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Abstract—Intelligent recommendation applications in smart
cities require the precise location of the users. The traditional
global positioning system (GPS) uses satellite signals for the
precise positioning of the user but is vulnerable to signal blockage
in the complex indoor environment. The unforeseeable propaga-
tion losses due to multi-path effects as well as the permittivity
and permeability difference of the materials lead to non-linear
attenuation in the electromagnetic (EM) beam generated by the
beacon devices in the indoor environment. Therefore, a robust
indoor localization algorithm is required to precisely localize the
users in the indoor environment with severe EM blockages. In
this paper, we propose a novel hybrid RS-DeepNet framework
that uses received signal strength (RSS) from WiFi devices for
indoor localization of users. The proposed RS-DeepNet is a deep
learning architecture that utilizes multiple gated recurrent layers
(GRU) and a K-nearest neighbors (KNN) classifier to estimate the
precise location of the user in the indoor setup. Simulation results
show that the proposed RS-DeepNet outperforms the state-of-the-
art approaches and efficiently localizes the users in two indoor
scenarios and achieves a lowest mean absolute error of 4.81 and
1.68 meters, respectively.

Index Terms—Indoor localization, machine learning, RSSI
fingerprinting, feature extraction, classification

I. INTRODUCTION

Most of the internet users in the network are located in
the indoor environment, therefore, network densification is
considered to provide service to these users by deploying a
user-centric small base station deployment in the indoor setup
[1], [2]. Acquiring the accurate position information of the
users is critical to enable different location-based services in
the indoor environment [3]. The global navigation satellite
system (GNSS) is capable of localizing the user and can
achieve a sub-meter localization accuracy in some scenar-
ios. However, it does not perform well in the indoor setup
[4]. Visual-based localization (VBL) and wireless sensor-
based localization (WSBL) use computer vision and wireless
sensor network (WSN) for precise indoor localization [5].
However, visual biometric-based localization of individuals
through indoor CCTV cameras suffers from various photo-
metric variations such as intra-class occlusions, illumination
differences, scale variations, and orientation changes [6]. The
WSBL is broadly classified into time-based, angle-based, and
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receive-power-based techniques [7]. The time-based indoor
localization relies on the time of arrival (ToA), time difference
of arrival (TDoA), and round trip time (RTT), while the angle-
based method relies on the radio signal’s angle of arrival
(AoA) at a specified grid of location coordinates and the
receive-power-based methods depend on the received signal
strength (RSS) fingerprint and the radio propagation model of
the environments. The RSS fingerprint consists of the received
signal power from the anchor nodes at uniformly distributed
grid locations and carries useful location information. Fin-
gerprint includes an RSS indicator (RSSI) and is directly
accessed from the application layer without requiring extra
hardware or software changes. However, a huge fingerprint
data transmission is needed in fingerprint-based localization,
which makes it inefficient in terms of power, memory, and
computational resources, especially in complex environments
[8].

The emerging Internet-of-Things (IoT) sensor technology
and the advancement in artificial intelligence (AI) have re-
cently captured the attention of researchers to develop an
intelligent and efficient indoor localization framework for
smart cities. Machine learning (ML) techniques are capable of
tackling the challenges related to indoor localization. The ML
model either utilizes the raw RSSI data or extracts statistical
features from the input data. The classification frameworks
utilized for indoor localization so far include the multi-
class support vector machine (SVM) [9], K-nearest neigh-
bors (KNN) [10], probabilistic decision tree, and ensemble
models. However, these models result in lower precision and
higher mean absolute error (MAE). The deep neural network
(DNN) comprising long-short term memory (LSTM) [11],
bi-directional LSTM (BiLSTM) [12], and one-dimensional
convolutional neural network (1D-CNN) [13] are used to
accurately determine the indoor object’s location based on
the RSS from beacon nodes. ML frameworks also utilize
the AoA and TDoA data for low-cost indoor positioning.
Instead of raw data by the statistical handcrafted methods,
a DNN generates the distinctive feature values for the raw
input data and results in improved localization performance.
The authors in [13] transformed the RSSI fingerprint data
into two-dimensional (2D) images using Continuous Wavelet
Transforms (CWT) and applied DNN models to estimate
indoor object coordinates. Although the 2D DNN is robust
against photometric noises, the limited number of beacons

https://orcid.org/0000-0002-3860-2635
https://orcid.org/0000-0002-0555-6644
https://orcid.org/0000-0002-3860-2635
https://orcid.org/0000-0000-0000-0000


and the limited difference in RSSI signal strengths within
the fingerprint result in lower precision compared to 1D CNN
models.

