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Robotic Control in Adversarial and Sparse Reward
Environments: A Robust Goal-Conditioned
Reinforcement Learning Approach
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Abstract—With deep neural networks based function approx-
imators, reinforcement learning holds the promise of learning
complex end-to-end robotic controllers that can map high-
dimensional sensory information directly to control policies.
However, a common challenge, especially for robotics, is sample-
efficient learning from sparse rewards, in which an agent is
required to find a long sequence of “correct” actions to achieve
a desired outcome. Unfortunately, inevitable perturbations on
observations may make this task trickier to solve. Here, this paper
advances a novel robust goal-conditioned reinforcement learning
approach for end-to-end robotic control in adversarial and sparse
reward environments. Specifically, a mixed adversarial attack
scheme is presented to generate diverse adversarial perturbations
on observations by combining white-box and black-box attacks.
Meanwhile, a hindsight experience replay technique considering
observation perturbations is developed to turn a failed experience
into a successful one and generate the policy trajectories per-
turbed by the mixed adversarial attacks. Additionally, a robust
goal-conditioned actor-critic method is proposed to learn goal-
conditioned policies and keep the variations of the perturbed
policy trajectories within bounds. Finally, the proposed method
is evaluated on three tasks with adversarial attacks and sparse
reward settings. The results indicate that our scheme can en-
sure robotic control performance and policy robustness on the
adversarial and sparse reward tasks.

Impact Statement—In recent years, reinforcement learning has
been an impressive component of modern artificial intelligence
and is still under vigorous development. Nonetheless, compared
to supervised learning, which has been widely applied in a variety
of domains, reinforcement learning has not been broadly accepted
and deployed in real-world problems. One key factor is an
agent’s trustworthiness, where its policy robustness is essential.
Additionally, designing the reward function requires both domain-
specific knowledge and reinforcement learning expertise, which
limits the applicability of reinforcement learning. Unfortunately,
on some real-world tasks, on account of reward function design
complexities and inevitable perception errors, the agents have
to learn under sparse rewards and observation uncertainties.
However, so far there are few studies to cope with the challenge.
QOur approach contributes to the foundation for the realization
of trustworthy and efficient artificial intelligence, potentially
bringing reinforcement learning closer to a wide range of real-
world applications in robotics and beyond.

Index Terms—Reinforcement learning, adversarial machine
learning, sparse reward, end-to-end control, robotics.
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ITH the development of emerging technologies such

as artificial intelligence (Al) and 5th-generation mobile
communication technology (5G), data-driven robotic control
has become a research hotspot, which can lead to a dramatic
breakthrough in the next generation of robot industry [1]-[3].
Conventional robotic control approaches employ a hierarchical
control architecture that mainly consists of sensing, planning
and control modules [4]-[6]. In addition, these methods require
accurate kinematics or dynamics models that are tricky to
acquire, especially in complex robotic control [7]-[9].

With deep neural networks (DNNs) as function approxima-
tors, reinforcement learning (RL) methods have demonstrated
their worth in a series of challenging tasks, from games
to robotic control [10]-[13]. High-quality end-to-end robot
controllers can be implemented through RL methods without
prior hierarchical framework, kinematics and dynamics models
[14]. The RL-based robot control approach was proposed
through a mixture of actor-critic experts (MACE) in [15]. The
residual RL for robot control is designed by combining a
learnable parametrized model with a conventional feedback
controller in [16]. The multi-agent advantage actor-critic (A3C)
algorithm was developed for snake robot control in [17]. The
RL method with Lyapunov stability theory was presented to
guarantee closed-loop stability of the robot controller in [18].
The prediction-guided RL algorithm was developed for multi-
objective continuous robot control tasks in [19].

