References
[1] Koob G.F., Volkow N.D. Neurocircuitry of
addiction [J]. Neuropsychopharmacology : official publication of the
American College of Neuropsychopharmacology, 2010, 35(1):
217-238.10.1038/npp.2009.110
[2] Degenhardt L., Grebely J., Stone J., Hickman M., Vickerman P.,
Marshall B.D.L., et al.Larney S. Global patterns of opioid use and
dependence: harms to populations, interventions, and future
action [J]. Lancet (London, England), 2019, 394(10208):
1560-1579.10.1016/s0140-6736(19)32229-9
[3] Schedlowski M., Pacheco-López G. The learned immune
response: Pavlov and beyond [J]. Brain, behavior, and immunity,
2010, 24(2): 176-185.10.1016/j.bbi.2009.08.007
[4] Allan S.M., Tyrrell P.J., Rothwell N.J. Interleukin-1 and
neuronal injury [J]. Nature reviews Immunology, 2005, 5(8):
629-640.10.1038/nri1664
[5] Rose-John S. Interleukin-6 Family Cytokines [J]. Cold
Spring Harbor perspectives in biology, 2018, 10(2):
10.1101/cshperspect.a028415
[6] Arend W.P., Palmer G., Gabay C. IL-1, IL-18, and IL-33
families of cytokines [J]. Immunological reviews, 2008, 223:
20-38.10.1111/j.1600-065X.2008.00624.x
[7] Dinarello C.A. Biologic basis for interleukin-1 in
disease [J]. Blood, 1996, 87(6): 2095-2147.
[8] Dinarello C.A. Interleukin-1 in the pathogenesis and
treatment of inflammatory diseases [J]. Blood, 2011, 117(14):
3720-3732.10.1182/blood-2010-07-273417
[9] Felderhoff-Mueser U., Schmidt O.I., Oberholzer A., Bührer C.,
Stahel P.F. IL-18: a key player in neuroinflammation and
neurodegeneration? [J]. Trends in neurosciences, 2005, 28(9):
487-493.10.1016/j.tins.2005.06.008
[10] Kölliker-Frers R., Udovin L., Otero-Losada M., Kobiec T.,
Herrera M.I., Palacios J., et al.Capani F. Neuroinflammation: An
Integrating Overview of Reactive-Neuroimmune Cell Interactions in Health
and Disease [J]. Mediators of inflammation, 2021, 2021:
9999146.10.1155/2021/9999146
[11] Volkow N.D., Michaelides M., Baler R. The Neuroscience of
Drug Reward and Addiction [J]. Physiol Rev, 2019, 99(4):
2115-2140.10.1152/physrev.00014.2018
[12] Wise R.A., Robble M.A. Dopamine and Addiction [J].
Annu Rev Psychol, 2020, 71: 79-106.10.1146/annurev-psych-010418-103337
[13] Wise R.A., Jordan C.J. Dopamine, behavior, and
addiction [J]. J Biomed Sci, 2021, 28(1):
83.10.1186/s12929-021-00779-7
[14] Volkow N.D., Morales M. The Brain on Drugs: From Reward
to Addiction [J]. Cell, 2015, 162(4):
712-725.10.1016/j.cell.2015.07.046
[15] Darcq E., Kieffer B.L. Opioid receptors: drivers to
addiction? [J]. Nature reviews Neuroscience, 2018, 19(8):
499-514.10.1038/s41583-018-0028-x
[16] Hutchinson M.R., Watkins L.R. Why is
neuroimmunopharmacology crucial for the future of addiction
research? [J]. Neuropharmacology, 2014, 76 Pt B(0 0):
218-227.10.1016/j.neuropharm.2013.05.039
[17] Beardsley P.M., Hauser K.F. Glial modulators as potential
treatments of psychostimulant abuse [J]. Advances in pharmacology
(San Diego, Calif), 2014, 69: 1-69.10.1016/b978-0-12-420118-7.00001-9
[18] Mandolesi G., Musella A., Gentile A., Grasselli G., Haji N.,
Sepman H., et al.Centonze D. Interleukin-1β alters glutamate
transmission at purkinje cell synapses in a mouse model of multiple
sclerosis [J]. The Journal of neuroscience : the official journal of
the Society for Neuroscience, 2013, 33(29):
12105-12121.10.1523/jneurosci.5369-12.2013
[19] Blanco A.M., Vallés S.L., Pascual M., Guerri C.Involvement of TLR4/type I IL-1 receptor signaling in the
