
Page 1
Leveraging Key-Value NoSQL Databases for Enhanced Decision Support Systems:

A Comparative Analysis

SUMMARY REPORT

Chethiya Galkaduwa (CS/2017/008), Praveen Bhawantha (CS/2017/017)
Faculty of Computing and Technology, University of Kelaniya

Abstract

The implementation of a big data mart using NoSQL technologies, in particular the key-value store, is investigated in this
report. It examines the relationship between modern database management systems' benefits and traditional data
warehousing methods. Based on actual experience using the Oracle NoSQL Database, the process of going from conceptual
schema to logical models is detailed, and its benefits and drawbacks are noted.

Introduction

In today's data-driven economy, companies gather data
from various channels to gain a competitive edge and
achieve strategic goals. Traditional data warehousing
approaches need to be revised in handling significant data
volumes, leading to research into alternative database
systems like NoSQL. This report aims to improve
decision support systems by mapping conceptual models
to logical models, using three transformation patterns and
the TCP-H Benchmark to evaluate Read Request
Latency.[2]

Research on NoSQL databases has shifted towards
decision-making information systems and warehousing.
Studies propose multidimensional data warehouse
implementation using document-oriented databases and
introduce two other models. A columnar NoSQL data
warehousing benchmark is presented, but no
multidimensional schema is provided. Three approaches
use column-oriented NoSQL systems for effective data
warehouse implementation.

A study proposes a transformation approach for
implementing UML class diagrams in column-oriented
NoSQL databases. Two transformation rules are proposed
for instantiating data warehouses under column-oriented
and document-oriented models. Other research
contributions include formalizing logical data models and
using graph-oriented NoSQL databases for big data
warehouses. Key-value models are not widely studied in
NoSQL data warehousing solutions.

Methodology

I. Formalization

Formalization of the concept and the models enables
researchers and practitioners to establish clear and precise

representations of data marts, data warehouses, and
database management systems. Using NoSQL key-value
stores can break down into two parts,

A. Multidimensional schema

This is considered the core of the data mart architecture,
and this is widely used to build dimensional data marts
and data warehouses. Formally the MS is defined by,

FuncMS: F → {D1,..., Dm}, where:

F ∊ {F1,..., Fi}, a Fact instance {D1,...,Dm}⊂{D1,...,Dn},
m≺ n, a set of dimensions.

FuncMS, a function that links the fact with its associated
dimensions.

A fact contains the data to be analyzed, known as
measures, and maintains links to associated dimensions.
Its defined as a triplet (NF ,MF ,LF), where:

● NF is the Fact name.
● MF is a finite set of measures {m1 ,...,mn}

associated with aggregation functions.
● LF is a finite set of links to dimensions{l1,...,ln}

In data analysis, dimensions hold the descriptors that
provide measured context. They are made up of textual
values and hierarchies and can be flat or snowflake-like.
This can be shown as (ND,PD, HD)
ND is the dimension name.
PD = {p1,......,pi} a set of attributes called parameters.
HD = {h1,....,hj} a set of hierarchies.

The example demonstrates that Line Order is a fact having
dimensions such as Customer, Product, and Order Date
and measurements such as Quantity, Tax, and Discount.
When aggregating data, hierarchies are used to create a

Page 2
logical tree-like structure where each member has a single
parent and several children.

B. Key-value store

The mathematical notation for a key-value NoSQL
database model is introduced in this section. KV stands
for a collection of ordered pairs (K V) made up of distinct
keys and associated values.

KV ⊆ K х V = {(k,v) | k ∈ K ∧ v ∈ ∧ ∀ (q,w)

∈ K x V : k = q⇒ v = w}

The key in a key-value NoSQL database must be distinct,
and the structure and data type of the value are typically
unrestricted. Any type of content is acceptable, including
text, JSON documents, and even embedded key-value
pairs.
The notation formalization uses are as follows:

"{}" denotes a key-value pair and a nested record.
"⇒" symbol maps a key to its associated value.
"[]" denotes a value.

An illustration of its formalization is given by an example.
The schema for a "Person" key-value pair is shown, along
with a nested record called "Address" that contains
information on the person's name, city, address, and
country.

To create a huge data mart using NoSQL key-value stores,
future talks and changes will be built upon this
formalization of the key-value store.

II. Approach Review

The key-value NoSQL paradigm is used to suggest three
methods for instantiating a huge data mart: FLA, HLA,
and EHLA. These methods offer a table structure akin to
SQL on top of key-value storage. FLA optimizes queries
at the expense of storage size by storing fact and
dimensions in a single table. Facts and dimensions are
separated by HLA into different tables. By expanding
dimension tables to indicate hierarchical levels, EHLA
expands HLA. With Oracle NoSQL Database enabling
joins inside the same hierarchy, NoSQL join support is
dependent on the DBMS.