While existing RL-based robot control methods have
achieved many compelling results [20]-[22], they mostly
rely on carefully-crafted reward functions that require both
domain-specific knowledge and RL expertise. The reward
design engineering restricts the real-world applicability of
RL. Furthermore, since it is very tricky to design the reward
function for some tasks, such as Go, the agents have to learn
in sparse reward environments. Hence, a common challenge in
RL, especially for robotics, is sample-efficient learning from
sparse rewards, in which an agent has to find a long sequence
of “correct” actions to achieve a desired outcome. Many studies
have made efforts to solve this tricky issue [23]-[25]. One
popular way of tackling the sparse reward task is the hindsight
experience replay (HER) technique [26] that seeks to cope with
this problem via converting failed experiences to successful
ones through relabeling the goals.

The above studies generally assume that the agents’ sensing
and perception systems are free of uncertainties. Nonetheless,
this assumption can barely hold in real-world situations.
The observations of robots include inevitable perturbations
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Fig. 1. Tllustration of the proposed RGCRL framework for robotic control in adversarial and sparse reward environments.

that naturally arise from unpredictable stochastic noises or
sensing errors. If a robot’s control policies are not robust, its
performance may be degraded by observation uncertainties,
especially in sparse reward environments. In other words, the
perturbations on observations make agents more difficult to
discover a trajectory of “correct” actions to obtain a positive
sparse reward signal.

In recent years, some researchers have tried to improve the
robustness of policies based on RL in robotic control [27]-[29].
For example, Pinto et al. [30] presented the robust adversarial
RL algorithm for robotic control by modeling uncertainty as
an adversarial agent. Tessler et al. [31] proposed the robotic
control approach with action robust RL through structuring
probabilistic action robust Markov decision process (MDP)
and noisy action robust MDP. Pattanaik et al. [32] introduced
the state adversarial robust RL scheme to improve the robotic
control policy’s robustness via the gradient based adversarial
attack technique. However, few works simultaneously try to
cope with observational uncertainties and sparse rewards in
robotic control tasks. Consequently, there is still room for
advancement and refinement.

In this paper, we advance a novel robust goal-conditioned
reinforcement learning (RGCRL) approach for end-to-end
robotic control in adversarial and sparse reward environments.
The RGCRL scheme is based on two key insights. First, the
robust policies facilitate the agent to make a long sequence
of “correct” decisions to attain a positive sparse reward signal
under uncertain perturbations. Second, the method of combining
white-box attack [33] and black-box attack [34]-[36] is able to
generate diverse adversarial samples. Specifically, this paper’s
main contributions are summed up as follows:

o A mixed adversarial attack scheme is proposed by com-
bining white-box and black-box attacks, which aims
to maximize the average variation distance on attacked
policies while generating diverse adversarial samples on
observations.

o An HER technique considering observation perturbations

is developed to turn a failed experience into a successful
one and produce the policy trajectories perturbed by the
mixed adversarial attacks.

o A robust goal-conditioned actor-critic (RGCAC) method
is presented to optimize goal-conditioned policies and
keep the variations of the perturbed policy trajectories
within bounds, in sparse reward environments.

The proposed approach’s framework is illustrated in Fig. 1.
The module with respect to the mixed adversarial attacks aims
to generate diverse adversarial samples on observations. Its
input contains the state s, goal g and the goal-conditioned
policy 7(s|lg). || denotes concatenation. The output is the
optimal adversarial attack A*.

The HER module considering observation perturbations is
to provide the hindsight experiences and the policy trajectories
under the mixed adversarial attacks. Its input includes the
state sy, goal g, action a;, reward r;, next state sy, goal-
conditioned policy 7 and optimal adversarial attack A*. ¢ and
k represents the time steps. § denotes the state perturbed by
the mixed adversarial attacks. The output contains samples for
policy optimization and adversarial attacks.

The module associated with the RGCAC algorithm attempts
to optimize the end-to-end robust control policies against
observation perturbations. Its input includes the hindsight
experiences and the perturbed policy trajectories. The output
is the robotic control policy.

In addition, the module with regard to the robotic control
environment is adopted to produce the transition data. The
input is the goal-conditioned policy 7(s||g) based action a. Its
output includes the state s, goal g and reward r.

