References
Acevedo, M., Pixley, K., Zinyengere, N., Meng, S., Tufan, H., Cichy, K.,
Bizikova, L., Isaacs, K., Ghezzi-Kopel, K., & Porciello, J. (2020). A
scoping review of adoption of climate-resilient crops by small-scale
producers in low- and middle-income countries. Nature Plants , 6,
1231-1241. doi:10.1038/s41477-020-00783-z
Anderson, J. L., & Anderson, S. L. (1999). A Monte Carlo implementation
of the nonlinear filtering problem to produce ensemble assimilations and
forecasts. Monthly Weather Review, 127 , 2741-2758.
Baret, F., Houles, V., & Guerif, M. (2007). Quantification of plant
stress using remote sensing observations and crop models: the case of
nitrogen management. Journal of Experimental Botany, 58 , 869-880.
doi:10.1093/jxb/erl231
Berger, K., Verrelst, J., Féret, J.-B., Hank, T., Wocher, M., Mauser,
W., & Camps-Valls, G. (2020a). Retrieval of aboveground crop nitrogen
content with a hybrid machine learning method. International
Journal of Applied Earth Observation and Geoinformation, 92 , 102174.
doi:10.1016/j.jag.2020.102174
Berger, K., Verrelst, J., Féret, J.-B., Wang, Z., Wocher, M.,
Strathmann, M., Danner, M., Mauser, W., & Hank, T. (2020b). Crop
nitrogen monitoring: Recent progress and principal developments in the
context of imaging spectroscopy missions. Remote Sensing of
Environment, 242 , 111758. doi:10.1016/j.rse.2020.111758
Beven, K., & Freer, J. (2001). Equifinality, data assimilation, and
uncertainty estimation in mechanistic modelling of complex environmental
systems using the GLUE methodology. Journal of Hydrology, 249 ,
11-29.
Beven, K. J., Smith, P. J., & Freer, J. E. (2008). So just why would a
modeller choose to be incoherent? Journal of Hydrology, 354 ,
15-32. doi:10.1016/j.jhydrol.2008.02.007
Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations.Journal of the Royal Statistical Society: Series B
(Methodological), 26 , 211-243.
Box, G. E. P., & Tiao, G. C. X. (1973). Bayesian inference in
statistical analysis . Reading, PA: Addison-Wesley.
Cai, C., Li, G., Di, L., Ding, Y., Fu, L., Guo, X., Struik, P. C., Pan,
G., Li, H., Chen, W., Luo, W., & Yin, X. (2020). The acclimation of
leaf photosynthesis of wheat and rice to seasonal temperature changes in
T-FACE environments. Globe Change Biology, 26 , 539-556.
doi:10.1111/gcb.14830
Carrassi, A., Bocquet, M., Bertino, L., & Evensen, G. (2018). Data
assimilation in the geosciences: An overview of methods, issues, and
perspectives. WIREs Climate Change , 9. doi:10.1002/wcc.535
Claverie, M., Demarez, V., Duchemin, B., Hagolle, O., Ducrot, D.,
Marais-Sicre, C., Dejoux, J.-F., Huc, M., Keravec, P., Béziat, P.,
Fieuzal, R., Ceschia, E., & Dedieu, G. (2012). Maize and sunflower
biomass estimation in southwest France using high spatial and temporal
resolution remote sensing data. Remote Sensing of Environment,
124 , 844-857. doi:10.1016/j.rse.2012.04.005
Cui, Z., Zhang, H., Chen, X., Zhang, C., Ma, W., Huang, C., Zhang, W.,
Mi, G., Miao, Y., Li, X., Gao, Q., Yang, J., Wang, Z., Ye, Y., Guo, S.,
Lu, J., Huang, J., Lv, S., Sun, Y., Liu, Y., Peng, X., Ren, J., Li, S.,
Deng, X., Shi, X., Zhang, Q., Yang, Z., Tang, L., Wei, C., Jia, L.,
Zhang, J., He, M., Tong, Y., Tang, Q., Zhong, X., Liu, Z., Cao, N., Kou,
C., Ying, H., Yin, Y., Jiao, X., Zhang, Q., Fan, M., Jiang, R., Zhang,
F., & Dou, Z. (2018). Pursuing sustainable productivity with millions
of smallholder farmers. Nature, 555 (7696), 363-366.
