References
Berendsen, H. J. C., Postma, J. P. M., Gunsteren, W. F. van, DiNola, A.,
& Haak, J. R. (1984). Molecular dynamics with coupling to an external
bath. The Journal of Chemical Physics , 81 (8), 3684–3690.
Bringans, S., Eriksen, S., Kendrick, T., Gopalakrishnakone, P., Livk,
A., Lock, R., & Lipscombe, R. (2008). Proteomic analysis of the venom
of Heterometrus longimanus (Asian black scorpion). Proteomics ,8 (5), 1081–1096.
Case, D., Aktulga, H., Belfon, K., Ben-Shalom, I., Brozell, S., Cerutti,
D., Cheatham, III, T., & Cisneros, G. (2021). Amber 2021 .
University of California, San Francisco.
Castro, F., Cardoso, A. P., Gonçalves, R. M., Serre, K., & Oliveira, M.
J. (2018). Interferon-Gamma at the Crossroads of Tumor Immune
Surveillance or Evasion. Frontiers in Immunology , 9 , 847.
Fabbi, M., Carbotti, G., & Ferrini, S. (2015). Context-dependent role
of IL-18 in cancer biology and counter-regulation by IL-18BP.Journal of Leukocyte Biology , 97 (4), 665–675.
Fatima, U., Singh, B., Subramanian, K., & Guptasarma, P. (2012).
Insufficient (Sub-native) Helix Content in Soluble/Solid Aggregates of
Recombinant and Engineered Forms of IL-2 Throws Light on How Aggregated
IL-2 is Biologically Active. The Protein Journal , 31 (7),
529–543.
Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular
dynamics. Journal of Molecular Graphics , 14 (1), 33–38,
27–28.
Karpusas, M., Nolte, M., Benton, C. B., Meier, W., Lipscomb, W. N., &
Goelz, S. (1997). The crystal structure of human interferon beta at
2.2-A resolution. Proceedings of the National Academy of Sciences
of the United States of America , 94 (22), 11813–11818.
Kato, Z., Jee, J., Shikano, H., Mishima, M., Ohki, I., Ohnishi, H., Li,
A., Hashimoto, K., Matsukuma, E., Omoya, K., Yamamoto, Y., Yoneda, T.,
Hara, T., Kondo, N., & Shirakawa, M. (2003). The structure and binding
mode of interleukin-18. Nature Structural Biology , 10 (11),
966–971.
Kim, S. H., Azam, T., Yoon, D. Y., Reznikov, L. L., Novick, D.,
Rubinstein, M., & Dinarello, C. A. (2001). Site-specific mutations in
the mature form of human IL-18 with enhanced biological activity and
decreased neutralization by IL-18 binding protein. Proceedings of
the National Academy of Sciences of the United States of America ,98 (6), 3304–3309.
Kim, S.-H., Azam, T., Novick, D., Yoon, D.-Y., Reznikov, L. L., Bufler,
P., Rubinstein, M., & Dinarello, C. A. (2002). Identification of amino
acid residues critical for biological activity in human interleukin-18.The Journal of Biological Chemistry , 277 (13),
10998–11003.
Krishnan, S., Chi, E. Y., Webb, J. N., Chang, B. S., Shan, D.,
Goldenberg, M., Manning, M. C., Randolph, T. W., & Carpenter, J. F.
(2002). Aggregation of granulocyte colony stimulating factor under
physiological conditions: Characterization and thermodynamic inhibition.Biochemistry , 41 (20), 6422–6431.
Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the
hydropathic character of a protein. Journal of Molecular Biology ,157 (1), 105–132.
Li, A., Kato, Z., Ohnishi, H., Hashimoto, K., Matsukuma, E., Omoya, K.,
Yamamoto, Y., & Kondo, N. (2003). Optimized gene synthesis and high
expression of human interleukin-18. Protein Expression and
Purification , 32 (1), 110–118.
Lin, L. (1998). Betaseron. Developments in Biological
Standardization , 96 , 97–104.
Lipiäinen, T., Peltoniemi, M., Sarkhel, S., Yrjönen, T., Vuorela, H.,
Urtti, A., & Juppo, A. (2015). Formulation and Stability of Cytokine
Therapeutics. Journal of Pharmaceutical Sciences , 104 (2),
307–326.
Mailliard, R. B., Alber, S. M., Shen, H., Watkins, S. C., Kirkwood, J.
M., Herberman, R. B., & Kalinski, P. (2005). IL-18–induced CD83+CCR7+
NK helper cells. The Journal of Experimental Medicine ,202 (7), 941–953.
Nakamura, K., Kassem, S., Cleynen, A., Chrétien, M.-L., Guillerey, C.,
Putz, E. M., Bald, T., Förster, I., Vuckovic, S., Hill, G. R., Masters,
S. L., Chesi, M., Bergsagel, P. L., Avet-Loiseau, H., Martinet, L., &
Smyth, M. J. (2018). Dysregulated IL-18 Is a Key Driver of
Immunosuppression and a Possible Therapeutic Target in the Multiple
Myeloma Microenvironment. Cancer Cell , 33 (4), 634-648.e5.
