References
[1] Koob G.F., Volkow N.D. Neurocircuitry of addiction [J]. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 2010, 35(1): 217-238.10.1038/npp.2009.110
[2] Degenhardt L., Grebely J., Stone J., Hickman M., Vickerman P., Marshall B.D.L., et al.Larney S. Global patterns of opioid use and dependence: harms to populations, interventions, and future action [J]. Lancet (London, England), 2019, 394(10208): 1560-1579.10.1016/s0140-6736(19)32229-9
[3] Schedlowski M., Pacheco-López G. The learned immune response: Pavlov and beyond [J]. Brain, behavior, and immunity, 2010, 24(2): 176-185.10.1016/j.bbi.2009.08.007
[4] Allan S.M., Tyrrell P.J., Rothwell N.J. Interleukin-1 and neuronal injury [J]. Nature reviews Immunology, 2005, 5(8): 629-640.10.1038/nri1664
[5] Rose-John S. Interleukin-6 Family Cytokines [J]. Cold Spring Harbor perspectives in biology, 2018, 10(2): 10.1101/cshperspect.a028415
[6] Arend W.P., Palmer G., Gabay C. IL-1, IL-18, and IL-33 families of cytokines [J]. Immunological reviews, 2008, 223: 20-38.10.1111/j.1600-065X.2008.00624.x
[7] Dinarello C.A. Biologic basis for interleukin-1 in disease [J]. Blood, 1996, 87(6): 2095-2147.
[8] Dinarello C.A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases [J]. Blood, 2011, 117(14): 3720-3732.10.1182/blood-2010-07-273417
[9] Felderhoff-Mueser U., Schmidt O.I., Oberholzer A., Bührer C., Stahel P.F. IL-18: a key player in neuroinflammation and neurodegeneration? [J]. Trends in neurosciences, 2005, 28(9): 487-493.10.1016/j.tins.2005.06.008
[10] Kölliker-Frers R., Udovin L., Otero-Losada M., Kobiec T., Herrera M.I., Palacios J., et al.Capani F. Neuroinflammation: An Integrating Overview of Reactive-Neuroimmune Cell Interactions in Health and Disease [J]. Mediators of inflammation, 2021, 2021: 9999146.10.1155/2021/9999146
[11] Volkow N.D., Michaelides M., Baler R. The Neuroscience of Drug Reward and Addiction [J]. Physiol Rev, 2019, 99(4): 2115-2140.10.1152/physrev.00014.2018
[12] Wise R.A., Robble M.A. Dopamine and Addiction [J]. Annu Rev Psychol, 2020, 71: 79-106.10.1146/annurev-psych-010418-103337
[13] Wise R.A., Jordan C.J. Dopamine, behavior, and addiction [J]. J Biomed Sci, 2021, 28(1): 83.10.1186/s12929-021-00779-7
[14] Volkow N.D., Morales M. The Brain on Drugs: From Reward to Addiction [J]. Cell, 2015, 162(4): 712-725.10.1016/j.cell.2015.07.046
[15] Darcq E., Kieffer B.L. Opioid receptors: drivers to addiction? [J]. Nature reviews Neuroscience, 2018, 19(8): 499-514.10.1038/s41583-018-0028-x
[16] Hutchinson M.R., Watkins L.R. Why is neuroimmunopharmacology crucial for the future of addiction research? [J]. Neuropharmacology, 2014, 76 Pt B(0 0): 218-227.10.1016/j.neuropharm.2013.05.039
[17] Beardsley P.M., Hauser K.F. Glial modulators as potential treatments of psychostimulant abuse [J]. Advances in pharmacology (San Diego, Calif), 2014, 69: 1-69.10.1016/b978-0-12-420118-7.00001-9
[18] Mandolesi G., Musella A., Gentile A., Grasselli G., Haji N., Sepman H., et al.Centonze D. Interleukin-1β alters glutamate transmission at purkinje cell synapses in a mouse model of multiple sclerosis [J]. The Journal of neuroscience : the official journal of the Society for Neuroscience, 2013, 33(29): 12105-12121.10.1523/jneurosci.5369-12.2013