Three testing cases with adversarial and sparse reward set-
tings are executed to benchmark the performance of our robotic
control method in the Franka Emika Panda robot environment
[37]. The results indicate that the RGCRL scheme can learn
robust control policies against observation uncertainties while
improving the robot performance.

The remainder of this paper is arranged as follows. The pre-



liminaries and the methodology of our method are introduced
in Sections II and III respectively. Section IV analyzes the
testing results of the proposed algorithm on the different robot
tasks. This work’s conclusions are made in Section V.

II. PRELIMINARIES
A. Markov Decision Process

An MDP is a mathematical formalism for modelling the
sequential decision making of an agent, and it is also a
straightforward paradigm for the problem of learning from
interaction to attain a goal. A standard MDP is able to be
expressed via the 5-tuple (S,.A,r,p,v) based on the state
space S, action space A, reward function r : S x A — R,
transition probability function p : S x Ax S — R and discount
factor v € (0, 1).

B. Reinforcement Learning

The MDP is the theoretical foundation of RL, and the RL
agent aims to learn a policy that is capable of maximizing the
expected return. In the RL problem, the expected return can
then be denoted by:

T
J(m) :E[Z'ytr(st,at)}, (1)
t=0
where 7 indicates the the agent’s policy, ¢ is the time step, T'
is the last timestep, state s; € S, and action a; € A.
Therefore, the central optimization problem of RL can be
represented with:

2

7" = argmax J (),
T

where 7* is the optimal policy.

III. METHODOLOGY
A. Mixed Adversarial Attacks

In this section, in order to generate diverse adversarial
samples, the mixed adversarial attack method is introduced
by combining black-box and white-box attacks. The mixed
adversarial attack scheme can be described as:

AF {black-box attack, with probability w 3)

white-box attack, with probability 1 —w

where w represents a probability.

1) Black-box Attack with Bayesian Optimization: We im-
plement the Bayesian optimization based black-box attack
technique that has a high query efficiency for approximating
adversarial samples. The black-box attack methods do not
require information on the objective function architecture or
parameters and only observe the input-output correspondences
by querying the model. The black-box attack method, however,
typically requires a large number of attempts to find effective
adversarial samples.

The Bayesian optimization method, a black-box optimization
approach founded on the Bayes theorem, is particularly well
suited for dealing with issues involving expensive queries. This
technique works by building an objective function’s surrogate

model that can be efficiently searched via an acquisition
function before candidate samples are selected for assessing
the real objective function.

The Bayesian optimization based black-box attack method is
described by Algorithm 1. The upper confidence bound (UCB)
method is chosen to design the acquisition function in our
scheme. We adopt the Gaussian process to build the surrogate
model. Moreover, in this paper, the objective function f(-) of
the black-box attack scheme is defined as:

f(A;s,9,m) = |[7(sllg) = m(3ll9)ll @

where the observation uncertainty is represented as A =
[A™ A¢], the perturbed state is denoted as § = A™s + A,
A™ indicates the multiplicative uncertainty, and A% is the
additive uncertainty.

Algorithm 1 Bayesian optimization based black-box attacks

1: fort=1,2,....1 do

2:  Probe a new adversarial sample A; = [A"  AY] via
maximizing the UCB based acquisition function over
the Gaussian process based surrogate model:
A; = arg mgXUCB(AM/ll:,;_l).

3:  Compute the objective function f(A;,s,g, 7).
Augment data in memory M:
My = M1 U[Ag, f(As, s, 9,7)]

5:  Update the Gaussian process based surrogate model.

6: end for

2) White-box Attack with Lagrange Duality Theory: The
white-box attack method is transformed into a constrained opti-
mization problem that can be solved by Lagrange duality theory.
The white-box attack technique requires complete knowledge
of the objective function to find successful adversarial samples.