doi:10.1038/nature25785
de Wit, A. J. W., & van Diepen, C. A. (2007). Crop model data
assimilation with the Ensemble Kalman filter for improving regional crop
yield forecasts. Agricultural and Forest Meteorology, 146 , 38-56.
doi:10.1016/j.agrformet.2007.05.004
de Wit, C. T. (1965). Photosynthesis of leaf canopies Agricultural
Research Reports 663 (pp. 57): Pudoc, Wageningen.
de Wit, C. T., & Penning de Vries, F. W. T. (1985). Predictive models
in agricultural production. Philosophical Transactions of the
Royal Society of London. B, Biological Sciences, 310 , 309-315.
Dumont, B., Leemans, V., Mansouri, M., Bodson, B., Destain, J. P., &
Destain, M. F. (2014). Parameter identification of the STICS crop model,
using an accelerated formal MCMC approach. Environmental Modelling
& Software, 52 , 121-135. doi:10.1016/j.envsoft.2013.10.022
Evensen, G. (1994). Sequential data assimilation with a nonlinear
quasi‐geostrophic model using Monte Carlo methods to forecast error
statistics. Journal of Geophysical Research: Oceans, 99 ,
10143-10162.
Evensen, G. (2003). The Ensemble Kalman Filter: theoretical formulation
and practical implementation. Ocean Dynamics, 53 , 343-367.
doi:10.1007/s10236-003-0036-9
Fernández, C., & Steel, M. F. J. (1998). On Bayesian modeling of fat
tails and skewness. Journal of the american statistical
association, 93 , 359-371.
Gao, F., Anderson, M. C., Zhang, X., Yang, Z., Alfieri, J. G., Kustas,
W. P., Mueller, R., Johnson, D. M., & Prueger, J. H. (2017). Toward
mapping crop progress at field scales through fusion of Landsat and
MODIS imagery. Remote Sensing of Environment , 188, 9-25.
doi:10.1016/j.rse.2016.11.004
Gao, Y., Wallach, D., Hasegawa, T., Tang, L., Zhang, R., Asseng, S.,
Kahveci, T., Liu, L., He, J., & Hoogenboom, G. (2021). Evaluation of
crop model prediction and uncertainty using Bayesian parameter
estimation and Bayesian model averaging. Agricultural and Forest
Meteorology, 311 . doi:10.1016/j.agrformet.2021.108686
GCOS. (2011). Systematic observation requirements for satellite-based
data products for climate, 2011 update, supplemental details to the
satellite-based component of the Implementation plan for the global
observing system for climate in support of the UNFCCC (2010 update,
GCOS-154) (pp. 138).
Gettelman, A., Geer, A. J., Forbes, R. M., Carmichael, G. R., Feingold,
G., Posselt, D. J., Stephens, G. L., van den Heever, S. C., Varble, A.
C., & Zuidema, P. (2022). The future of Earth system prediction:
Advances in model-data fusion. Science Advances , 8, eabn3488.
doi:10.1126/sciadv.abn3488
Han, X., & Li, X. (2008). An evaluation of the nonlinear/non-Gaussian
filters for the sequential data assimilation. Remote Sensing of
Environment, 112 , 1434-1449. doi:10.1016/j.rse.2007.07.008
Hansen, J. W., & Jones, J. W. (2000). Scaling-up crop models for
climate variability applications. Agricultural Systems, 65 ,
43-72.
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains
and their applications. Biometrika, 57 , 97-109.