induction of inflammatory mediators and cell death induced by ethanol in
cultured astrocytes [J]. Journal of immunology (Baltimore, Md :
1950), 2005, 175(10): 6893-6899.10.4049/jimmunol.175.10.6893
[20] Viviani B., Bartesaghi S., Gardoni F., Vezzani A., Behrens
M.M., Bartfai T., et al.Marinovich M. Interleukin-1beta enhances
NMDA receptor-mediated intracellular calcium increase through activation
of the Src family of kinases [J]. The Journal of neuroscience : the
official journal of the Society for Neuroscience, 2003, 23(25):
8692-8700.10.1523/jneurosci.23-25-08692.2003
[21] Liśkiewicz A., Przybyła M., Park M., Liśkiewicz D.,
Nowacka-Chmielewska M., Małecki A., et al.Toborek M.Methamphetamine-associated cognitive decline is attenuated by
neutralizing IL-1 signaling [J]. Brain, behavior, and immunity,
2019, 80: 247-254.10.1016/j.bbi.2019.03.016
[22] Shaerzadeh F., Streit W.J., Heysieattalab S., Khoshbouei H.Methamphetamine neurotoxicity, microglia, and
neuroinflammation [J]. Journal of neuroinflammation, 2018, 15(1):
341.10.1186/s12974-018-1385-0
[23] Paulus M.P., Stewart J.L. Neurobiology, Clinical
Presentation, and Treatment of Methamphetamine Use Disorder: A
Review [J]. JAMA psychiatry, 2020, 77(9):
959-966.10.1001/jamapsychiatry.2020.0246
[24] Shin E.J., Dang D.K., Tran T.V., Tran H.Q., Jeong J.H., Nah
S.Y., et al.Kim H.C. Current understanding of
methamphetamine-associated dopaminergic neurodegeneration and
psychotoxic behaviors [J]. Arch Pharm Res, 2017, 40(4):
403-428.10.1007/s12272-017-0897-y
[25] Luo H., Liu H.Z., Zhang W.W., Matsuda M., Lv N., Chen G., et
al.Zhang Y.Q. Interleukin-17 Regulates Neuron-Glial
Communications, Synaptic Transmission, and Neuropathic Pain after
Chemotherapy [J]. Cell Rep, 2019, 29(8):
2384-2397.e2385.10.1016/j.celrep.2019.10.085
[26] Avdic U., Chugh D., Osman H., Chapman K., Jackson J., Ekdahl
C.T. Absence of interleukin-1 receptor 1 increases excitatory and
inhibitory scaffolding protein expression and microglial activation in
the adult mouse hippocampus [J]. Cell Mol Immunol, 2015, 12(5):
645-647.10.1038/cmi.2014.87
[27] Gülke E., Gelderblom M., Magnus T. Danger signals in
stroke and their role on microglia activation after ischemia [J].
Therapeutic advances in neurological disorders, 2018, 11:
1756286418774254.10.1177/1756286418774254
[28] Wang D., Zhang S., Li L., Liu X., Mei K., Wang X.Structural insights into the assembly and activation of IL-1β with
its receptors [J]. Nature immunology, 2010, 11(10):
905-911.10.1038/ni.1925
[29] Thomas C., Bazan J.F., Garcia K.C. Structure of the
activating IL-1 receptor signaling complex [J]. Nature structural &
molecular biology, 2012, 19(4): 455-457.10.1038/nsmb.2260
[30] Hjorth M., Febbraio M.A. IL-1β delivers a sweet
deal [J]. Nature immunology, 2017, 18(3): 247-248.10.1038/ni.3681
[31] Green-Fulgham S.M., Ball J.B., Kwilasz A.J., Fabisiak T., Maier
S.F., Watkins L.R., Grace P.M. Oxycodone, fentanyl, and morphine
amplify established neuropathic pain in male rats [J]. Pain, 2019,
160(11): 2634-2640.10.1097/j.pain.0000000000001652
[32] Li C., Yan Y., Cheng J., Xiao G., Gu J., Zhang L., et al.Zhou
Y.D. Toll-Like Receptor 4 Deficiency Causes Reduced Exploratory
Behavior in Mice Under Approach-Avoidance Conflict [J]. Neurosci
Bull, 2016, 32(2): 127-136.10.1007/s12264-016-0015-z
[33] Liu Q., Xin W., He P., Turner D., Yin J., Gan Y., et al.Wu J.Interleukin-17 inhibits Adult Hippocampal Neurogenesis [J].