In this paper, the white-box attack scheme is formulated as:

max f(A s, g,7), )

st |a-Al, <o,

where the perturbation reference value can be denoted as A =
[A™ A?], A™ and A“ represent the multiplicative and additive
uncertainties’ reference values, and 0™ and 0% are the the
multiplicative and additive uncertainties’ bounds, respectively.

Therefore, the Lagrangian of the above constrained optimiza-
tion task can be obtained:

L(A,0) = f(A,s,9,m) +a([|[A-Al,-6), ©)

where « is dual variable.
With Lagrange duality theory, the white-box attack can be
formulated as:

)

max min L(A, a).
A" a>0

Hence, the adversarial perturbation A can be updated in J
steps by:
Aj-‘rl = Aj + nvAL(Avo‘)a (8)

where 7 is the learning rate of optimizing A. Moreover, j =
1,...,J.



The dual variable « is updated in J steps through:
ajy1 = a; —EVaLl(A, a), ©)

where ¢ is the learning rate of approximating .

B. HER Considering Observation Perturbations

On sparse reward tasks, the reward relies on whether the
policy trajectory enables the agent to reach the desired goal g
or not, and only the successful policy trajectory can trigger a
positive reward. In most cases, the successful policy trajectories
collected by the agent are usually insufficient for training.

The HER technique considering observation perturbations
aims to provide the hindsight experiences and the perturbed
policy trajectories.

To generate the hindsight experiences for addressing the
sparse reward problem, the HER scheme converts failed

experiences into successful ones via relabeling the goals.

Specifically, the HER method converts the achieved goals ¢’
based on the states in failed experiences to the desired goals g
in the training data. Here, the desired goal g denotes the real
target that the agent attempts to attain. Moreover, an achieved
goal ¢’ represents a state that the agent has reached. When ¢
is displaced via a ¢/, the corresponding failed experiences are
assigned desirable rewards, which is able to facilitate the agent
to learn policies in sparse reward environments. The policy
trajectory based on the hindsight experience in an episode can
be expressed as:

T = {71'(80”9/), t '77T(ST—1H9/)} . (10)

Additionally, we construct the perturbed policy trajectories
via the sampled hindsight experiences and the mixed adversarial
attacks. Hence, the perturbed policy trajectory in an episode is
able to be represented as:

7={m(Sollg), - m(5r-1llg")}- (11)

C. Robust Goal-Conditioned Actor-Critic

This section introduces the proposed RGCAC algorithm that
enables the robotic agent to learn the robust goal-conditioned
control policy.

1) Robust Goal-Conditioned Markov Decision Process: A
robust goal-conditioned MDP (RGCMDP) is proposed to model
agent behaviors under uncertainties and sparse rewards, which
can be defined as follows.

Definition 1: An RGCMDP can be represented through a
7-tuple (S,G,A,r,p,A,v). G indicates the goal space. A
represents the observational uncertainty.

To handle the worst-case situation, RGCMDP aims to solve
the optimal policies under optimal adversarial attacks on
observations. The agent tries to learn goal-conditioned policies
and keep the variations of the perturbed policy trajectories
within bounds. The optimization task can be formulated as:

T

T e argmaxE[Z’ytT(St,at,g) )
t=0

s.t. E[f(A*,s,9,m)] <8,

(12)
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where 7 represents a goal-conditioned policy w(s|lg), 7*
denotes an optimal goal-conditioned policy 7*(s||g), and § is
an upper bound.

2) Robust Goal-Conditioned Policy Evaluation: The action-
value function Q7 (s, as,g) at time step ¢ is able to be
computed under a given goal g and a fixed agent policy
iteratively via a Bellman backup operator 7 :

TQ" (st,at,9) = r(st,at,9) +YE[Q™ (St41,at4+1,9)]. (13)

The RGCAC algorithm leverages two action-value functions
with parameters ¢*, z € {1, 2} to speed up training. The action-
value function parameters are able to be learned by minimizing
the following the critic network’s loss function:

Jo(@) = _E_|lly—Q (sr.ar,9:6%)l5 |,

Ty~

(14)

where T;, denotes a minibatch trajectory sampled from the
HER memory M, and y represents the action-value function’s
target value.