Unlike isolated feature extraction and classification models,
fused frameworks are utilized, including multiple ML algo-
rithms to combine and localize indoor objects. The Unsu-
pervised Fusion of Extended Candidate Location Set (UFL-
ECLS) [14] is a fused model consisting of multiple trained
classifiers. However, the performance of UFL-ECLS is highly
dependent on the individual classifier accuracy, and misclas-
sification of a single classifier could lead to degradation in
the overall localization performance. To address this issue, the
authors in [15] propose a SmartLoc framework that utilizes
multiple ML algorithms along with alignment probabilistic
procedures to enhance offline training processes. The Smart-
Loc framework offers greater precision by employing multiple
ML frameworks and probabilistic alignment methods How-
ever, it suffers from the increased computational cost issue,
which makes it unsuitable for real-time applications.

Motivated by the aforementioned works, the goal of this pa-
per is to propose an efficient ML framework for precise indoor
localization that utilizes RSSI fingerprint data to estimate the
location coordinates of the users in the complex indoor envi-
ronment. The existing frameworks for indoor localization need
more accuracy, which is attributed either to the vulnerability
of the estimation model or the limitations of training samples
for the model. To address this issue and achieve high accuracy
while reducing computational complexity, this paper proposes
RS-DeepNet, which leverages the advantages of both DNN
features and clustering by first extracting features from the
RSSI data and then using these features for clustering-based
classification.

The main contributions of the paper are outlined as follows.
• We propose an RS-DeepNet which is a DNN architecture

for indoor localization. The proposed framework is based
on feature extraction from the input RSSI data followed
by an isolated classification of location information from
the extracted features. The feature extraction is performed
using multiple cascaded GRU blocks, each comprising
a GRU layer, normalization layer, and dropout layer.
The isolated KNN classifier is used to classify the deep
features collected through the cascaded GRU-DNN to
estimate the user’s coordinates in order to achieve highly
precise localization.

• Considering two different indoor scenarios, we demon-
strate that the proposed RS-DeepNet precisely predicts
the user location information from the RSSI finger-
print data. We further show that the proposed learning
framework outperforms the other existing techniques by
achieving the lowest mean absolute error (MAE).

The rest of the paper is organized as follows: Section II
presents the system model followed by the procedure for
generating fingerprint data. Section III presents the method-
ology of the proposed feature extraction and classification.
Section IV provides the simulation results and comparison of
the proposed framework with the existing benchmark. Finally,

Section V summarizes the key findings and concludes the
paper.

II. SYSTEM MODEL

The considered system model has K ′ number of WiFi
access points (APs) with the known location distributed over
a square area of dimension S × S. The location coordi-
nate of the ith reference user point (UP) is denoted by
Ui = (xi, yi) ∀i = {1, 2, ..N}, where N is the number of
indoor user equipments. The RSSI-fingerprint-based indoor
localization framework consists of an offline training stage and
an online testing process. During the offline training stage,
the RSSI fingerprint is created by dividing the serving area
into a square grid with grid markers across the x and y-axis,
respectively. In this study, we consider two indoor environment
scenarios as shown in Fig. 1 (a) and (b), respectively. For
scenario 1: S = 30 m with K ′ = 4 number of distributed
APs while for scenario 2: S = 50 m with K ′ = 5 number of
distributed APs. The UPs are distributed across the grid points
in such a way that each grid position belongs to one UP.

The RSSI fingerprint is collected and stored in the database
for the particular scenario. The RSSI fingerprint and the
location information stored are given by

Ω =
[
U Ψ

]
=

 (xi, yi) (Ψi,1,Ψi,2, ...Ψi,K)
: :

(xN , yN ) (Ψi,1,Ψi,2, ...ΨN,K)

 , (1)

where the Ψn,k refers to RSSI at the nth location across the
grid received from the kth AP.

The signal propagating between the kth AP and the nth
UP follows the Log-Normal path loss model and is highly
dependent on obstacles within the line-of-sight (LoS) between
APs and UPs. In the simulated environment, we consider
system-added noise and the random shadowing effect due to
the presence of randomly moving objects within the envi-
ronments [16]. As the RSS randomly fluctuates at each time
instant, therefore, the average RSS received from the kth AP
at location (xi, yi) can be expressed as

Ψt
n,k =

∑T
t=1 sn,k(t)

T
, (2)

where sn,k(t) and Ψt
n,k denote the RSSI received from the kth

AP at the nth UP and the average RSSI value at time instant
t, respectively, while T denotes the total set of time samples.