Scientific reports, 2014, 4(1): 7554.10.1038/srep07554
[34] Draisci G., Kajander K.C., Dubner R., Bennett G.J., Iadarola
M.J. Up-regulation of opioid gene expression in spinal cord evoked
by experimental nerve injuries and inflammation [J]. Brain research,
1991, 560(1-2): 186-192.10.1016/0006-8993(91)91231-o
[35] Wang X., Loram L.C., Ramos K., de Jesus A.J., Thomas J., Cheng
K., et al.Yin H. Morphine activates neuroinflammation in a manner
parallel to endotoxin [J]. Proceedings of the National Academy of
Sciences of the United States of America, 2012, 109(16):
6325-6330.10.1073/pnas.1200130109
[36] Liang Y., Chu H., Jiang Y., Yuan L. Morphine enhances
IL-1β release through toll-like receptor 4-mediated endocytic pathway in
microglia [J]. Purinergic signalling, 2016, 12(4):
637-645.10.1007/s11302-016-9525-4
[37] Chan Y.Y., Yang S.N., Lin J.C., Chang J.L., Lin J.G., Lo W.Y.Inflammatory response in heroin addicts undergoing methadone
maintenance treatment [J]. Psychiatry research, 2015, 226(1):
230-234.10.1016/j.psychres.2014.12.053
[38] Chen S.L., Lee S.Y., Tao P.L., Chang Y.H., Chen S.H., Chu C.H.,
et al.Lu R.B. Dextromethorphan attenuated inflammation and
combined opioid use in humans undergoing methadone maintenance
treatment [J]. Journal of neuroimmune pharmacology : the official
journal of the Society on NeuroImmune Pharmacology, 2012, 7(4):
1025-1033.10.1007/s11481-012-9400-1
[39] Garden G.A. Epigenetics and the modulation of
neuroinflammation [J]. Neurotherapeutics, 2013, 10(4):
782-788.10.1007/s13311-013-0207-4
[40] Zhang Z., Wu H., Peng Q., Xie Z., Chen F., Ma Y., et al.Wang K.Integration of Molecular Inflammatory Interactome Analyses Reveals
Dynamics of Circulating Cytokines and Extracellular Vesicle Long
Non-Coding RNAs and mRNAs in Heroin Addicts During Acute and Protracted
Withdrawal [J]. Frontiers in immunology, 2021, 12:
730300.10.3389/fimmu.2021.730300
[41] El-Hage N., Gurwell J.A., Singh I.N., Knapp P.E., Nath A.,
Hauser K.F. Synergistic increases in intracellular Ca2+, and the
release of MCP-1, RANTES, and IL-6 by astrocytes treated with opiates
and HIV-1 Tat [J]. Glia, 2005, 50(2): 91-106.10.1002/glia.20148
[42] Chivero E.T., Thangaraj A., Tripathi A., Periyasamy P., Guo
M.L., Buch S. NLRP3 Inflammasome Blockade Reduces Cocaine-Induced
Microglial Activation and Neuroinflammation [J]. Molecular
neurobiology, 2021, 58(5): 2215-2230.10.1007/s12035-020-02184-x
[43] Lynch M.A. Neuroinflammatory changes negatively impact on
LTP: A focus on IL-1β [J]. Brain research, 2015, 1621:
197-204.10.1016/j.brainres.2014.08.040
[44] Hutson L.W., Lebonville C.L., Jones M.E., Fuchs R.A., Lysle
D.T. Interleukin-1 signaling in the basolateral amygdala is
necessary for heroin-conditioned immunosuppression [J]. Brain,
