References
Acevedo, M., Pixley, K., Zinyengere, N., Meng, S., Tufan, H., Cichy, K., Bizikova, L., Isaacs, K., Ghezzi-Kopel, K., & Porciello, J. (2020). A scoping review of adoption of climate-resilient crops by small-scale producers in low- and middle-income countries. Nature Plants , 6, 1231-1241. doi:10.1038/s41477-020-00783-z
Anderson, J. L., & Anderson, S. L. (1999). A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Monthly Weather Review, 127 , 2741-2758.
Baret, F., Houles, V., & Guerif, M. (2007). Quantification of plant stress using remote sensing observations and crop models: the case of nitrogen management. Journal of Experimental Botany, 58 , 869-880. doi:10.1093/jxb/erl231
Berger, K., Verrelst, J., Féret, J.-B., Hank, T., Wocher, M., Mauser, W., & Camps-Valls, G. (2020a). Retrieval of aboveground crop nitrogen content with a hybrid machine learning method. International Journal of Applied Earth Observation and Geoinformation, 92 , 102174. doi:10.1016/j.jag.2020.102174
Berger, K., Verrelst, J., Féret, J.-B., Wang, Z., Wocher, M., Strathmann, M., Danner, M., Mauser, W., & Hank, T. (2020b). Crop nitrogen monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions. Remote Sensing of Environment, 242 , 111758. doi:10.1016/j.rse.2020.111758
Beven, K., & Freer, J. (2001). Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. Journal of Hydrology, 249 , 11-29.
Beven, K. J., Smith, P. J., & Freer, J. E. (2008). So just why would a modeller choose to be incoherent? Journal of Hydrology, 354 , 15-32. doi:10.1016/j.jhydrol.2008.02.007
Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations.Journal of the Royal Statistical Society: Series B (Methodological), 26 , 211-243.
Box, G. E. P., & Tiao, G. C. X. (1973). Bayesian inference in statistical analysis . Reading, PA: Addison-Wesley.
Cai, C., Li, G., Di, L., Ding, Y., Fu, L., Guo, X., Struik, P. C., Pan, G., Li, H., Chen, W., Luo, W., & Yin, X. (2020). The acclimation of leaf photosynthesis of wheat and rice to seasonal temperature changes in T-FACE environments. Globe Change Biology, 26 , 539-556. doi:10.1111/gcb.14830
Carrassi, A., Bocquet, M., Bertino, L., & Evensen, G. (2018). Data assimilation in the geosciences: An overview of methods, issues, and perspectives. WIREs Climate Change , 9. doi:10.1002/wcc.535
Claverie, M., Demarez, V., Duchemin, B., Hagolle, O., Ducrot, D., Marais-Sicre, C., Dejoux, J.-F., Huc, M., Keravec, P., Béziat, P., Fieuzal, R., Ceschia, E., & Dedieu, G. (2012). Maize and sunflower biomass estimation in southwest France using high spatial and temporal resolution remote sensing data. Remote Sensing of Environment, 124 , 844-857. doi:10.1016/j.rse.2012.04.005
Cui, Z., Zhang, H., Chen, X., Zhang, C., Ma, W., Huang, C., Zhang, W., Mi, G., Miao, Y., Li, X., Gao, Q., Yang, J., Wang, Z., Ye, Y., Guo, S., Lu, J., Huang, J., Lv, S., Sun, Y., Liu, Y., Peng, X., Ren, J., Li, S., Deng, X., Shi, X., Zhang, Q., Yang, Z., Tang, L., Wei, C., Jia, L., Zhang, J., He, M., Tong, Y., Tang, Q., Zhong, X., Liu, Z., Cao, N., Kou, C., Ying, H., Yin, Y., Jiao, X., Zhang, Q., Fan, M., Jiang, R., Zhang, F., & Dou, Z. (2018). Pursuing sustainable productivity with millions of smallholder farmers. Nature, 555 (7696), 363-366. doi:10.1038/nature25785
de Wit, A. J. W., & van Diepen, C. A. (2007). Crop model data assimilation with the Ensemble Kalman filter for improving regional crop yield forecasts. Agricultural and Forest Meteorology, 146 , 38-56. doi:10.1016/j.agrformet.2007.05.004
de Wit, C. T. (1965). Photosynthesis of leaf canopies Agricultural Research Reports 663 (pp. 57): Pudoc, Wageningen.
de Wit, C. T., & Penning de Vries, F. W. T. (1985). Predictive models in agricultural production. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 310 , 309-315.