[19] Blanco A.M., Vallés S.L., Pascual M., Guerri C.Involvement of TLR4/type I IL-1 receptor signaling in the induction of inflammatory mediators and cell death induced by ethanol in cultured astrocytes [J]. Journal of immunology (Baltimore, Md : 1950), 2005, 175(10): 6893-6899.10.4049/jimmunol.175.10.6893
[20] Viviani B., Bartesaghi S., Gardoni F., Vezzani A., Behrens M.M., Bartfai T., et al.Marinovich M. Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases [J]. The Journal of neuroscience : the official journal of the Society for Neuroscience, 2003, 23(25): 8692-8700.10.1523/jneurosci.23-25-08692.2003
[21] Liśkiewicz A., Przybyła M., Park M., Liśkiewicz D., Nowacka-Chmielewska M., Małecki A., et al.Toborek M.Methamphetamine-associated cognitive decline is attenuated by neutralizing IL-1 signaling [J]. Brain, behavior, and immunity, 2019, 80: 247-254.10.1016/j.bbi.2019.03.016
[22] Shaerzadeh F., Streit W.J., Heysieattalab S., Khoshbouei H.Methamphetamine neurotoxicity, microglia, and neuroinflammation [J]. Journal of neuroinflammation, 2018, 15(1): 341.10.1186/s12974-018-1385-0
[23] Paulus M.P., Stewart J.L. Neurobiology, Clinical Presentation, and Treatment of Methamphetamine Use Disorder: A Review [J]. JAMA psychiatry, 2020, 77(9): 959-966.10.1001/jamapsychiatry.2020.0246
[24] Shin E.J., Dang D.K., Tran T.V., Tran H.Q., Jeong J.H., Nah S.Y., et al.Kim H.C. Current understanding of methamphetamine-associated dopaminergic neurodegeneration and psychotoxic behaviors [J]. Arch Pharm Res, 2017, 40(4): 403-428.10.1007/s12272-017-0897-y
[25] Luo H., Liu H.Z., Zhang W.W., Matsuda M., Lv N., Chen G., et al.Zhang Y.Q. Interleukin-17 Regulates Neuron-Glial Communications, Synaptic Transmission, and Neuropathic Pain after Chemotherapy [J]. Cell Rep, 2019, 29(8): 2384-2397.e2385.10.1016/j.celrep.2019.10.085
[26] Avdic U., Chugh D., Osman H., Chapman K., Jackson J., Ekdahl C.T. Absence of interleukin-1 receptor 1 increases excitatory and inhibitory scaffolding protein expression and microglial activation in the adult mouse hippocampus [J]. Cell Mol Immunol, 2015, 12(5): 645-647.10.1038/cmi.2014.87
[27] Gülke E., Gelderblom M., Magnus T. Danger signals in stroke and their role on microglia activation after ischemia [J]. Therapeutic advances in neurological disorders, 2018, 11: 1756286418774254.10.1177/1756286418774254
[28] Wang D., Zhang S., Li L., Liu X., Mei K., Wang X.Structural insights into the assembly and activation of IL-1β with its receptors [J]. Nature immunology, 2010, 11(10): 905-911.10.1038/ni.1925
[29] Thomas C., Bazan J.F., Garcia K.C. Structure of the activating IL-1 receptor signaling complex [J]. Nature structural & molecular biology, 2012, 19(4): 455-457.10.1038/nsmb.2260
[30] Hjorth M., Febbraio M.A. IL-1β delivers a sweet deal [J]. Nature immunology, 2017, 18(3): 247-248.10.1038/ni.3681
[31] Green-Fulgham S.M., Ball J.B., Kwilasz A.J., Fabisiak T., Maier S.F., Watkins L.R., Grace P.M. Oxycodone, fentanyl, and morphine amplify established neuropathic pain in male rats [J]. Pain, 2019, 160(11): 2634-2640.10.1097/j.pain.0000000000001652
