00 94.10 93.58 93.49 93.55
Googlenet+SA+BiLSTM 93.66 96.73 96.67 94.66 96.10
DenseNet201 89.66 92.03 87.04 88.18 90.81
DenseNet201+BiLSTM 93.33 94.86 91.27 92.42 94.96
DenseNet201+SA+BiLSTM 94.00 95.20 96.02 94.99 96.40
ResNet-50 86.33 90.86 86.45 86.30 88.62
ResNet-50+BiLSTM 88.41 94.86 93.48 92.11 94.62
ResNet-50+SA+BiLSTM 93.33 96.46 96.34 94.33 97.26

in [40].
COVID-19 X-ray scan database: The second dataset is

collected from the open access source provided by Vantag-
giato et al.[57], where two scenarios are utilized. In the first
scenario, three classes (Normal, COVID-19, and Pneumonia)
are provided in the dataset. For training, each class has 404
images. Validation and testing set contain 100 and 207 images,
respectively. In the second scenario, two more classes were
added by the authors yielding a five class model: Normal,
COVID-19, Viral-Pneumonia, Bacterial-Pneumonia and Lung-
Opacity. This dataset was acquired from different open access
sources [11, 50, 27, 31].

B. Evaluation Metrics

The performance of the proposed method is evaluated
with respect to Sensitivity, Specificity, Precision, F-Score and
Accuracy, defined using the equations below:

Sensitivity =
TP

TP + FN
∗ 100 (8)

Specificity =
TN

TN + FP
∗ 100 (9)

Precision =
TP

TP + FP
∗ 100 (10)

F-Score = 2 ∗ Precision ∗ Sensitivity
Precision + Sensitivity

∗ 100 (11)

Accuracy =
Number of correct prediction
Total number of prediction

∗ 100 (12)

Where TP, FP and FN represent the True Positive, False
Positive and False Negative, respectively.
In addition to the above, the ROC (Receiver Operating Char-
acteristics) curves have been utilized as well. This consists of
graphs showing the variation of True Positive Rate (TPR) or,
equivalently, Sensitivity as defined in Eq. (8), with respect to
False Positive Rate (FPR), where FPR is defined as:

FPR =
FP

FP + TN
∗ 100 (13)

Especially, ROC exhibits the performance of the underlined
classification model at all classification thresholds.

Table II: The performance comparison with other deep learn-
ing methods using radiology images. The comparison results
are obtained from [40].

Method Type of
Images

Number of
Cases Method Used Accuracy (%)

Ioannis et al. [4] Chest X-ray

224 COVID-19
(+) 700

Pneumonia
504 Healthy

VGG-19 93.48

Wang et al. [59] Chest X-ray

53 COVID-19
(+) 5526

COVID-19
(-) 8066 Healthy

COVID-Net 92.40

Sethy et al. [49] Chest X-ray
25 COVID-19

(+) 25 COVID-19
(-)

EsNet50+SVM 95.38

Hemdan et al. [24] Chest X-ray 25 COVID-19
(+) 25 Normal COVIDX-Net 90.00

Narin et al. [38] Chest X-ray
50 COVID-19

(+) 50 COVID-19
(-)

Deep CNN 98.00

Ying et al. [53] Chest CT
777 COVID-19

(+)
708 Healthy

DRE-Net 86.00

Wang et al. [60] Chest CT

195 COVID-19
(+)

258 COVID-19
(-)

M-Inception 82.90

Zheng et al. [66] Chest CT
313 COVID-19

(+) 229 COVID-19
(-)

UNet+3D Deep Network 90.80

Xu et al. [63] Chest CT

219 COVID-19
(+) 224 Viral
Pneumonia

175 Healthy

ResNet+Location Attention 86.70

125 COVID-19
(+) 500

No Findings
DarkCovidNet 98.08

Tulin et al. [40] Chest X-ray
125 COVID-19

(+) 500
Pneumonia

500 No Findings

DarkCovidNet 87.02

125 COVID-19
(+) 500

No Findings
ResNET50+BiLSTM 99.10

Proposed Method Chest X-ray
125 COVID-19

(+) 500
Pneumonia

500 No Findings

ResNET50+SA+BiLSTM 97.26

C. Implementation details

All the X-ray images are resized to 224× 224 based on the
size requirement of the model. No image data augmentation
was applied, thus the features are augmented only in the
feature space. The CNN is fine-tuned using stochastic gradient
descent (SGD) with a learning rate of 3e−4, mini-batch size of
32 and epochs of 5, and by shuffling every epoch. The feature
vector is extracted from the output of the last pooling layer
with a size of 2048. RICA is utilized to augment the pooling
layer features into three augmented feature sets with dimension
of 400 to 500 for X-ray image dataset and COVID-19 X-
ray scan database, respectively. The performance also varies
by varying the number of iterations done by RICA before
stopping, and 80 to 120 number of iterations were used to
extract the augmented features.