To alleviate the overfitting problem, a smoothing regular-
ization scheme [38] is adopted by adding a small amount of
stochastic noises to the selected action with a deterministic
policy. Moreover, with the state s;, goal g and deterministic
policy m, the agent’s action with the random noises can be
designed as:

7(s¢llg; 0) = w(s¢llg; 0) + cv, (15)

v~ N(0,1), (16)

where 6 denotes the actor network’s parameters, c is a weight
coefficient, and N (-) represents Gaussian distribution.

To mitigate the action-value function’s overestimation issue,
the minimum estimation between two target action-value
functions is utilized to optimize the critic network’s parameters.
Hence, based on Eq. (13), y is able to be written as:

y=r1(se,ar,9) +v min Q" (se1,7(selg;0), 9:67). (17)
ze{1,2}
where Q”() represents the target action-value function, ¢*
denotes the target action-value function’s network parameters,
and z € {1,2}.

To stabilize the model training, the the target action-value
function’s network parameters are able to be renewed through
polyak averaging:

@7 = o + (1 — ),
where o denotes a interpolation factor between 0 and 1.

3) Robust Goal-Conditioned Policy Improvement: The policy
improvement aims to optimize and update the agent’s policies.
Our robotic control method attempts to maximize the agent’s
expected return and keep the changes of the policy trajectories
perturbed by the mixed adversarial attacks within certain ranges,
in sparse reward environments.

The Lagrangian of the constrained optimization problem
(12) is able to be written as:

(18)

T
L(ﬂ-v)\) = E{Z’ytr(st,at,g) + )‘(ﬁ - f(A*7Stag?7T)) )
t=0
(19)



where A > 0, and A represents the dual variable.

With Eq. (19) and Lagrangian duality [39], the the con-
strained optimization problem’s Lagrange dual function is able
to be represented as:

L(\) = max L(, \) (20)

T
= m3XE|:Z7tT(St; Qg g) + A(B - f(A*a S5ty 9, ’/T)):| .
t=0
In addition, the Lagrange dual problem concerning the
problem (12) is able to be expressed as:

m)%n L)) = m}n max L(m, \) (1)

T
= m}%nmng{Z’ytr(st, at,g) + A(B— f(A*, s, 9, 7T)):| .
t=0

Under the given state s and goal g, with Eq. (21), the
optimal goal-conditioned policies 7*(s||g) and the optimal
dual variable A* are able to be found iteratively. Fix a dual
variable A, and then optimize the goal-conditioned policies
m(s]|g) via maximizing Eq. (19). Furthermore, with the optimal
goal-conditioned policies 7*(s||g), the optimal dual variable
A* can be attained via minimizing Eq. (20). As a result, the
following expressions are able to be obtained:

w*(s|lg) = argmng(w(ng),)\), (22)

A" = argmjnL(w*(ng),A). (23)

A double action-value function trick is employed to mitigate
the expected return’s estimation error problem. At time step ¢,
the average action-value function with the goal g is able to be
represented as:

—_

QW(Shahg) =5 [Qﬂ-(shahg;d)l) + Qw(3t7at7g;¢2)]

[Q” (St»ﬁ(stH% 0),g; ¢1)
+ Q" (50, 7 (s¢llg; 0), 9:6%) |-
Hence, with Eq. (22) and Eq. (24), the optimal policy of the
agent is able to be learned via maximizing the following actor
network’s objective function:

= Tbg./\/l [Qﬂ(staatag) - Af(A*NStagvﬂ-)]'

N N

(24)

Ja(0) (25)

In addition, with Eq. (23), the dual variable A is able to be
learned through minimizing the following objective function:

Ja) = E [MB-f(Asngm)].26)
D. Algorithm Implementation

Algorithm 2 introduces our RGCRL approach in detail.
Moreover, d; represents if s;y; is terminal.