He, J., Jones, J. W., Graham, W. D., & Dukes, M. D. (2010). Influence
of likelihood function choice for estimating crop model parameters using
the generalized likelihood uncertainty estimation method.Agricultural Systems, 103 , 256-264.
doi:10.1016/j.agsy.2010.01.006
Houser, P. R., De Lannoy, G. J. M., & Walker, J. P. (2012). Hydrologic
data assimilation. Approaches to Managing Disaster–Assessing
Hazards, Emergencies and Disaster Impacts, edited by: Tiefenbacher, J ,
41-64.
Hu, S., Shi, L., Zha, Y., Williams, M., & Lin, L. (2017). Simultaneous
state-parameter estimation supports the evaluation of data assimilation
performance and measurement design for soil-water-atmosphere-plant
system. Journal of Hydrology, 555 , 812-831.
doi:10.1016/j.jhydrol.2017.10.061
Huang, J., Gómez-Dans, J. L., Huang, H., Ma, H., Wu, Q., Lewis, P. E.,
Liang, S., Chen, Z., Xue, J.-H., Wu, Y., Zhao, F., Wang, J., & Xie, X.
(2019). Assimilation of remote sensing into crop growth models: Current
status and perspectives. Agricultural and Forest Meteorology,
276-277 . doi:10.1016/j.agrformet.2019.06.008
Idso, S. B., Jackson, R. D., & Reginato, R. J. (1977). Remote-Sensing
of Crop Yields: Canopy temperature and albedo measurements have been
quantitatively correlated with final harvests of wheat. Science,
196 , 19-25.
Ines, A. V. M., Das, N. N., Hansen, J. W., & Njoku, E. G. (2013).
Assimilation of remotely sensed soil moisture and vegetation with a crop
simulation model for maize yield prediction. Remote Sensing of
Environment, 138 , 149-164. doi:10.1016/j.rse.2013.07.018
Jazwinski, A. H. (1970). Stochastic processes and filtering
theory : Academic Press.
Jin, X., Kumar, L., Li, Z., Feng, H., Xu, X., Yang, G., & Wang, J.
(2018). A review of data assimilation of remote sensing and crop models.European Journal of Agronomy, 92 , 141-152.
doi:10.1016/j.eja.2017.11.002
Johnson, D. M. (2014). An assessment of pre- and within-season remotely
sensed variables for forecasting corn and soybean yields in the United
States. Remote Sensing of Environment, 141 , 116-128.
doi:10.1016/j.rse.2013.10.027
Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W.
D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J., & Ritchie,
J. T. (2003). The DSSAT cropping system model. European Journal of
Agronomy, 18 , 235-265.
Kalnay, E., Li, H., Miyoshi, T., Yang, S.-C., & Ballabrera-Poy, J.
(2007). 4-D-Var or ensemble Kalman filter? Tellus A: Dynamic
Meteorology and Oceanography, 59 , 758-773.
doi:10.1111/j.1600-0870.2007.00261.x
Kang, Y., & Özdoğan, M. (2019). Field-level crop yield mapping with
Landsat using a hierarchical data assimilation approach. Remote
Sensing of Environment, 228 , 144-163. doi:10.1016/j.rse.2019.04.005
Katzfuss, M., Stroud, J. R., & Wikle, C. K. (2016). Understanding the
Ensemble Kalman Filter. The American Statistician, 70 , 350-357.
doi:10.1080/00031305.2016.1141709
Keating, B. A., Carberry, P. S., Hammer, G. L., Probert, M. E.,
Robertson, M. J., Holzworth, D., Huth, N. I., Hargreaves, J. N. G.,
Meinke, H., & Hochman, Z. (2003). An overview of APSIM, a model
designed for farming systems simulation. European Journal of
Agronomy, 18 , 267-288.
Kennedy, M. C., & O’Hagan, A. (2001). Bayesian calibration of computer
models. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 63 , 425-464.