Dumont, B., Leemans, V., Mansouri, M., Bodson, B., Destain, J. P., & Destain, M. F. (2014). Parameter identification of the STICS crop model, using an accelerated formal MCMC approach. Environmental Modelling & Software, 52 , 121-135. doi:10.1016/j.envsoft.2013.10.022
Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics. Journal of Geophysical Research: Oceans, 99 , 10143-10162.
Evensen, G. (2003). The Ensemble Kalman Filter: theoretical formulation and practical implementation. Ocean Dynamics, 53 , 343-367. doi:10.1007/s10236-003-0036-9
Fernández, C., & Steel, M. F. J. (1998). On Bayesian modeling of fat tails and skewness. Journal of the american statistical association, 93 , 359-371.
Gao, F., Anderson, M. C., Zhang, X., Yang, Z., Alfieri, J. G., Kustas, W. P., Mueller, R., Johnson, D. M., & Prueger, J. H. (2017). Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sensing of Environment , 188, 9-25. doi:10.1016/j.rse.2016.11.004
Gao, Y., Wallach, D., Hasegawa, T., Tang, L., Zhang, R., Asseng, S., Kahveci, T., Liu, L., He, J., & Hoogenboom, G. (2021). Evaluation of crop model prediction and uncertainty using Bayesian parameter estimation and Bayesian model averaging. Agricultural and Forest Meteorology, 311 . doi:10.1016/j.agrformet.2021.108686
GCOS. (2011). Systematic observation requirements for satellite-based data products for climate, 2011 update, supplemental details to the satellite-based component of the Implementation plan for the global observing system for climate in support of the UNFCCC (2010 update, GCOS-154) (pp. 138).
Gettelman, A., Geer, A. J., Forbes, R. M., Carmichael, G. R., Feingold, G., Posselt, D. J., Stephens, G. L., van den Heever, S. C., Varble, A. C., & Zuidema, P. (2022). The future of Earth system prediction: Advances in model-data fusion. Science Advances , 8, eabn3488. doi:10.1126/sciadv.abn3488
Han, X., & Li, X. (2008). An evaluation of the nonlinear/non-Gaussian filters for the sequential data assimilation. Remote Sensing of Environment, 112 , 1434-1449. doi:10.1016/j.rse.2007.07.008
Hansen, J. W., & Jones, J. W. (2000). Scaling-up crop models for climate variability applications. Agricultural Systems, 65 , 43-72.
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57 , 97-109.
He, J., Jones, J. W., Graham, W. D., & Dukes, M. D. (2010). Influence of likelihood function choice for estimating crop model parameters using the generalized likelihood uncertainty estimation method.Agricultural Systems, 103 , 256-264. doi:10.1016/j.agsy.2010.01.006
Houser, P. R., De Lannoy, G. J. M., & Walker, J. P. (2012). Hydrologic data assimilation. Approaches to Managing Disaster–Assessing Hazards, Emergencies and Disaster Impacts, edited by: Tiefenbacher, J , 41-64.
Hu, S., Shi, L., Zha, Y., Williams, M., & Lin, L. (2017). Simultaneous state-parameter estimation supports the evaluation of data assimilation performance and measurement design for soil-water-atmosphere-plant system. Journal of Hydrology, 555 , 812-831. doi:10.1016/j.jhydrol.2017.10.061
Huang, J., Gómez-Dans, J. L., Huang, H., Ma, H., Wu, Q., Lewis, P. E., Liang, S., Chen, Z., Xue, J.-H., Wu, Y., Zhao, F., Wang, J., & Xie, X. (2019). Assimilation of remote sensing into crop growth models: Current status and perspectives. Agricultural and Forest Meteorology, 276-277 . doi:10.1016/j.agrformet.2019.06.008
Idso, S. B., Jackson, R. D., & Reginato, R. J. (1977). Remote-Sensing of Crop Yields: Canopy temperature and albedo measurements have been quantitatively correlated with final harvests of wheat. Science, 196 , 19-25.
Ines, A. V. M., Das, N. N., Hansen, J. W., & Njoku, E. G. (2013). Assimilation of remotely sensed soil moisture and vegetation with a crop simulation model for maize yield prediction. Remote Sensing of Environment, 138 , 149-164. doi:10.1016/j.rse.2013.07.018
Jazwinski, A. H. (1970). Stochastic processes and filtering theory : Academic Press.