III. PROPOSED DNN ARCHITECTURE FOR RS-DEEPNET

The proposed RS-DeepNet model utilizes GRU DNN for
feature extraction from the RSSI fingerprint data and classifies
them into the location coordinates of the indoor site. The RSSI
fingerprint data, along with the respective geographic location
coordinates of the grid is used as a training dataset for the
proposed RS-DeepNet. During the online testing the RSSI
data is fed into the input of RS-DeepNet to extract the input
feature and estimates the nearest locations of the UP. The mean
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Fig. 1: Floor map of RSSI-Fingerprint environment with dark blue represents wall structures while light blue triangle denotes
the AP position, and the pink color denotes User trajectory (a) Scenario 1: square grid with S = 30m and K ′ = 4 (b) Scenario
2: square grid with S = 50m and K ′ = 5.
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Fig. 2: Proposed RS-DeepNet architecture

location is considered as the position of the test reference UP.
As a training dataset, the location coordinates of APs and the
RSS fingerprint values of the kth AP at nth reference UPs are
stored in the database and are respectively, given as

I = Ψ =


(Ψ1,1,Ψ1,2, ..,Ψ1,K)
(Ψ2,1,Ψ2,2, ..,Ψ2,K)

:
(ΨN,1,ΨN,2, ..,ΨN,K)

 , (3)

L = U =

 U1 = (x1, y1)
:

UN = (xN , yN )

 , (4)

where I represents the Input data and L is the corresponding
labels matrix used during training of the proposed RS-DeepNet
architecture.

RS-DeepNet Architecture: The proposed RS-DeepNet
comprises two GRU blocks followed by an isolated KNN
classifier, as shown in Fig. 2. Each GRU block consists of a
GRU layer with 256 cell units, a normalization layer, a dropout
layer with a probability of 0.1, and T = 250 number of data
samples are generated for each indoor scenario. The model is
trained with [I L] accessed from the database. The final output
of the proposed RS-DeepNet can be mathematically expressed
as

O = Cknn (G2 (G1 (I))) , (5)

where G1(·), G2(·), and Cknn(·) denote the first GRU block,
second GRU block, and KNN classifier, respectively. During

training, 75% and 25% of the total data are used for training
and validation, respectively, while for the KNN classifier K is
set to 3. The model is trained for 1000 epochs with a batch size
of 64 and a learning rate of 0.005, and an ADAM optimizer is
used. Let us denote the actual true locations and the estimated
locations of the UPs by U and Ũ , respectively. Then, the mean
absolute error (MAE) can be written as

MAE =
1

ξtest

ξtest∑
z=1

|Uz − Ũz|, (6)

where ξtest denotes the total number of test data points
considered for evaluation.

IV. SIMULATION RESULTS

The performance of the proposed RS-DeepNet model is
evaluated in two different simulated virtual environments, as
shown in Fig. 1. Both environments have different indoor
structures and dimensions. Random environmental noise, path
loss, shadowing, and multi-path effects are considered in both
environments. We evaluate the performance of the proposed
RS-DeepNet in terms of the cumulative distribution function
(CDF) of the positioning distance error and the MAE for the
tested dataset.

Fig. 3 presents the CDF of the proposed RS-DeepNet in
comparison with the other learning techniques for two indoor
scenarios. Fig. 3 (a) and (b) show that compared to the
traditional models, the proposed RS-DeepNet provide superior
performance at lower positioning distance errors for indoor
scenario 1 and 2, respectively. The comparison with the other
classification models that utilize raw RSSI fingerprints, such
as SVM, KNN, decision tree, discriminant analysis, ensemble,
and probabilistic models, is also provided. Furthermore, the
Bag-of-Features (BoF) method and the stacked GRU-BiLSTM
model, which extracts robust features from the raw RSSI,
are also considered for a fair comparison. Fig. 3 depicts
that the proposed RS-DeepNet achieves superior performance
compared to the benchmark methods. The second and third
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Fig. 3: CDF of the positioning distance error (a) Scenario 1 with S = 30 (b) Scenario 2 with S = 50.
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Fig. 4: MAE performance of the proposed RS-DeepNet in
comparison with the other DNN models.

best performing indoor localization algorithms are KNN and
GRU-BiLSTM, respectively.

Fig. 4 presents the MAE performance of the proposed
RS-DeepNet. Fig. 4 depicts that the proposed RS-DeepNet
achieves the lowest MAE of 4.81 and 1.68 compared to the
other benchmarks in the considered scenario 1 and scenario 2,
respectively.

V. CONCLUSIONS

To enable location-based services, the precise localization
of the user is critical in the indoor environment. In this regard,
this paper proposes a novel RS-DeepNet framework for indoor
localization, which is a DNN architecture that utilizes two
GRU blocks for feature extraction and an isolated KNN for
classification. The proposed RS-DeepNet is tested for two
different indoor residential apartment scenarios. It is observed
from the simulation results that for both indoor scenarios,
the proposed RS-DeepNet precisely estimates the location of
UPs and provides superior performance compared to the other
DNN models with reduced MAE of 4.81 m and 1.68 m in
both indoor scenarios.
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