The BiLSTM sub-network is trained using the cross entropy
loss and Adam optimizer is utilized by fixing the learning rate
to 0.0001 and the hidden layer dimension to 60, and number
of pochs to 150 on all databases. Initializing the BiLSTM
sub-network with the right weights can be difficult because
using the standard gradient descent from random initialization
can hamper the training of BiLSTM. Therefore, we set the
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Table III: The performance comparison results for the three-
class COVID-19 database.

Method Performance Metrics (%)
Accuracy Precision Sensitivity Specificity F1-Score(%)

SqueezeNet 66.60±0.44 61.25 49.75 74.87 48.57
SqueezeNet+BiLSTM 73.26±0.82 59.90 65.30 83.91 56.68
SqueezeNet+SA+BiLSTM 76.57±1.47 64.57 67.28 84.01 63.29
Googlenet 72.38±1.47 70.82 67.08 80.54 65.57
Googlenet+BiLSTM 76.49±1.47 67.24 73.97 85.62 62.19
Googlenet+SA+BiLSTM 77.61±2.47 74.42 78.79 86.15 73.97
DenseNet201 75.19±2.47 71.17 67.69 81.34 64.65
DenseNet201+BiLSTM 76.19±2.47 61.03 67.19 82.55 62.30
DenseNet201+SA+BiLSTM 78.90±3.05 75.48 78.39 81.36 69.75
ResNet-50 74.53±1.25 73.88 73.10 86.55 68.97
ResNet-50+BiLSTM 77.53±3.53 71.49 77.93 87.71 69.64
Ensemble-CNNs [57] 75.23±3.40 78.28 75.20 87.60 73.43
ResNet-50+SA+BiLSTM 79.53±1.41 74.55 81.52 88.42 71.96

Table IV: The performance comparison results for the five-
class COVID-19 database.

Method Performance Metrics (%)
Accuracy Precision Sensitivity Specificity F1-Score(%)

SqueezeNet 72.88±1.17 63.42 58.45 89.61 55.62
SqueezeNet+BiLSTM 79.55±2.17 61.73 67.98 91.22 55.41
SqueezeNet+SA+BiLSTM 81.78±2.41 67.43 75.10 92.75 61.27
Googlenet 73.98±1.88 68.01 63.28 90.82 62.55
Googlenet+BiLSTM 77.68±1.47 70.53 95.87 93.87 62.43
Googlenet+SA+BiLSTM 80.77±1.13 73.62 77.40 94.03 71.36
DenseNet201 82.51±2.40 73.02 72.36 93.09 70.14
DenseNet201+BiLSTM 81.10±1.54 84.54 84.99 96.29 83.95
DenseNet201+SA+BiLSTM 84.10±1.90 83.76 87.18 96.22 83.25
ResNet-50 79.64±1.84 75.94 71.49 92.87 68.29
ResNet-50+BiLSTM 83.64±1.84 67.14 77.93 92.41 60.71
Ensemble-CNNs [57] 81.00±2.39 82.99 82.96 85.24 81.49
ResNet-50+SA+BiLSTM 84.64±2.55 76.32 83.65 90.82 73.88

recurrent weights with He initializer [22] which performs the
best in all scenarios of our experiments.

D. Experimental results

In order to detect COVID-19 on the first X-ray image
database [11, 61], we split the original image dataset to eighty
percent for training and twenty percent for testing in the
same spirit as [40]. We report the results in terms of average
classification accuracy, sensitivity, specificity, precision, and
F1-score values in Table 1. First, we show the performance of
the fine-tuned CNN (Resnet-50) and the three other popular
state-of-the-art CNNs models; namely, Squeeze-Net, Google-
Net, and DenseNet-201. Second, we compare the performance
when using raw CNN features with BiLSTM. In the third
scenario, we show the efficacy of the proposed attention
mechanism with a combined CNN-BiLSTM. It can be noted

Figure 4: Confusion matrix of the three-class using
ResNET50+SA+BiLSTM for X-ray image dataset [40]. The
horizontal and vertical axis is for predicted and true classes,
respectively.

Figure 5: Confusion matrix of the three-class using
ResNET50+SA+BiLSTM for COVID-19 X-ray scan database
[57]. The horizontal and vertical axis is for predicted and true
class, respectively.