[32] Li C., Yan Y., Cheng J., Xiao G., Gu J., Zhang L., et al.Zhou Y.D. Toll-Like Receptor 4 Deficiency Causes Reduced Exploratory Behavior in Mice Under Approach-Avoidance Conflict [J]. Neurosci Bull, 2016, 32(2): 127-136.10.1007/s12264-016-0015-z
[33] Liu Q., Xin W., He P., Turner D., Yin J., Gan Y., et al.Wu J.Interleukin-17 inhibits Adult Hippocampal Neurogenesis [J]. Scientific reports, 2014, 4(1): 7554.10.1038/srep07554
[34] Draisci G., Kajander K.C., Dubner R., Bennett G.J., Iadarola M.J. Up-regulation of opioid gene expression in spinal cord evoked by experimental nerve injuries and inflammation [J]. Brain research, 1991, 560(1-2): 186-192.10.1016/0006-8993(91)91231-o
[35] Wang X., Loram L.C., Ramos K., de Jesus A.J., Thomas J., Cheng K., et al.Yin H. Morphine activates neuroinflammation in a manner parallel to endotoxin [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): 6325-6330.10.1073/pnas.1200130109
[36] Liang Y., Chu H., Jiang Y., Yuan L. Morphine enhances IL-1β release through toll-like receptor 4-mediated endocytic pathway in microglia [J]. Purinergic signalling, 2016, 12(4): 637-645.10.1007/s11302-016-9525-4
[37] Chan Y.Y., Yang S.N., Lin J.C., Chang J.L., Lin J.G., Lo W.Y.Inflammatory response in heroin addicts undergoing methadone maintenance treatment [J]. Psychiatry research, 2015, 226(1): 230-234.10.1016/j.psychres.2014.12.053
[38] Chen S.L., Lee S.Y., Tao P.L., Chang Y.H., Chen S.H., Chu C.H., et al.Lu R.B. Dextromethorphan attenuated inflammation and combined opioid use in humans undergoing methadone maintenance treatment [J]. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology, 2012, 7(4): 1025-1033.10.1007/s11481-012-9400-1
[39] Garden G.A. Epigenetics and the modulation of neuroinflammation [J]. Neurotherapeutics, 2013, 10(4): 782-788.10.1007/s13311-013-0207-4
[40] Zhang Z., Wu H., Peng Q., Xie Z., Chen F., Ma Y., et al.Wang K.Integration of Molecular Inflammatory Interactome Analyses Reveals Dynamics of Circulating Cytokines and Extracellular Vesicle Long Non-Coding RNAs and mRNAs in Heroin Addicts During Acute and Protracted Withdrawal [J]. Frontiers in immunology, 2021, 12: 730300.10.3389/fimmu.2021.730300
[41] El-Hage N., Gurwell J.A., Singh I.N., Knapp P.E., Nath A., Hauser K.F. Synergistic increases in intracellular Ca2+, and the release of MCP-1, RANTES, and IL-6 by astrocytes treated with opiates and HIV-1 Tat [J]. Glia, 2005, 50(2): 91-106.10.1002/glia.20148
[42] Chivero E.T., Thangaraj A., Tripathi A., Periyasamy P., Guo M.L., Buch S. NLRP3 Inflammasome Blockade Reduces Cocaine-Induced Microglial Activation and Neuroinflammation [J]. Molecular neurobiology, 2021, 58(5): 2215-2230.10.1007/s12035-020-02184-x
[43] Lynch M.A. Neuroinflammatory changes negatively impact on LTP: A focus on IL-1β [J]. Brain research, 2015, 1621: 197-204.10.1016/j.brainres.2014.08.040
[44] Hutson L.W., Lebonville C.L., Jones M.E., Fuchs R.A., Lysle D.T. Interleukin-1 signaling in the basolateral amygdala is necessary for heroin-conditioned immunosuppression [J]. Brain, behavior, and immunity, 2017, 62: 171-179.10.1016/j.bbi.2017.01.017