Algorithm 2 Robust Goal-Conditioned RL

1: Initialize 0,), ¢*, @2, ! < ¢' and ¢2 < ¢°.
2: Set an empty HER memory M.
3: for epoch stepn =1,2,...N do

4:  for episode step e = 1,2,... E do

5: Sample an initial state so and a desired goal g.

6: for time step t = 1,2,...7 do

7: Determine an action with the policy:
ar ~ 7o (stl|g)-

8: Execute a; in the environment and receive a transition:
Si41,7t, de ~ P(Se41]8e, ar).

9: end for

10: Save the transition trajectory in the HER memory M.

11: for learning step [ = 1,2,... L do

12: Sample a batch of hindsight experiences from M.

13: Generate the optimal adversarial attacks on observations:
AF black-box attack, with probability w;

white-box attack, with probability 1 — w.

14: Construct a batch of the perturbed policy trajectories.

15: Optimize the parameters of the critic network via Eq. (14):
¢! = V1 Je(8Y), ¢ ¢ V2 Je(67).

16: Optimize the parameters of the actor network via Eq. (25):
0 Vo Ja(a).

17: Optimize the dual variables via Eq. (26):
A VAJa(A).

18: Update the parameters of the target action-value function

network via Eq. (18): ~
¢! udt + (1 — o', ¢° — up® + (1 — p)e*.
19: end for
20: end for
21: end for

The actor and the critic networks are implemented by 2 fully
connected hidden layers whose layer sizes are {256,256}
Additionally, ReLU is employed as the activation function in
the hidden layers. The main hyperparameters of the proposed
RGCRL algorithm are provided in Table I.

TABLE I
THE MAIN HYPERPARAMETERS OF THE RGCRL AND BASELINE ALGORITHMS.

Parameters TD3-HER SAC-HER RDDPG-HER RGCRL

Batch size 256 256 256 256

Buffer size 106 106 106 106

Upper bound 3 N/A N/A N/A 0.1
Discount factor 0.98 0.98 0.98 0.98
Weight coefficient ¢ 0.2 N/A 0.2 0.2

Attack probability w N/A N/A N/A 0.1
Interpolation factor p 0.005 0.005 N/A 0.005
Actor’s learning rate [ 0.001 0.001 0.001 0.001
Critic’s learning rate . 0.001 0.001 0.001 0.001
Attacker’s learning rate n N/A N/A 0.01 0.01
Dual variable’s learning rate [ N/A N/A N/A 0.001
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g. 2. Franka Emika Panda robot control environment. (a) Reach task; (b) Push task; (c) Pick-and-Place task. The target positions are green shaded.
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IV. EVALUATION AND RESULT

A. Experimental Environment

To benchmark our RGCRL method, we leverage the Franka
Emika Panda robot environment [37] consisting of the Franka
Emika Panda robotic arm model, the PyBullet physics engine
[40] and OpenAl Gym [41]. As shown in Fig.2, the three
robotic control tasks are illustrated, which include reach, push
and pick-and-place. The green shaded spaces in Fig.2 denote

—— RGCRL 0.0 —— RGCRL
100 125 150 175 200 0 100 200 300 400 500 600 700 800
Epochs Epochs
(b) ()

Training curves obtained via the TD3-HER, SAC-HER, RDDPG-HER and RGCRL approaches on the three robotic control tasks with sparse rewards.

the target positions. The green cubes represent the objects on
push and pick-and-place tasks.

Specifically, on the reach task, the robotic arm has to control
its end-effector at a specified position. The agent’s input (i.e.,
state and goal, 9 dimensions) consists of the position and
speed of its end-effector (6 dimensions), and the target position
(3 dimensions). The output (i.e., action) is the end-effector
control command (3 dimensions, one for movement on z,y
and z axes).