Figure 6: Confusion matrix of the five-class using
ResNET50+SA+BiLSTM for COVID-19 X-ray scan database
[57]. The horizontal and vertical axis is for predicted and true
class, respectively.

Figure 7: Two class confusion matrix for COVID-19 X-ray
scan database. The horizontal and vertical axis is for predicted
and true class, respectively.
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(a) The performance evaluation with the
ResNet-50 model.
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(b) The performance evaluation with the
GoogLeNet model.
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(c) The performance evaluation with the
DenseNet-201 model.

Figure 8: The Receiver Operating Characteristics (ROC) curves of the COVID-19 X-ray scan database, where the true positive
rate represents the y-axis and false positive rate represents the x-axis.

(a) ResNet-50 features with
PCA visualization.

(b) ResNet+BiLSTM with PCA
visualization.

(c) ResNet+BiLSTM with t-
SNE visualization.

(d) ResNet+BiLSTM with t-
SNE visualization.

Figure 9: Two-dimensional scatter plots of ResNet features with PCA and t-SNE over COVID-19 X-ray database. The clusters
correspond to two and five different classes available in the data.

that single CNN exhibits a limited performance to detect
three classes: COVID-19, No-Findings, and Pneumonia. One
of the reasons is that a number of training samples in the
COVID-19 class resembles Pneumonia class and this is not
enough to compare to the other two classes (No-Findings and
Pneumonia), which might cause overfitting of the model.

Table 2 summarizes the comparison with the state-of-the-art
works. The final performance is reported using a 5-fold cross-
validation procedure and the comparison results are obtained
from [40]. The proposed method provides a 97% accuracy
which is 10% higher than the previously proposed method
on the three classes, and 99% accuracy for the two-classes
dataset. For further analysis, a confusion matrix is shown in
Fig.4. It can be observed that the proposed approach classified
COVID-19 better than the other two classes.

Table 3 illustrates the results of the three-class scenario
on the second COVID-19 database [57]. The training set,
validation set, and testing set is provided separately. Using the
self-attention mechanism, the proposed method achieves 79%
accuracy and improves 4% performance from the previous
study [57]. In addition to the three-class scenario, the results of
the five-class scenario is also reported in Table 4. It can be ob-
served that the proposed method provides 84% accuracy which
is 3% better than the previously proposed method in [57].
For further analysis, Figure 5 and 6 represent the confusion
matrices of the three-class and the five-class, respectively. The
main observation is that the proposed method attained 100%

accuracy for the detection of COVID-19 samples. A confusion
matrix in Fig.7 is illustrated only for COVID-19 and Normal
class with two rows and two columns showing the number
of true positives, false negatives, false positives and true
negatives. It shows that the model predicted all 207 COVID-19
X-ray images correctly, and no false negative is detected. In the
case of a normal class, 98 images are misclassified while 109
images were correctly classified. All correct predictions are
located in the diagonal of the table (highlighted in light blue
and dark blue), so it is easy to visually inspect the table for
prediction errors. Therefore, we can observe that the proposed
framework is efficient to distinguish the COVID-19 samples
in both datasets.

As our main focus is to detect COVID-19 samples, we
use ROC curves for a two-class detection problem (COVID-
19 vs Normal), in which only the true positive rate (TPR)
and false positive rate (FPR) are needed. The best possible
detection method would allow a learning curve in the upper left
corner or coordinate (0,1) of the ROC space, depicting 100%
sensitivity (no false negatives) and 100% specificity (no false
positives). In Fig.8, the curves are visualized with raw CNN
features, CNN with BiLSTM-based network, and finally with
an attention mechanism. It could be observed that the proposed
attention mechanism clearly improves the performance of
a CNN-based BiLSTM architecture as exhibited by higher
sensitivity rate.

Based on experimental analysis on both datasets, we con-
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(a) ResNet-50+RICA with PCA
visualization.

(b) ResNet+RICA+BiLSTM
with PCA visualization.

(c) ResNet+RICA+BiLSTM
with t-SNE visualization.

(d) ResNet+RICA+BiLSTM
with t-SNE visualization.

Figure 10: Two-dimensional scatter plots of augmented features with PCA and t-SNE over COVID-19 X-ray database. The
clusters correspond to two and five different classes available in the data.

cluded that neither a single CNN model nor CNN-based
BiLSTM achieves the best results for all the evaluation met-
rics. Therefore, the proposed attention mechanism is essential
to produce a robust feature representation for COVID-19
detection.