[45] Szczytkowski J.L., Lebonville C., Hutson L., Fuchs R.A., Lysle D.T. Heroin-induced conditioned immunomodulation requires expression of IL-1β in the dorsal hippocampus [J]. Brain, behavior, and immunity, 2013, 30: 95-102.10.1016/j.bbi.2013.01.076
[46] Lebonville C.L., Jones M.E., Hutson L.W., Cooper L.B., Fuchs R.A., Lysle D.T. Acquisition of heroin conditioned immunosuppression requires IL-1 signaling in the dorsal hippocampus [J]. Brain, behavior, and immunity, 2016, 56: 325-334.10.1016/j.bbi.2016.04.005
[47] Parekh S.V., Paniccia J.E., Lebonville C.L., Lysle D.T.Dorsal hippocampal interleukin-1 signaling mediates heroin withdrawal-enhanced fear learning [J]. Psychopharmacology, 2020, 237(12): 3653-3664.10.1007/s00213-020-05645-2
[48] Laudenbach M., Baruffaldi F., Robinson C., Carter P., Seelig D., Baehr C., Pravetoni M. Blocking interleukin-4 enhances efficacy of vaccines for treatment of opioid abuse and prevention of opioid overdose [J]. Scientific reports, 2018, 8(1): 5508.10.1038/s41598-018-23777-6
[49] Schwarz J.M., Hutchinson M.R., Bilbo S.D. Early-life experience decreases drug-induced reinstatement of morphine CPP in adulthood via microglial-specific epigenetic programming of anti-inflammatory IL-10 expression [J]. J Neurosci, 2011, 31(49): 17835-17847.10.1523/jneurosci.3297-11.2011
[50] Jacobsen J.H., Watkins L.R., Hutchinson M.R. Discovery of a novel site of opioid action at the innate immune pattern-recognition receptor TLR4 and its role in addiction [J]. International review of neurobiology, 2014, 118: 129-163.10.1016/b978-0-12-801284-0.00006-3
[51] Yu S., Zhu L., Shen Q., Bai X., Di X. Recent advances in methamphetamine neurotoxicity mechanisms and its molecular pathophysiology [J]. Behavioural neurology, 2015, 2015: 103969.10.1155/2015/103969
[52] Moszczynska A., Callan S.P. Molecular, Behavioral, and Physiological Consequences of Methamphetamine Neurotoxicity: Implications for Treatment [J]. The Journal of pharmacology and experimental therapeutics, 2017, 362(3): 474-488.10.1124/jpet.116.238501
[53] Jayanthi S., Daiwile A.P., Cadet J.L. Neurotoxicity of methamphetamine: Main effects and mechanisms [J]. Experimental neurology, 2021, 344: 113795.10.1016/j.expneurol.2021.113795
[54] Wang B., Chen T., Xue L., Wang J., Jia Y., Li G., et al.Chen Y.Methamphetamine exacerbates neuroinflammatory response to lipopolysaccharide by activating dopamine D1-like receptors [J]. International immunopharmacology, 2019, 73: 1-9.10.1016/j.intimp.2019.04.053
[55] Yang X., Zhao H., Liu X., Xie Q., Zhou X., Deng Q., Wang G.The Relationship Between Serum Cytokine Levels and the Degree of Psychosis and Cognitive Impairment in Patients With Methamphetamine-Associated Psychosis in Chinese Patients [J]. Frontiers in psychiatry, 2020, 11: 594766.10.3389/fpsyt.2020.594766
[56] Theodore S., Cass W.A., Maragos W.F. Involvement of cytokines in human immunodeficiency virus-1 protein Tat and methamphetamine interactions in the striatum [J]. Experimental neurology, 2006, 199(2): 490-498.10.1016/j.expneurol.2006.01.009