behavior, and immunity, 2017, 62: 171-179.10.1016/j.bbi.2017.01.017
[45] Szczytkowski J.L., Lebonville C., Hutson L., Fuchs R.A., Lysle
D.T. Heroin-induced conditioned immunomodulation requires
expression of IL-1β in the dorsal hippocampus [J]. Brain, behavior,
and immunity, 2013, 30: 95-102.10.1016/j.bbi.2013.01.076
[46] Lebonville C.L., Jones M.E., Hutson L.W., Cooper L.B., Fuchs
R.A., Lysle D.T. Acquisition of heroin conditioned
immunosuppression requires IL-1 signaling in the dorsal
hippocampus [J]. Brain, behavior, and immunity, 2016, 56:
325-334.10.1016/j.bbi.2016.04.005
[47] Parekh S.V., Paniccia J.E., Lebonville C.L., Lysle D.T.Dorsal hippocampal interleukin-1 signaling mediates heroin
withdrawal-enhanced fear learning [J]. Psychopharmacology, 2020,
237(12): 3653-3664.10.1007/s00213-020-05645-2
[48] Laudenbach M., Baruffaldi F., Robinson C., Carter P., Seelig
D., Baehr C., Pravetoni M. Blocking interleukin-4 enhances
efficacy of vaccines for treatment of opioid abuse and prevention of
opioid overdose [J]. Scientific reports, 2018, 8(1):
5508.10.1038/s41598-018-23777-6
[49] Schwarz J.M., Hutchinson M.R., Bilbo S.D. Early-life
experience decreases drug-induced reinstatement of morphine CPP in
adulthood via microglial-specific epigenetic programming of
anti-inflammatory IL-10 expression [J]. J Neurosci, 2011, 31(49):
17835-17847.10.1523/jneurosci.3297-11.2011
[50] Jacobsen J.H., Watkins L.R., Hutchinson M.R. Discovery of
a novel site of opioid action at the innate immune pattern-recognition
receptor TLR4 and its role in addiction [J]. International review of
neurobiology, 2014, 118: 129-163.10.1016/b978-0-12-801284-0.00006-3
[51] Yu S., Zhu L., Shen Q., Bai X., Di X. Recent advances in
methamphetamine neurotoxicity mechanisms and its molecular
pathophysiology [J]. Behavioural neurology, 2015, 2015:
103969.10.1155/2015/103969
[52] Moszczynska A., Callan S.P. Molecular, Behavioral, and
Physiological Consequences of Methamphetamine Neurotoxicity:
Implications for Treatment [J]. The Journal of pharmacology and
experimental therapeutics, 2017, 362(3): 474-488.10.1124/jpet.116.238501
[53] Jayanthi S., Daiwile A.P., Cadet J.L. Neurotoxicity of
methamphetamine: Main effects and mechanisms [J]. Experimental
neurology, 2021, 344: 113795.10.1016/j.expneurol.2021.113795
[54] Wang B., Chen T., Xue L., Wang J., Jia Y., Li G., et al.Chen Y.Methamphetamine exacerbates neuroinflammatory response to
lipopolysaccharide by activating dopamine D1-like receptors [J].
International immunopharmacology, 2019, 73:
1-9.10.1016/j.intimp.2019.04.053
[55] Yang X., Zhao H., Liu X., Xie Q., Zhou X., Deng Q., Wang G.The Relationship Between Serum Cytokine Levels and the Degree of
Psychosis and Cognitive Impairment in Patients With
Methamphetamine-Associated Psychosis in Chinese Patients [J].