E. Explainability Analysis

One of the advantages of the proposed approach is that we
can interpret the detection process of the model. Especially for
each stage, we can see how the features are structured into the
high-dimensional (ResNet) and the impact of the augmented
feature space along the different classification stages. Taking
this into consideration, we employed the PCA projection [28]
and the "t-distributed stochastic neighboring embedding" (t-
SNE) algorithm [35]. Strictly speaking, PCA offers a nice
explanatory framework since its axes are made of a linear com-
bination of the original dimensions, allowing comprehension
of high dimension patterns. Similarly, t-distributed Stochastic
Neighbor Embedding (t-SNE) creates low-dimensional repre-
sentation of complex high dimensional data through a series
of transformation and fine-tuned optimization procedures. In
this respect, the projection results of either PCA or t-SNE
provide a rough indication of the quality of the separation and
supporting explainability through visual exploration.

The ResNet features in Fig.9 (a) indicate that both classes
(COVID-19 vs Normal) are strongly correlated, which makes
the BiLSTM hard to separate them as shown in Fig.9 (b) and
Fig.9 (c). We also visualize the five class features in Fig.9 (d)
and observed that the Normal class is still correlated with the
Lung Opacity class that causes overfitting of CNN-BiLSTM
architecture. Thus, the derived clusters indicate that the prior
information obtained from raw CNN features causes to de-
crease the performance. On the other side, augmented features
generated by RICA reduces the correlation between similar
classes as shown in Fig.10 (a) and are able to capture more
variability in the feature space. Moreover, it could be noticed
from Fig.10 (b) and Fig.10 (c) that data points corresponding
to Normal and COVID-19 are linearly separable which could
potentially lead to better performance when training BiLSTM
on low-dimensional data. Thus, the attention mechanism helps
to overcome the overfitting issue and also separate the five
classes efficiently in comparison to raw CNN features as
shown in Fig.10 (d).

It should be noted that our exploration through visualization
as a way to achieve explanability can be further expanded in
different directions. First, projection quality metric can be used
to assess the quality of each projection by PCA or t-SNE using.
This includes global measures such that Normalized Stress,
Distance Consistency, ClustMe [1], or local measures such as
projection precision score [47] can contribute to shed light
on the quality of such projections. Nevertheless, it should be
noted that such assessment may also be misleading and cannot
contribute towards comprehending why such results occurred.
In this context, one shall mention the interesting work of
Fujiwara et al. [20] who proposed a contrasting clusters in
PCA (ccPCA) as a way to to find out which dimensions
contributed more to the formation of a selected cluster and why
it differed from the rest of the dataset, based on information
on separation and internal versus external variability.

V. Conclusion

In this study, we address the problem of COVID-19
detection from X-ray images. For this purpose, a unified
architecture constituted of a deep convolutional neural network
(CNN), an attention mechanism, and a bidirectional LSTM
(BiLSTM) is proposed. The CNN provides the high-level
features extracted at the pooling layer where the attention
mechanism selects the most relevant features and generates
low-dimensional augmented features. Finally, BiLSTM is used
to classify the processed sequential information. The proposed
method provides an end-to-end structure without the need
for manual feature extraction. We showed that the detection
of COVID-19 was improved by using the low-dime-nsional
augmented features through a reconstruction independent
component analysis method. Extensive experiments on two
publicly available COVID-19 X-ray image datasets where a
comparison with state-of-art models; namely, Squee-ze-Net,
Google-Net, and DenseNet-201 and recently published
works showed that our newly designed CNN-based BiLSTM
architecture outperformed several state-of-the-art models.

Especially, our model achieved a 97% accuracy which is
10% higher than the best performing model published so
far in the literature on the three classes, and 99% accuracy
for the two-classes dataset. While in the five class case, our
model achieved 84% accuracy which is 3% better than the
previously proposed method in [57]. At some other scenarios,
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the developed model has demonstrated the ability to achieve
100% accuracy for the detection of COVID-19 samples. On
the other hand, we also showed the possibility to utilize the
componentwise property of the overall architecture where
each stage (component) can be used to generate explanations
that can be employed to comprehend the actions of the model.
Especially, the attention mechanism provides an explainable
AI model that can detect COVID-19 robustly. Explainability
through PCA and t-SNE have also been explored and duly
commented as well as highlighting the potential deficiencies
that may restrict the ability of PCS or t-SNE projection to
provide an answer to the "why" question in the explainability,
while the prospect of a newly introduced ccPCA has been
recognized. In the future, we plan to further robustify the
feature selection method and RICA analysis in the attention
mechanism layer in a way to enhance the explanability of
the results and develop joint visualization approach that can
comprehend both PCA, t-SNE projection outcomes with
attention weights.
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