[57] Keshavarzi S., Kermanshahi S., Karami L., Motaghinejad M., Motevalian M., Sadr S. Protective role of metformin against methamphetamine induced anxiety, depression, cognition impairment and neurodegeneration in rat: The role of CREB/BDNF and Akt/GSK3 signaling pathways [J]. Neurotoxicology, 2019, 72: 74-84.10.1016/j.neuro.2019.02.004
[58] Wang X., Northcutt A.L., Cochran T.A., Zhang X., Fabisiak T.J., Haas M.E., et al.Watkins L.R. Methamphetamine Activates Toll-Like Receptor 4 to Induce Central Immune Signaling within the Ventral Tegmental Area and Contributes to Extracellular Dopamine Increase in the Nucleus Accumbens Shell [J]. ACS chemical neuroscience, 2019, 10(8): 3622-3634.10.1021/acschemneuro.9b00225
[59] Urrutia A., Granado N., Gutierrez-Lopez M.D., Moratalla R., O’Shea E., Colado M.I. The JNK inhibitor, SP600125, potentiates the glial response and cell death induced by methamphetamine in the mouse striatum [J]. The international journal of neuropsychopharmacology, 2014, 17(2): 235-246.10.1017/s1461145713000850
[60] Xu E., Liu J., Liu H., Wang X., Xiong H. Inflammasome Activation by Methamphetamine Potentiates Lipopolysaccharide Stimulation of IL-1β Production in Microglia [J]. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology, 2018, 13(2): 237-253.10.1007/s11481-018-9780-y
[61] Coelho-Santos V., Gonçalves J., Fontes-Ribeiro C., Silva A.P.Prevention of methamphetamine-induced microglial cell death by TNF-α and IL-6 through activation of the JAK-STAT pathway [J]. Journal of neuroinflammation, 2012, 9: 103.10.1186/1742-2094-9-103
[62] Shah A., Silverstein P.S., Singh D.P., Kumar A.Involvement of metabotropic glutamate receptor 5, AKT/PI3K signaling and NF-κB pathway in methamphetamine-mediated increase in IL-6 and IL-8 expression in astrocytes [J]. Journal of neuroinflammation, 2012, 9: 52.10.1186/1742-2094-9-52
[63] Du S.H., Zhang W., Yue X., Luo X.Q., Tan X.H., Liu C., et al.Wang H. Role of CXCR1 and Interleukin-8 in Methamphetamine-Induced Neuronal Apoptosis [J]. Frontiers in cellular neuroscience, 2018, 12: 230.10.3389/fncel.2018.00230
[64] Lawson K.S., Prasad A., Groopman J.E. Methamphetamine Enhances HIV-1 Replication in CD4(+) T-Cells via a Novel IL-1β Auto-Regulatory Loop [J]. Frontiers in immunology, 2020, 11: 136.10.3389/fimmu.2020.00136
[65] Seminerio M.J., Robson M.J., McCurdy C.R., Matsumoto R.R.Sigma receptor antagonists attenuate acute methamphetamine-induced hyperthermia by a mechanism independent of IL-1β mRNA expression in the hypothalamus [J]. European journal of pharmacology, 2012, 691(1-3): 103-109.10.1016/j.ejphar.2012.07.029
[66] Gonçalves J., Martins T., Ferreira R., Milhazes N., Borges F., Ribeiro C.F., et al.Silva A.P. Methamphetamine-induced early increase of IL-6 and TNF-alpha mRNA expression in the mouse brain [J]. Annals of the New York Academy of Sciences, 2008, 1139: 103-111.10.1196/annals.1432.043
[67] Moratalla R., Khairnar A., Simola N., Granado N., García-Montes J.R., Porceddu P.F., et al.Morelli M. Amphetamine-related drugs neurotoxicity in humans and in experimental animals: Main mechanisms [J]. Progress in neurobiology, 2017, 155: 149-170.10.1016/j.pneurobio.2015.09.011