III. Transformation Rules

A data logical model can set up a big data warehouse
using a NoSQL key-value database. The models are
named as FLM, SHLM, and SnHLM, which aligns with
full data denormalization, star and snow normalization in

ROLAP techniques. To simplify the modeling process,
the multidimensional schema is restricted to a fact table.

LineOrder = { lineOrderKey ⇒ [quantity,status,discount] }
and one dimension table:
Supplier={lineOrderKey,supplierKey⇒
[name,address,nationName]}

The three techniques (FLM, SHLM, and SnHLM) and the
accompanying transformation patterns based on the
chosen formalization are described as follow,

A. FLM (Flat Logical Model)

Consists of a single two-dimensional array of data
elements, key-value data table defined by T(IdT ,AttT
,RT).

● IdT is the Fact key.
● AttT is a foreign key referencing a dimension key

or a measure.
● RT Set of nested records.

B. SHLM (Star Hierarchical Logical Model)

The SHLM is created by connecting the elements of the
multidimensional schema through parent/child
relationships. The transformation process from the
multidimensional schema to SHLM is as follow,

The fact is mapped to a key-value pair. A dimension is
mapped to a child key-value pair.

C. SnHLM (Snow Hierarchical Logical Model)

A tree-like structure is included in the model, which is an
extension of the star hierarchical logical model and
connects several dimensions to one another. Every table
in this model has a single parent, and in each parent fact
table's dimension child tables are duplicated; therefore,
data can be flexible and well-organized.

IV. Implementation

A. Experimental Overview

To evaluate query performance and storage consumption
in a NoSQL key-value database, two experiments were
carried out. The first experiment examined response time
and read request latency for various dimensions. Second
experiment to measure the storage space per logical
model using scale factor. These tests revealed information
about the system's query performance and storage
effectiveness.

Page 3
To evaluate the models three analytical queries are used.
These queries gradually include dimensions in their
computation.

B. Oracle NoSQL database

Oracle NoSQL Databases is a key-value database that
supports JSON, SQL-like table and key-value data types,
as well as parent-child join and aggregation operations.
Basic, Enterprise, and Community editions are all
accessible.

C. Environment setting

Data Generation:
To assess the performance of data modeling, data is
generated using a TCP-H benchmark.[3] Data is
generated using KoalaBench, which has been modified
for the meta data model. Data is generated by DBGen for
the project, which is accessible on GitHub. An import
function mentioned in the README file is used to load
JSON files into the Oracle NoSQL Database. [4]

Software Settings:
Experiments uses Oracle NoSQL database in Docker
engine with two setups: single node and expanded 3x1
cluster on Docker Swarm. Host machine: Intel Xeon
w3530, 8 GB

Experiments and Results

Experiments:

In Experiment 1, an Oracle NoSQL database and two
scale factors (sf=1 and sf=10) are used to measure query
execution time in a three-node cluster. The query
execution language is HiveQL. Below are the results.

FLM performs better since aggregations don't require any
joins, whereas SnHLM performs marginally worse than
SHLM because it requires more joins, especially when
scale factors are bigger.

Fig.1. Query response time (milliseconds)

In Experiment 2, the Oracle NoSQL database's storage
space allocation is examined. Due to data redundancy,
SnHLM consumes three times as much disk space as
SHLM and FLM. SnHLM requires 44.6 GB of storage
space, SHLM 15.3 GB, and FLM 14.88 GB for sf=10 (15
million records). FLM provides effective space
utilization, however its single table structure necessitates
upkeep.

Conclusion

This report explores the integration of a big data mart with
a NoSQL database. According to storage space and query
performance, three logical models which are FLM,
SHLM, and SnHLM were suggested and evaluated. FLM
displayed exceptional performance. Comparative
research and database conversions from relational to key-
value are among the future challenges.

References

[1] R. Kimball, “Kimball Dimensional Modeling Techniques,” pp. 1–24, 2013, doi: 10.1016/B978-0- 12-

411461-6.00009-5.

[2] TPC, “No Title,” Trans. Perform. Councli, “TPC Benchmarks” [Online], 2015.

[3] M. Chevalier, M. El Malki, A. Kopliku, O. Teste, and R. Tournier, “Un benchmark enrichi pour l’évaluation

des entrepôts de données noSQL volumineuses et variables,” Eda, 2017.

[4] A. KHALIL and M. BELAISSAOUI, “Benchmark generator for big data trend,” [Online]. Available:

https://github.com/khalilabdelhaq/BigData.git