Frontiers in psychiatry, 2020, 11: 594766.10.3389/fpsyt.2020.594766
[56] Theodore S., Cass W.A., Maragos W.F. Involvement of
cytokines in human immunodeficiency virus-1 protein Tat and
methamphetamine interactions in the striatum [J]. Experimental
neurology, 2006, 199(2): 490-498.10.1016/j.expneurol.2006.01.009
[57] Keshavarzi S., Kermanshahi S., Karami L., Motaghinejad M.,
Motevalian M., Sadr S. Protective role of metformin against
methamphetamine induced anxiety, depression, cognition impairment and
neurodegeneration in rat: The role of CREB/BDNF and Akt/GSK3 signaling
pathways [J]. Neurotoxicology, 2019, 72:
74-84.10.1016/j.neuro.2019.02.004
[58] Wang X., Northcutt A.L., Cochran T.A., Zhang X., Fabisiak T.J.,
Haas M.E., et al.Watkins L.R. Methamphetamine Activates Toll-Like
Receptor 4 to Induce Central Immune Signaling within the Ventral
Tegmental Area and Contributes to Extracellular Dopamine Increase in the
Nucleus Accumbens Shell [J]. ACS chemical neuroscience, 2019, 10(8):
3622-3634.10.1021/acschemneuro.9b00225
[59] Urrutia A., Granado N., Gutierrez-Lopez M.D., Moratalla R.,
O’Shea E., Colado M.I. The JNK inhibitor, SP600125, potentiates
the glial response and cell death induced by methamphetamine in the
mouse striatum [J]. The international journal of
neuropsychopharmacology, 2014, 17(2): 235-246.10.1017/s1461145713000850
[60] Xu E., Liu J., Liu H., Wang X., Xiong H. Inflammasome
Activation by Methamphetamine Potentiates Lipopolysaccharide Stimulation
of IL-1β Production in Microglia [J]. Journal of neuroimmune
pharmacology : the official journal of the Society on NeuroImmune
Pharmacology, 2018, 13(2): 237-253.10.1007/s11481-018-9780-y
[61] Coelho-Santos V., Gonçalves J., Fontes-Ribeiro C., Silva A.P.Prevention of methamphetamine-induced microglial cell death by
TNF-α and IL-6 through activation of the JAK-STAT pathway [J].
Journal of neuroinflammation, 2012, 9: 103.10.1186/1742-2094-9-103
[62] Shah A., Silverstein P.S., Singh D.P., Kumar A.Involvement of metabotropic glutamate receptor 5, AKT/PI3K
signaling and NF-κB pathway in methamphetamine-mediated increase in IL-6
and IL-8 expression in astrocytes [J]. Journal of neuroinflammation,
2012, 9: 52.10.1186/1742-2094-9-52
[63] Du S.H., Zhang W., Yue X., Luo X.Q., Tan X.H., Liu C., et
al.Wang H. Role of CXCR1 and Interleukin-8 in
Methamphetamine-Induced Neuronal Apoptosis [J]. Frontiers in
cellular neuroscience, 2018, 12: 230.10.3389/fncel.2018.00230
[64] Lawson K.S., Prasad A., Groopman J.E. Methamphetamine
Enhances HIV-1 Replication in CD4(+) T-Cells via a Novel IL-1β
Auto-Regulatory Loop [J]. Frontiers in immunology, 2020, 11:
136.10.3389/fimmu.2020.00136
[65] Seminerio M.J., Robson M.J., McCurdy C.R., Matsumoto R.R.Sigma receptor antagonists attenuate acute methamphetamine-induced
hyperthermia by a mechanism independent of IL-1β mRNA expression in the
hypothalamus [J]. European journal of pharmacology, 2012, 691(1-3):
103-109.10.1016/j.ejphar.2012.07.029
[66] Gonçalves J., Martins T., Ferreira R., Milhazes N., Borges F.,
Ribeiro C.F., et al.Silva A.P. Methamphetamine-induced early
increase of IL-6 and TNF-alpha mRNA expression in the mouse
brain [J]. Annals of the New York Academy of Sciences, 2008, 1139:
103-111.10.1196/annals.1432.043
[67] Moratalla R., Khairnar A., Simola N., Granado N., García-Montes
J.R., Porceddu P.F., et al.Morelli M. Amphetamine-related drugs
neurotoxicity in humans and in experimental animals: Main
mechanisms [J]. Progress in neurobiology, 2017, 155:
149-170.10.1016/j.pneurobio.2015.09.011