[68] Limanaqi F., Busceti C.L., Celli R., Biagioni F., Fornai F.Autophagy as a gateway for the effects of methamphetamine: From neurotransmitter release and synaptic plasticity to psychiatric and neurodegenerative disorders [J]. Progress in neurobiology, 2021, 204: 102112.10.1016/j.pneurobio.2021.102112
[69] Tocharus J., Khonthun C., Chongthammakun S., Govitrapong P.Melatonin attenuates methamphetamine-induced overexpression of pro-inflammatory cytokines in microglial cell lines [J]. Journal of pineal research, 2010, 48(4): 347-352.10.1111/j.1600-079X.2010.00761.x
[70] Wen D., Hui R., Wang J., Shen X., Xie B., Gong M., et al.Ma C.Effects of Molecular Hydrogen on Methamphetamine-Induced Neurotoxicity and Spatial Memory Impairment [J]. Frontiers in pharmacology, 2019, 10: 823.10.3389/fphar.2019.00823
[71] Robson M.J., Turner R.C., Naser Z.J., McCurdy C.R., Huber J.D., Matsumoto R.R. SN79, a sigma receptor ligand, blocks methamphetamine-induced microglial activation and cytokine upregulation [J]. Experimental neurology, 2013, 247: 134-142.10.1016/j.expneurol.2013.04.009
[72] Yang L., Guo Y., Huang M., Wu X., Li X., Chen G., et al.Bai J.Thioredoxin-1 Protects Spinal Cord from Demyelination Induced by Methamphetamine through Suppressing Endoplasmic Reticulum Stress and Inflammation [J]. Frontiers in neurology, 2018, 9: 49.10.3389/fneur.2018.00049
[73] Wu X.L., Li X., Li Y., Kong L.P., Fang J.L., Zhou X.S., et al.Bai J. The overexpression of Thioredoxin-1 suppressing inflammation induced by methamphetamine in spleen [J]. Drug and alcohol dependence, 2016, 159: 66-71.10.1016/j.drugalcdep.2015.11.021
[74] Xie X.L., He J.T., Wang Z.T., Xiao H.Q., Zhou W.T., Du S.H., et al.Wang Q. Lactulose attenuates METH-induced neurotoxicity by alleviating the impaired autophagy, stabilizing the perturbed antioxidant system and suppressing apoptosis in rat striatum [J]. Toxicology letters, 2018, 289: 107-113.10.1016/j.toxlet.2018.03.015
[75] Xie X.L., Zhou W.T., Zhang K.K., Chen L.J., Wang Q.METH-Induced Neurotoxicity Is Alleviated by Lactulose Pretreatment Through Suppressing Oxidative Stress and Neuroinflammation in Rat Striatum [J]. Frontiers in neuroscience, 2018, 12: 802.10.3389/fnins.2018.00802
[76] Karimi-Haghighi S., Dargahi L., Haghparast A. Cannabidiol modulates the expression of neuroinflammatory factors in stress- and drug-induced reinstatement of methamphetamine in extinguished rats [J]. Addiction biology, 2020, 25(2): e12740.10.1111/adb.12740
[77] Brown K.T., Levis S.C., O’Neill C.E., Northcutt A.L., Fabisiak T.J., Watkins L.R., Bachtell R.K. Innate immune signaling in the ventral tegmental area contributes to drug-primed reinstatement of cocaine seeking [J]. Brain, behavior, and immunity, 2018, 67: 130-138.10.1016/j.bbi.2017.08.012
[78] Moreira F.P., Medeiros J.R., Lhullier A.C., Souza L.D., Jansen K., Portela L.V., et al.Oses J.P. Cocaine abuse and effects in the serum levels of cytokines IL-6 and IL-10 [J]. Drug and alcohol dependence, 2016, 158: 181-185.10.1016/j.drugalcdep.2015.11.024