Kivi, M. S., Blakely, B., Masters, M., Bernacchi, C. J., Miguez, F. E.,
& Dokoohaki, H. (2022). Development of a data-assimilation system to
forecast agricultural systems: A case study of constraining soil water
and soil nitrogen dynamics in the APSIM model. Science of the
Total Environment, 820 , 153192. doi:10.1016/j.scitotenv.2022.153192
Lobell, D. B., & Azzari, G. (2017). Satellite detection of rising maize
yield heterogeneity in the U.S. Midwest. Environmental Research
Letters, 12 , 014014. doi:10.1088/1748-9326/aa5371
Ma, J., Zheng, B., & He, Y. (2022). Applications of a Hyperspectral
Imaging System Used to Estimate Wheat Grain Protein: A Review.Frontiers in Plant Science, 13 , 837200.
doi:10.3389/fpls.2022.837200
Martínez-Ferrer, L., Moreno-Martínez, Á., Campos-Taberner, M.,
García-Haro, F. J., Muñoz-Marí, J., Running, S. W., Kimball, J.,
Clinton, N., & Camps-Valls, G. (2022). Quantifying uncertainty in high
resolution biophysical variable retrieval with machine learning.Remote Sensing of Environment , 280. doi:10.1016/j.rse.2022.113199
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., &
Teller, E. (1953). Equation of state calculations by fast computing
machines. The Journal of Chemical Physics, 21 , 1087-1092.
Monsi, M., & Saeki, T. (2005). On the factor light in plant communities
and its importance for matter production. Annals of Botany , 95,
549-567. doi:10.1093/aob/mci052
Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes
for machine learning (Vol. 2): MIT press Cambridge, MA.
Schoups, G., & Vrugt, J. A. (2010). A formal likelihood function for
parameter and predictive inference of hydrologic models with correlated,
heteroscedastic, and non‐Gaussian errors. Water Resources
Research, 46 , W10531. doi:10.1029/2009wr008933
Verrelst, J., Alonso, L., Rivera Caicedo, J. P., Moreno, J., &
Camps-Valls, G. (2013a). Gaussian Process Retrieval of Chlorophyll
Content From Imaging Spectroscopy Data. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 6 , 867-874.
doi:10.1109/jstars.2012.2222356
Verrelst, J., Malenovský, Z., Van der Tol, C., Camps-Valls, G.,
Gastellu-Etchegorry, J.-P., Lewis, P., North, P., & Moreno, J. (2019).
Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy
Data: A Review on Retrieval Methods. Surveys in Geophysics, 40 ,
589-629. doi:10.1007/s10712-018-9478-y
Verrelst, J., Muñoz, J., Alonso, L., Delegido, J., Rivera, J. P.,
Camps-Valls, G., & Moreno, J. (2012). Machine learning regression
algorithms for biophysical parameter retrieval: Opportunities for
Sentinel-2 and -3. Remote Sensing of Environment, 118 , 127-139.
doi:10.1016/j.rse.2011.11.002
Verrelst, J., Rivera, J. P., Gitelson, A., Delegido, J., Moreno, J., &
Camps-Valls, G. (2016). Spectral band selection for vegetation
properties retrieval using Gaussian processes regression.International Journal of Applied Earth Observation and
Geoinformation, 52 , 554-567. doi:10.1016/j.jag.2016.07.016
Verrelst, J., Rivera, J. P., Moreno, J., & Camps-Valls, G. (2013b).
Gaussian processes uncertainty estimates in experimental Sentinel-2 LAI
and leaf chlorophyll content retrieval. ISPRS Journal of
Photogrammetry and Remote Sensing, 86 , 157-167.
doi:10.1016/j.isprsjprs.2013.09.012
Vrugt, J. A., Diks, C. G. H., Gupta, H. V., Bouten, W., & Verstraten,
J. M. (2005). Improved treatment of uncertainty in hydrologic modeling:
Combining the strengths of global optimization and data assimilation.Water Resources Research, 41 , W01017. doi:10.1029/2004wr003059
Vrugt, J. A., Ter Braak, C. J. F., Diks, C. G. H., Robinson, B. A.,
Hyman, J. M., & Higdon, D. (2009a). Accelerating Markov chain Monte
Carlo simulation by differential evolution with self-adaptive randomized
subspace sampling. International journal of nonlinear sciences and
numerical simulation, 10 , 273-290.