On the push task, the robotic arm tries to push an object
to a target position on the table surface. The robotic agent’s
input (21 dimensions) consists of its end-effector’s position and
speed (6 dimensions), the object’s position, orientation, linear
and rotational speed (12 dimensions), and the target position
(3 dimensions). The robotic agent’s output is the end-effector
control command (3 dimensions, one for movement on z,y
and z axes).

Moreover, on the pick-and-place task, the robotic arm
attempts to pick up and place a cube at a target position above
the table. The robotic agent’s input (22 dimensions) consists
of its end-effector’s position and speed (6 dimensions), the
object’s position, orientation, linear and rotational speed (12
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Fig. 6. Robustness of different robotic agents on the three robotic control tasks under the mixed adversarial attacks on observations.

dimensions), the target position (3 dimensions), and the opening
of the end-effector (1 dimension, the distance between the
fingers). The robotic agent’s output (4 dimensions) is the end-
effector control command (3 dimensions, one for movement on
z,y and z axes), the fingers control command (1 dimension,
one for movement of the fingers).

The sparse reward setting is leveraged for all three robotic
control tasks, i.e., a reward of 0 is received when the object
to move is at the target location and -1 otherwise.

B. Performance Evaluation

1) Baseline: To evaluate the proposed scheme, we try to
implement comparisons with state-of-the-art off-policy RL
algorithms, including twin delayed deep deterministic policy
gradient (TD3) [38] and soft actor-critic (SAC) [42]. Addition-
ally, since robust deep deterministic policy gradient (RDDPG)
[32] is one of the state-of-the-art robust RL algorithms, it is
also employed to test the proposed solution. However, it is
intractable for traditional RL methods to attain desired perfor-
mance in sparse reward environments. Hence, by combining
HER [26] with TD3, SAC and RDDPG algorithms, three
baselines are implemented to benchmark the proposed RGCRL
technique, which are indicated as TD3-HER, SAC-HER and

RDDPG-HER, respectively. The main hyperparameters of the
baseline algorithms are given in Table I.

2) Model Training Performance: We perform 5 different runs
of each method with different random seeds. On the reach,
push and pick-and-place tasks, the robotic agents are trained
for 10, 200 and 800 epochs respectively. 1 epoch includes 50
episodes. Moreover, 1 episode contains 50 time steps.

Fig. 3 shows the performance of each agent during training
across the three robotic control tasks. The solid curve indicates
the mean, and the shaded region represents the standard
deviation. The results indicate that, overall, the proposed
RGCRL scheme performs comparably to the baselines on
the reach and push tasks, and surpasses them on the pick-and-
place task with a large margin, both in the matter of the final
performance and learning speed. For instance, on the reach and
push tasks, the final success rates of the TD3-HER, SAC-HER,
RDDPG-HER and RGCRL agents are 100%. Additionally, on
the pick-and-place task, the final success rates of the TD3-HER,
SAC-HER, RDDPG-HER and RGCRL agents are about 50%,
40%, 40% and 100%, respectively.

3) Model Testing Performance: As depicted in Fig. 4, in
contrast to the training phase of the policy model, in model
testing, the robotic agent receives the state S; perturbed by the
mixed adversarial attacks instead of the state s;.



TABLE I
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EVALUATION OF DIFFERENT ROBOTIC AGENTS ON THE THREE ROBOTIC CONTROL TASKS UNDER THE MIXED ADVERSARIAL ATTACKS ON OBSERVATIONS.