[68] Limanaqi F., Busceti C.L., Celli R., Biagioni F., Fornai F.Autophagy as a gateway for the effects of methamphetamine: From
neurotransmitter release and synaptic plasticity to psychiatric and
neurodegenerative disorders [J]. Progress in neurobiology, 2021,
204: 102112.10.1016/j.pneurobio.2021.102112
[69] Tocharus J., Khonthun C., Chongthammakun S., Govitrapong P.Melatonin attenuates methamphetamine-induced overexpression of
pro-inflammatory cytokines in microglial cell lines [J]. Journal of
pineal research, 2010, 48(4): 347-352.10.1111/j.1600-079X.2010.00761.x
[70] Wen D., Hui R., Wang J., Shen X., Xie B., Gong M., et al.Ma C.Effects of Molecular Hydrogen on Methamphetamine-Induced
Neurotoxicity and Spatial Memory Impairment [J]. Frontiers in
pharmacology, 2019, 10: 823.10.3389/fphar.2019.00823
[71] Robson M.J., Turner R.C., Naser Z.J., McCurdy C.R., Huber J.D.,
Matsumoto R.R. SN79, a sigma receptor ligand, blocks
methamphetamine-induced microglial activation and cytokine
upregulation [J]. Experimental neurology, 2013, 247:
134-142.10.1016/j.expneurol.2013.04.009
[72] Yang L., Guo Y., Huang M., Wu X., Li X., Chen G., et al.Bai J.Thioredoxin-1 Protects Spinal Cord from Demyelination Induced by
Methamphetamine through Suppressing Endoplasmic Reticulum Stress and
Inflammation [J]. Frontiers in neurology, 2018, 9:
49.10.3389/fneur.2018.00049
[73] Wu X.L., Li X., Li Y., Kong L.P., Fang J.L., Zhou X.S., et
al.Bai J. The overexpression of Thioredoxin-1 suppressing
inflammation induced by methamphetamine in spleen [J]. Drug and
alcohol dependence, 2016, 159: 66-71.10.1016/j.drugalcdep.2015.11.021
[74] Xie X.L., He J.T., Wang Z.T., Xiao H.Q., Zhou W.T., Du S.H., et
al.Wang Q. Lactulose attenuates METH-induced neurotoxicity by
alleviating the impaired autophagy, stabilizing the perturbed
antioxidant system and suppressing apoptosis in rat striatum [J].
Toxicology letters, 2018, 289: 107-113.10.1016/j.toxlet.2018.03.015
[75] Xie X.L., Zhou W.T., Zhang K.K., Chen L.J., Wang Q.METH-Induced Neurotoxicity Is Alleviated by Lactulose Pretreatment
Through Suppressing Oxidative Stress and Neuroinflammation in Rat
Striatum [J]. Frontiers in neuroscience, 2018, 12:
802.10.3389/fnins.2018.00802
[76] Karimi-Haghighi S., Dargahi L., Haghparast A. Cannabidiol
modulates the expression of neuroinflammatory factors in stress- and
drug-induced reinstatement of methamphetamine in extinguished
rats [J]. Addiction biology, 2020, 25(2): e12740.10.1111/adb.12740
[77] Brown K.T., Levis S.C., O’Neill C.E., Northcutt A.L., Fabisiak
T.J., Watkins L.R., Bachtell R.K. Innate immune signaling in the
ventral tegmental area contributes to drug-primed reinstatement of
cocaine seeking [J]. Brain, behavior, and immunity, 2018, 67:
130-138.10.1016/j.bbi.2017.08.012
[78] Moreira F.P., Medeiros J.R., Lhullier A.C., Souza L.D., Jansen
K., Portela L.V., et al.Oses J.P. Cocaine abuse and effects in the
serum levels of cytokines IL-6 and IL-10 [J]. Drug and alcohol
dependence, 2016, 158: 181-185.10.1016/j.drugalcdep.2015.11.024
[79] Pianca T.G., Rosa R.L., Ceresér K.M.M., de Aguiar B.W., de
Abrahão R.C., Lazzari P.M., et al.Szobot C.M. Differences in
biomarkers of crack-cocaine adolescent users before/after
abstinence [J]. Drug and alcohol dependence, 2017, 177:
207-213.10.1016/j.drugalcdep.2017.03.043
[80] Pedraz M., Araos P., García-Marchena N., Serrano A.,
Romero-Sanchiz P., Suárez J., et al.Pavón F.J. Sex differences in
psychiatric comorbidity and plasma biomarkers for cocaine addiction in
abstinent cocaine-addicted subjects in outpatient settings [J].