[79] Pianca T.G., Rosa R.L., Ceresér K.M.M., de Aguiar B.W., de Abrahão R.C., Lazzari P.M., et al.Szobot C.M. Differences in biomarkers of crack-cocaine adolescent users before/after abstinence [J]. Drug and alcohol dependence, 2017, 177: 207-213.10.1016/j.drugalcdep.2017.03.043
[80] Pedraz M., Araos P., García-Marchena N., Serrano A., Romero-Sanchiz P., Suárez J., et al.Pavón F.J. Sex differences in psychiatric comorbidity and plasma biomarkers for cocaine addiction in abstinent cocaine-addicted subjects in outpatient settings [J]. Frontiers in psychiatry, 2015, 6: 17.10.3389/fpsyt.2015.00017
[81] Guo M.L., Liao K., Periyasamy P., Yang L., Cai Y., Callen S.E., Buch S. Cocaine-mediated microglial activation involves the ER stress-autophagy axis [J]. Autophagy, 2015, 11(7): 995-1009.10.1080/15548627.2015.1052205
[82] Thangaraj A., Periyasamy P., Guo M.L., Chivero E.T., Callen S., Buch S. Mitigation of cocaine-mediated mitochondrial damage, defective mitophagy and microglial activation by superoxide dismutase mimetics [J]. Autophagy, 2020, 16(2): 289-312.10.1080/15548627.2019.1607686
[83] Zhu C., Tao H., Rong S., Xiao L., Li X., Jiang S., et al.Wang F. Glucagon-Like Peptide-1 Analog Exendin-4 Ameliorates Cocaine-Mediated Behavior by Inhibiting Toll-Like Receptor 4 Signaling in Mice [J]. Frontiers in pharmacology, 2021, 12: 694476.10.3389/fphar.2021.694476
[84] Montesinos J., Castilla-Ortega E., Sánchez-Marín L., Montagud-Romero S., Araos P., Pedraz M., et al.Pavón F.J.Cocaine-induced changes in CX(3)CL1 and inflammatory signaling pathways in the hippocampus: Association with IL1β [J]. Neuropharmacology, 2020, 162: 107840.10.1016/j.neuropharm.2019.107840
[85] Fields J.A., Swinton M.K., Montilla-Perez P., Ricciardelli E., Telese F. The Cannabinoid Receptor Agonist, WIN-55212-2, Suppresses the Activation of Proinflammatory Genes Induced by Interleukin 1 Beta in Human Astrocytes [J]. Cannabis and cannabinoid research, 2022, 7(1): 78-92.10.1089/can.2020.0128
[86] El-Shamarka M.E., Sayed R.H., Assaf N., Zeidan H.M., Hashish A.F. Combined neurotoxic effects of cannabis and nandrolone decanoate in adolescent male rats [J]. Neurotoxicology, 2020, 76: 114-125.10.1016/j.neuro.2019.11.001
[87] Rizzo M.D., Crawford R.B., Bach A., Sermet S., Amalfitano A., Kaminski N.E. Δ(9)-Tetrahydrocannabinol Suppresses Monocyte-Mediated Astrocyte Production of Monocyte Chemoattractant Protein 1 and Interleukin-6 in a Toll-Like Receptor 7-Stimulated Human Coculture [J]. The Journal of pharmacology and experimental therapeutics, 2019, 371(1): 191-201.10.1124/jpet.119.260661
[88] Sermet S., Li J., Bach A., Crawford R.B., Kaminski N.E.Cannabidiol selectively modulates interleukin (IL)-1β and IL-6 production in toll-like receptor activated human peripheral blood monocytes [J]. Toxicology, 2021, 464: 153016.10.1016/j.tox.2021.153016
[89] Henriquez J.E., Bach A.P., Matos-Fernandez K.M., Crawford R.B., Kaminski N.E. Δ(9)-Tetrahydrocannabinol (THC) Impairs CD8(+) T Cell-Mediated Activation of Astrocytes [J]. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology, 2020, 15(4): 863-874.10.1007/s11481-020-09912-z