Jakob Haeusele

and 6 more

Jakob Haeusele

and 6 more

Grating-based phase- and dark-field-contrast X-ray imaging is a novel technology that aims to extend conventional attenuation-based X-ray imaging by unlocking two additional contrast modalities. The so called phase-contrast and dark-field channels provide enhanced soft tissue contrast and additional microstructural information. Accessing this additional information comes at the expense of a more intricate measurement setup and necessitates sophisticated data processing. A big challenge for translating grating-based dark-field computed tomography to medical applications lies in minimizing the data acquisition time. While a continuously moving detector is ideal, it prohibits conventional phase stepping techniques that require multiple projections under the same angle with different grating positions. One solution to this problem is the so-called sliding window processing approach that is compatible with continuous data acquisition. However, conventional sliding window techniques lead to crosstalk-artifacts between the three image channels, if the projection of the sample moves too fast on the detector within a processing window. In this work we introduce a new interpretation of the phase retrieval problem for continuous acquisitions as a demodulation problem. In this interpretation, we identify the origin of the crosstalk-artifacts as partially overlapping modulation side bands. Furthermore, we present three algorithmic extensions that improve the conventional sliding-window-based phase retrieval and mitigate crosstalk-artifacts. The presented algorithms are tested in a simulation study and on experimental data from a human-scale dark-field CT prototype. In both cases they achieve a substantial reduction of the occurring crosstalk-artifacts.

Manuel Viermetz

and 7 more

X-ray computed tomography (CT) is an important non-destructive imaging technique, particularly in clinical diagnostics. Even with the latest innovations like dual-energy and photon-counting CT, the image contrast is solely generated from attenuation in the tissue. An extension – fully compatible with these novelties – is dark-field CT, which retrieves an additional, so-called dark-field contrast. Unlike the attenuation channel, the dark-field channel is sensitive to tissue microstructure and porosity below the resolution of the imaging system, which allows additional insights into the health of the lung tissue or the structure of calcifications. The potential clinical value has been demonstrated in several preclinical studies and recently also in radiography patient studies. Just recently the first dark-field CT for the human body was established at the Technical University of Munich and in this paper, we discuss the performance of this prototype. We evaluate the interferometer components and the imposed challenges that the integration into the CT gantry brings by comparing the results to simulations and measurements at a laboratory setup. The influence of the clinical X-ray source on the Talbot-Lau interferometer and the impact of vibrations, which are immanent on the clinical CT gantry, are analyzed in detail to reveal their characteristic frequencies and origin. A beam hardening correction is introduced as an important step to adapt to the poly-chromatic spectrum and make quantitative dark-field imaging possible. We close with an analysis of the image resolution and the applied patient dose, and conclude that the performance is sufficient to suggest initial patient studies using the presented dark-field CT system.