Jin, X., Kumar, L., Li, Z., Feng, H., Xu, X., Yang, G., & Wang, J. (2018). A review of data assimilation of remote sensing and crop models.European Journal of Agronomy, 92 , 141-152. doi:10.1016/j.eja.2017.11.002
Johnson, D. M. (2014). An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. Remote Sensing of Environment, 141 , 116-128. doi:10.1016/j.rse.2013.10.027
Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J., & Ritchie, J. T. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18 , 235-265.
Kalnay, E., Li, H., Miyoshi, T., Yang, S.-C., & Ballabrera-Poy, J. (2007). 4-D-Var or ensemble Kalman filter? Tellus A: Dynamic Meteorology and Oceanography, 59 , 758-773. doi:10.1111/j.1600-0870.2007.00261.x
Kang, Y., & Özdoğan, M. (2019). Field-level crop yield mapping with Landsat using a hierarchical data assimilation approach. Remote Sensing of Environment, 228 , 144-163. doi:10.1016/j.rse.2019.04.005
Katzfuss, M., Stroud, J. R., & Wikle, C. K. (2016). Understanding the Ensemble Kalman Filter. The American Statistician, 70 , 350-357. doi:10.1080/00031305.2016.1141709
Keating, B. A., Carberry, P. S., Hammer, G. L., Probert, M. E., Robertson, M. J., Holzworth, D., Huth, N. I., Hargreaves, J. N. G., Meinke, H., & Hochman, Z. (2003). An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 18 , 267-288.
Kennedy, M. C., & O’Hagan, A. (2001). Bayesian calibration of computer models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63 , 425-464.
Kivi, M. S., Blakely, B., Masters, M., Bernacchi, C. J., Miguez, F. E., & Dokoohaki, H. (2022). Development of a data-assimilation system to forecast agricultural systems: A case study of constraining soil water and soil nitrogen dynamics in the APSIM model. Science of the Total Environment, 820 , 153192. doi:10.1016/j.scitotenv.2022.153192
Lobell, D. B., & Azzari, G. (2017). Satellite detection of rising maize yield heterogeneity in the U.S. Midwest. Environmental Research Letters, 12 , 014014. doi:10.1088/1748-9326/aa5371
Ma, J., Zheng, B., & He, Y. (2022). Applications of a Hyperspectral Imaging System Used to Estimate Wheat Grain Protein: A Review.Frontiers in Plant Science, 13 , 837200. doi:10.3389/fpls.2022.837200
Martínez-Ferrer, L., Moreno-Martínez, Á., Campos-Taberner, M., García-Haro, F. J., Muñoz-Marí, J., Running, S. W., Kimball, J., Clinton, N., & Camps-Valls, G. (2022). Quantifying uncertainty in high resolution biophysical variable retrieval with machine learning.Remote Sensing of Environment , 280. doi:10.1016/j.rse.2022.113199
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21 , 1087-1092.
Monsi, M., & Saeki, T. (2005). On the factor light in plant communities and its importance for matter production. Annals of Botany , 95, 549-567. doi:10.1093/aob/mci052
Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning (Vol. 2): MIT press Cambridge, MA.
Schoups, G., & Vrugt, J. A. (2010). A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non‐Gaussian errors. Water Resources Research, 46 , W10531. doi:10.1029/2009wr008933
Verrelst, J., Alonso, L., Rivera Caicedo, J. P., Moreno, J., & Camps-Valls, G. (2013a). Gaussian Process Retrieval of Chlorophyll Content From Imaging Spectroscopy Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6 , 867-874. doi:10.1109/jstars.2012.2222356
Verrelst, J., Malenovský, Z., Van der Tol, C., Camps-Valls, G., Gastellu-Etchegorry, J.-P., Lewis, P., North, P., & Moreno, J. (2019). Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods. Surveys in Geophysics, 40 , 589-629. doi:10.1007/s10712-018-9478-y
Verrelst, J., Muñoz, J., Alonso, L., Delegido, J., Rivera, J. P., Camps-Valls, G., & Moreno, J. (2012). Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3. Remote Sensing of Environment, 118 , 127-139. doi:10.1016/j.rse.2011.11.002
Verrelst, J., Rivera, J. P., Gitelson, A., Delegido, J., Moreno, J., & Camps-Valls, G. (2016). Spectral band selection for vegetation properties retrieval using Gaussian processes regression.International Journal of Applied Earth Observation and Geoinformation, 52 , 554-567. doi:10.1016/j.jag.2016.07.016
Verrelst, J., Rivera, J. P., Moreno, J., & Camps-Valls, G. (2013b). Gaussian processes uncertainty estimates in experimental Sentinel-2 LAI and leaf chlorophyll content retrieval. ISPRS Journal of Photogrammetry and Remote Sensing, 86 , 157-167. doi:10.1016/j.isprsjprs.2013.09.012
Vrugt, J. A., Diks, C. G. H., Gupta, H. V., Bouten, W., & Verstraten, J. M. (2005). Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation.Water Resources Research, 41 , W01017. doi:10.1029/2004wr003059
Vrugt, J. A., Ter Braak, C. J. F., Diks, C. G. H., Robinson, B. A., Hyman, J. M., & Higdon, D. (2009a). Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling. International journal of nonlinear sciences and numerical simulation, 10 , 273-290.