Frontiers in psychiatry, 2015, 6: 17.10.3389/fpsyt.2015.00017
[81] Guo M.L., Liao K., Periyasamy P., Yang L., Cai Y., Callen S.E.,
Buch S. Cocaine-mediated microglial activation involves the ER
stress-autophagy axis [J]. Autophagy, 2015, 11(7):
995-1009.10.1080/15548627.2015.1052205
[82] Thangaraj A., Periyasamy P., Guo M.L., Chivero E.T., Callen S.,
Buch S. Mitigation of cocaine-mediated mitochondrial damage,
defective mitophagy and microglial activation by superoxide dismutase
mimetics [J]. Autophagy, 2020, 16(2):
289-312.10.1080/15548627.2019.1607686
[83] Zhu C., Tao H., Rong S., Xiao L., Li X., Jiang S., et al.Wang
F. Glucagon-Like Peptide-1 Analog Exendin-4 Ameliorates
Cocaine-Mediated Behavior by Inhibiting Toll-Like Receptor 4 Signaling
in Mice [J]. Frontiers in pharmacology, 2021, 12:
694476.10.3389/fphar.2021.694476
[84] Montesinos J., Castilla-Ortega E., Sánchez-Marín L.,
Montagud-Romero S., Araos P., Pedraz M., et al.Pavón F.J.Cocaine-induced changes in CX(3)CL1 and inflammatory signaling
pathways in the hippocampus: Association with IL1β [J].
Neuropharmacology, 2020, 162: 107840.10.1016/j.neuropharm.2019.107840
[85] Fields J.A., Swinton M.K., Montilla-Perez P., Ricciardelli E.,
Telese F. The Cannabinoid Receptor Agonist, WIN-55212-2,
Suppresses the Activation of Proinflammatory Genes Induced by
Interleukin 1 Beta in Human Astrocytes [J]. Cannabis and cannabinoid
research, 2022, 7(1): 78-92.10.1089/can.2020.0128
[86] El-Shamarka M.E., Sayed R.H., Assaf N., Zeidan H.M., Hashish
A.F. Combined neurotoxic effects of cannabis and nandrolone
decanoate in adolescent male rats [J]. Neurotoxicology, 2020, 76:
114-125.10.1016/j.neuro.2019.11.001
[87] Rizzo M.D., Crawford R.B., Bach A., Sermet S., Amalfitano A.,
Kaminski N.E. Δ(9)-Tetrahydrocannabinol Suppresses
Monocyte-Mediated Astrocyte Production of Monocyte Chemoattractant
Protein 1 and Interleukin-6 in a Toll-Like Receptor 7-Stimulated Human
Coculture [J]. The Journal of pharmacology and experimental
therapeutics, 2019, 371(1): 191-201.10.1124/jpet.119.260661
[88] Sermet S., Li J., Bach A., Crawford R.B., Kaminski N.E.Cannabidiol selectively modulates interleukin (IL)-1β and IL-6
production in toll-like receptor activated human peripheral blood
monocytes [J]. Toxicology, 2021, 464:
153016.10.1016/j.tox.2021.153016
[89] Henriquez J.E., Bach A.P., Matos-Fernandez K.M., Crawford R.B.,
Kaminski N.E. Δ(9)-Tetrahydrocannabinol (THC) Impairs CD8(+) T
Cell-Mediated Activation of Astrocytes [J]. Journal of neuroimmune
pharmacology : the official journal of the Society on NeuroImmune
Pharmacology, 2020, 15(4): 863-874.10.1007/s11481-020-09912-z