Okamura, H., Nagata, K., Komatsu, T., Tanimoto, T., Nukata, Y., Tanabe,
F., Akita, K., Torigoe, K., Okura, T., & Fukuda, S. (1995). A novel
costimulatory factor for gamma interferon induction found in the livers
of mice causes endotoxic shock. Infection and Immunity ,63 (10), 3966–3972.
Robertson, M. J., Kirkwood, J. M., Logan, T. F., Koch, K. M., Kathman,
S., Kirby, L. C., Bell, W. N., Thurmond, L. M., Weisenbach, J., & Dar,
M. M. (2008). A dose-escalation study of recombinant human
interleukin-18 using two different schedules of administration in
patients with cancer. Clinical Cancer Research: An Official
Journal of the American Association for Cancer Research , 14 (11),
3462–3469.
Robertson, M. J., Mier, J. W., Logan, T., Atkins, M., Koon, H., Koch, K.
M., Kathman, S., Pandite, L. N., Oei, C., Kirby, L. C., Jewell, R. C.,
Bell, W. N., Thurmond, L. M., Weisenbach, J., Roberts, S., & Dar, M. M.
(2006). Clinical and biological effects of recombinant human
interleukin-18 administered by intravenous infusion to patients with
advanced cancer. Clinical Cancer Research: An Official Journal of
the American Association for Cancer Research , 12 (14 Pt 1),
4265–4273.
Saetang, J., Chonpathompikunlert, P., Sretrirutchai, S., Roongsawang,
N., Kayasut, K., Voravuthikunchai, S. P., Sukketsiri, W., Tipmanee, V.,
& Sangkhathat, S. (2020). Anti-cancer effect of engineered recombinant
interleukin 18. Advances in Clinical and Experimental Medicine:
Official Organ Wroclaw Medical University , 29 (10), 1135–1143.
Saetang, J., Puseenam, A., Roongsawang, N., Voravuthikunchai, S. P.,
Sangkhathat, S., & Tipmanee, V. (2016). Immunologic Function and
Molecular Insight of Recombinant Interleukin-18. PloS One ,11 (8), e0160321.
Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., &
Serrano, L. (2005). The FoldX web server: An online force field.Nucleic Acids Research , 33 (suppl_2), W382–W388.
Shen, M., Siu, S., Byrd, S., Edelmann, K. H., Patel, N., Ketchem, R. R.,
Mehlin, C., Arnett, H. A., & Hasegawa, H. (2011). Diverse functions of
reactive cysteines facilitate unique biosynthetic processes of
aggregate-prone interleukin-31. Experimental Cell Research ,317 (7), 976–993.
Srivastava, S., Salim, N., & Robertson, M. J. (2010). Interleukin-18:
Biology and role in the immunotherapy of cancer. Current Medicinal
Chemistry , 17 (29), 3353–3357.
Swencki-Underwood, B., Cunningham, M. R., Heavner, G. A., Blasie, C.,
McCarthy, S. G., Dougherty, T., Brigham-Burke, M., Gunn, G. R., Goletz,
T. J., & Snyder, L. A. (2006). Engineering human IL-18 with increased
bioactivity and bioavailability. Cytokine , 34 (1–2),
114–124.
Tsutsumi, N., Kimura, T., Arita, K., Ariyoshi, M., Ohnishi, H.,
Yamamoto, T., Zuo, X., Maenaka, K., Park, E. Y., Kondo, N., Shirakawa,
M., Tochio, H., & Kato, Z. (2014). The structural basis for receptor
recognition of human interleukin-18. Nature Communications ,5 , 5340.
Yamamoto, Y., Kato, Z., Matsukuma, E., Li, A., Omoya, K., Hashimoto, K.,
Ohnishi, H., & Kondo, N. (2004). Generation of highly stable IL-18
based on a ligand-receptor complex structure. Biochemical and
Biophysical Research Communications , 317 (1), 181–186.
Zhou, T., Damsky, W., Weizman, O.-E., McGeary, M. K., Hartmann, K. P.,
Rosen, C. E., Fischer, S., Jackson, R., Flavell, R. A., Wang, J.,
Sanmamed, M. F., Bosenberg, M. W., & Ring, A. M. (2020). IL-18BP is a
secreted immune checkpoint and barrier to IL-18 immunotherapy.Nature , 583 (7817), 609–614.
Zhou, W., & Freed, C. R. (2004). Tyrosine-to-Cysteine Modification of
Human α-Synuclein Enhances Protein Aggregation and Cellular Toxicity *.Journal of Biological Chemistry , 279 (11), 10128–10135.