Vrugt, J. A., ter Braak, C. J. F., Gupta, H. V., & Robinson, B. A. (2009b). Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling? Stochastic Environmental Research and Risk Assessment, 23 , 1011-1026. doi:10.1007/s00477-008-0274-y
Wang, D., Rianti, W., Gálvez, F., van der Putten, P. E. L., Struik, P. C., & Yin, X. (2022). Estimating photosynthetic parameter values of rice, wheat, maize and sorghum to enable smart crop cultivation.Crop and Environment, 1 , 119-132. doi:10.1016/j.crope.2022.05.004
Wang, D., Struik, P. C., Liang, L., & Yin, X. (2023). Estimating leaf and canopy nitrogen contents in major field crops across the growing season from hyperspectral images using nonparametric regression.Computers and Electronics in Agriculture , under review.
Wang, Z., Townsend, P. A., Schweiger, A. K., Couture, J. J., Singh, A., Hobbie, S. E., & Cavender-Bares, J. (2019). Mapping foliar functional traits and their uncertainties across three years in a grassland experiment. Remote Sensing of Environment, 221 , 405-416. doi:10.1016/j.rse.2018.11.016
Weiss, M., Jacob, F., & Duveiller, G. (2020). Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment, 236 . doi:10.1016/j.rse.2019.111402
Whitaker, J. S., & Hamill, T. M. (2012). Evaluating Methods to Account for System Errors in Ensemble Data Assimilation. Monthly Weather Review, 140 , 3078-3089. doi:10.1175/mwr-d-11-00276.1
Yin, X., Schapendonk, A., & Struik, P. C. (2019). Exploring the optimum nitrogen partitioning to predict the acclimation of C3 leaf photosynthesis to varying growth conditions. Journal of Experimental Botany, 70 , 2435-2447. doi:10.1093/jxb/ery277
Yin, X., Schapendonk, A. H. C. M., Kropff, M. J., van Oijen, M., & Bindraban, P. S. (2000). A generic equation for nitrogen-limited leaf area index and its application in crop growth models for predicting leaf senescence. Annals of Botany, 85 , 579-585.
Yin, X., & Struik, P. C. (2017). Can increased leaf photosynthesis be converted into higher crop mass production? A simulation study for rice using the crop model GECROS. Journal of Experimental Botany, 68 , 2345-2360. doi:10.1093/jxb/erx085
Yin, X., & van Laar, H. H. (2005). Crop systems dynamics: an ecophysiological simulation model for genotype-by-environment interactions . Wageningen, the Netherlands: Wageningen Academic Publishers.
Ying, Y., & Zhang, F. (2015). An adaptive covariance relaxation method for ensemble data assimilation. Quarterly Journal of the Royal Meteorological Society, 141 , 2898-2906. doi:10.1002/qj.2576
Zhang, T., Su, J., Liu, C., & Chen, W.-H. (2021a). State and parameter estimation of the AquaCrop model for winter wheat using sensitivity informed particle filter. Computers and Electronics in Agriculture, 180 . doi:10.1016/j.compag.2020.105909
Zhang, Y., Walker, J. P., Pauwels, V. R. N., & Sadeh, Y. (2021b). Assimilation of Wheat and Soil States into the APSIM-Wheat Crop Model: A Case Study. Remote Sensing, 14 , 65. doi:10.3390/rs14010065
Zhang, Y., Walker, J. P., & Pauwels, V. R. N. (2022). Assimilation of wheat and soil states for improved yield prediction: The APSIM-EnKF framework. Agricultural Systems , 201. doi:10.1016/j.agsy.2022.103456
Table 1. Basic information of initial soil conditions at the experimental site.