Vrugt, J. A., ter Braak, C. J. F., Gupta, H. V., & Robinson, B. A.
(2009b). Equifinality of formal (DREAM) and informal (GLUE) Bayesian
approaches in hydrologic modeling? Stochastic Environmental
Research and Risk Assessment, 23 , 1011-1026.
doi:10.1007/s00477-008-0274-y
Wang, D., Rianti, W., Gálvez, F., van der Putten, P. E. L., Struik, P.
C., & Yin, X. (2022). Estimating photosynthetic parameter values of
rice, wheat, maize and sorghum to enable smart crop cultivation.Crop and Environment, 1 , 119-132. doi:10.1016/j.crope.2022.05.004
Wang, D., Struik, P. C., Liang, L., & Yin, X. (2023). Estimating leaf
and canopy nitrogen contents in major field crops across the growing
season from hyperspectral images using nonparametric regression.Computers and Electronics in Agriculture , under review.
Wang, Z., Townsend, P. A., Schweiger, A. K., Couture, J. J., Singh, A.,
Hobbie, S. E., & Cavender-Bares, J. (2019). Mapping foliar functional
traits and their uncertainties across three years in a grassland
experiment. Remote Sensing of Environment, 221 , 405-416.
doi:10.1016/j.rse.2018.11.016
Weiss, M., Jacob, F., & Duveiller, G. (2020). Remote sensing for
agricultural applications: A meta-review. Remote Sensing of
Environment, 236 . doi:10.1016/j.rse.2019.111402
Whitaker, J. S., & Hamill, T. M. (2012). Evaluating Methods to Account
for System Errors in Ensemble Data Assimilation. Monthly Weather
Review, 140 , 3078-3089. doi:10.1175/mwr-d-11-00276.1
Yin, X., Schapendonk, A., & Struik, P. C. (2019). Exploring the optimum
nitrogen partitioning to predict the acclimation of C3 leaf
photosynthesis to varying growth conditions. Journal of
Experimental Botany, 70 , 2435-2447. doi:10.1093/jxb/ery277
Yin, X., Schapendonk, A. H. C. M., Kropff, M. J., van Oijen, M., &
Bindraban, P. S. (2000). A generic equation for nitrogen-limited leaf
area index and its application in crop growth models for predicting leaf
senescence. Annals of Botany, 85 , 579-585.
Yin, X., & Struik, P. C. (2017). Can increased leaf photosynthesis be
converted into higher crop mass production? A simulation study for rice
using the crop model GECROS. Journal of Experimental Botany, 68 ,
2345-2360. doi:10.1093/jxb/erx085
Yin, X., & van Laar, H. H. (2005). Crop systems dynamics: an
ecophysiological simulation model for genotype-by-environment
interactions . Wageningen, the Netherlands: Wageningen Academic
Publishers.
Ying, Y., & Zhang, F. (2015). An adaptive covariance relaxation method
for ensemble data assimilation. Quarterly Journal of the Royal
Meteorological Society, 141 , 2898-2906. doi:10.1002/qj.2576
Zhang, T., Su, J., Liu, C., & Chen, W.-H. (2021a). State and parameter
estimation of the AquaCrop model for winter wheat using sensitivity
informed particle filter. Computers and Electronics in
Agriculture, 180 . doi:10.1016/j.compag.2020.105909
Zhang, Y., Walker, J. P., Pauwels, V. R. N., & Sadeh, Y. (2021b).
Assimilation of Wheat and Soil States into the APSIM-Wheat Crop Model: A
Case Study. Remote Sensing, 14 , 65. doi:10.3390/rs14010065
Zhang, Y., Walker, J. P., & Pauwels, V. R. N. (2022). Assimilation of
wheat and soil states for improved yield prediction: The APSIM-EnKF
framework. Agricultural Systems , 201.
doi:10.1016/j.agsy.2022.103456
Table 1. Basic information of initial soil conditions at the
experimental site.