Task Metric TD3-HER SAC-HER RDDPG-HER RGCRL
Reach Success Rate 0.995 £ 0.071 0.980 £ 0.140 1.000 £ 0.000 1.000 £ 0.000
Robustness 0.095 £ 0.058 0.189 +£ 0.065 0.075 £ 0.029 0.003 + 0.002
Push Success Rate 0.845 £ 0.362 0.535 £ 0.499 0.835 £ 0.371 0.990 +0.100
Robustness 0.445 £ 0.132 0.750 £ 0.241 0.368 £ 0.167 0.010 £+ 0.005
Pick-and-Place Success Rate 0.145 £ 0.352 0.220 £ 0.414 0.215 £ 0411 0.945 + 0.228
Robustness 0.365 £ 0.343 0.526 £ 0.546 0.425 £ 0.275 0.092 £+ 0.054

We assess the final neural network models trained via each
algorithm under 5 different random seeds. Each model is tested
for 100 episodes on the three tasks. Here, like the model
training, 1 episode includes 50 time steps. Eq. (4) is adopted
to measure the policy robustness against the adversaria attacks
on observations. This means the agent’s policy with a smaller
value of Eq. (4) shows stronger robustness against observation
perturbations.

Fig. 5 and Fig. 6 show the performance and robustness of
the TD3-HER, SAC-HER, RDDPG-HER and RGCRL agents
during testing across the three robotic control tasks under
the mixed adversarial attacks on observations. Obviously, the
RGCRL agent outperforms the TD3-HER, SAC-HER and
RDDPG-HER agents in terms of success rate and policy
robustness, on the three tasks.

Qualitatively, we report the average metrics of 100 episodes
in Table II for each agent on the three robotic control tasks
under the mixed adversarial attacks on observations. In each
row of Table II, the bolded number represents the best result.
For example, on the reach task, in comparison with the
TD3-HER, SAC-HER and RDDPG-HER agents, the RGCRL
agent gains approximately 0.503%, 2.041%, and 0.000%
improvements, respectively, regarding success rate. Compared
with the TD3-HER, SAC-HER and RDDPG-HER agents,
the policy robustness of the RGCRL agent is enhanced by
approximately 96.842%, 98.413%, and 96.000%, respectively.

On the push task, in contrast to the TD3-HER, SAC-HER
and RDDPG-HER agents, the RGCRL agent approximately
enhances the success rate by 17.160%, 85.047%, and 18.563%,
respectively. In comparison with the TD3-HER, SAC-HER and
RDDPG-HER agents, the policy robustness of the RGCRL
agent is improved by approximately 97.753%, 98.667%, and
97.283%, respectively.

On the pick-and-place task, compared with the TD3-HER,
SAC-HER and RDDPG-HER agents, the RGCRL agent gains
approximately 0.503%, 2.041%, and 0.000% improvements,
respectively, in terms of success rate. Compared with the TD3-
HER, SAC-HER and RDDPG-HER agents, the RGCRL agent’s
policy robustness is improved by approximately 551.724%,
329.546%, and 339.535%, respectively.

Taken overall, the proposed RGCRL approach surpasses the
baseline schemes by a large margin, both in terms of success
rate and policy robustness, especially on the complicated tasks.
Furthermore, our method performs consistently across all three
tasks. This means that the RGCRL algorithm can also provide
more stable performance than the baselines.

V. CONCLUSION

This paper proposes a novel RGCRL scheme for end-to-end
robotic control in adversarial and sparse reward environments..
Firstly, a mixed adversarial attack method is advanced to
generate diverse adversarial perturbations on observations via
combining white-box and black-box attacks. Secondly, a HER
technique considering observation perturbations is developed
to turn a failed experience into a successful one and generate
the policy trajectories perturbed by the mixed adversarial
attacks. Thirdly, an RGCAC method is introduced to learn goal-
conditioned policies and keep the variations of the perturbed
policy trajectories within bounds.

Evaluation of the policy models is carried out on the three
robotic control tasks with adversarial attacks and sparse reward
settings. The results demonstrate that the RGCRL approach
enables the agent to learn efficiently from sparse rewards.
Additionally, compared to the three baselines, the RGCRL
agent has superior performance concerning the success rate
and policy robustness under the mixed adversarial attacks.

While we have demonstrated the potential of the proposed
RGCRL technique, some limitations remain. Consequently,
future work involves evaluating our approach in more scenarios.
In addition, the proposed algorithm will be applied to end-to-
end robotic control tasks in the real world.
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