References
Berendsen, H. J. C., Postma, J. P. M., Gunsteren, W. F. van, DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics , 81 (8), 3684–3690.
Bringans, S., Eriksen, S., Kendrick, T., Gopalakrishnakone, P., Livk, A., Lock, R., & Lipscombe, R. (2008). Proteomic analysis of the venom of Heterometrus longimanus (Asian black scorpion). Proteomics ,8 (5), 1081–1096.
Case, D., Aktulga, H., Belfon, K., Ben-Shalom, I., Brozell, S., Cerutti, D., Cheatham, III, T., & Cisneros, G. (2021). Amber 2021 . University of California, San Francisco.
Castro, F., Cardoso, A. P., Gonçalves, R. M., Serre, K., & Oliveira, M. J. (2018). Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion. Frontiers in Immunology , 9 , 847.
Fabbi, M., Carbotti, G., & Ferrini, S. (2015). Context-dependent role of IL-18 in cancer biology and counter-regulation by IL-18BP.Journal of Leukocyte Biology , 97 (4), 665–675.
Fatima, U., Singh, B., Subramanian, K., & Guptasarma, P. (2012). Insufficient (Sub-native) Helix Content in Soluble/Solid Aggregates of Recombinant and Engineered Forms of IL-2 Throws Light on How Aggregated IL-2 is Biologically Active. The Protein Journal , 31 (7), 529–543.
Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics , 14 (1), 33–38, 27–28.
Karpusas, M., Nolte, M., Benton, C. B., Meier, W., Lipscomb, W. N., & Goelz, S. (1997). The crystal structure of human interferon beta at 2.2-A resolution. Proceedings of the National Academy of Sciences of the United States of America , 94 (22), 11813–11818.
Kato, Z., Jee, J., Shikano, H., Mishima, M., Ohki, I., Ohnishi, H., Li, A., Hashimoto, K., Matsukuma, E., Omoya, K., Yamamoto, Y., Yoneda, T., Hara, T., Kondo, N., & Shirakawa, M. (2003). The structure and binding mode of interleukin-18. Nature Structural Biology , 10 (11), 966–971.
Kim, S. H., Azam, T., Yoon, D. Y., Reznikov, L. L., Novick, D., Rubinstein, M., & Dinarello, C. A. (2001). Site-specific mutations in the mature form of human IL-18 with enhanced biological activity and decreased neutralization by IL-18 binding protein. Proceedings of the National Academy of Sciences of the United States of America ,98 (6), 3304–3309.
Kim, S.-H., Azam, T., Novick, D., Yoon, D.-Y., Reznikov, L. L., Bufler, P., Rubinstein, M., & Dinarello, C. A. (2002). Identification of amino acid residues critical for biological activity in human interleukin-18.The Journal of Biological Chemistry , 277 (13), 10998–11003.
Krishnan, S., Chi, E. Y., Webb, J. N., Chang, B. S., Shan, D., Goldenberg, M., Manning, M. C., Randolph, T. W., & Carpenter, J. F. (2002). Aggregation of granulocyte colony stimulating factor under physiological conditions: Characterization and thermodynamic inhibition.Biochemistry , 41 (20), 6422–6431.
Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology ,157 (1), 105–132.
Li, A., Kato, Z., Ohnishi, H., Hashimoto, K., Matsukuma, E., Omoya, K., Yamamoto, Y., & Kondo, N. (2003). Optimized gene synthesis and high expression of human interleukin-18. Protein Expression and Purification , 32 (1), 110–118.
Lin, L. (1998). Betaseron. Developments in Biological Standardization , 96 , 97–104.
Lipiäinen, T., Peltoniemi, M., Sarkhel, S., Yrjönen, T., Vuorela, H., Urtti, A., & Juppo, A. (2015). Formulation and Stability of Cytokine Therapeutics. Journal of Pharmaceutical Sciences , 104 (2), 307–326.
Mailliard, R. B., Alber, S. M., Shen, H., Watkins, S. C., Kirkwood, J. M., Herberman, R. B., & Kalinski, P. (2005). IL-18–induced CD83+CCR7+ NK helper cells. The Journal of Experimental Medicine ,202 (7), 941–953.
Nakamura, K., Kassem, S., Cleynen, A., Chrétien, M.-L., Guillerey, C., Putz, E. M., Bald, T., Förster, I., Vuckovic, S., Hill, G. R., Masters, S. L., Chesi, M., Bergsagel, P. L., Avet-Loiseau, H., Martinet, L., & Smyth, M. J. (2018). Dysregulated IL-18 Is a Key Driver of Immunosuppression and a Possible Therapeutic Target in the Multiple Myeloma Microenvironment. Cancer Cell , 33 (4), 634-648.e5.
Okamura, H., Nagata, K., Komatsu, T., Tanimoto, T., Nukata, Y., Tanabe, F., Akita, K., Torigoe, K., Okura, T., & Fukuda, S. (1995). A novel costimulatory factor for gamma interferon induction found in the livers of mice causes endotoxic shock. Infection and Immunity ,63 (10), 3966–3972.
Robertson, M. J., Kirkwood, J. M., Logan, T. F., Koch, K. M., Kathman, S., Kirby, L. C., Bell, W. N., Thurmond, L. M., Weisenbach, J., & Dar, M. M. (2008). A dose-escalation study of recombinant human interleukin-18 using two different schedules of administration in patients with cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research , 14 (11), 3462–3469.
Robertson, M. J., Mier, J. W., Logan, T., Atkins, M., Koon, H., Koch, K. M., Kathman, S., Pandite, L. N., Oei, C., Kirby, L. C., Jewell, R. C., Bell, W. N., Thurmond, L. M., Weisenbach, J., Roberts, S., & Dar, M. M. (2006). Clinical and biological effects of recombinant human interleukin-18 administered by intravenous infusion to patients with advanced cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research , 12 (14 Pt 1), 4265–4273.
Saetang, J., Chonpathompikunlert, P., Sretrirutchai, S., Roongsawang, N., Kayasut, K., Voravuthikunchai, S. P., Sukketsiri, W., Tipmanee, V., & Sangkhathat, S. (2020). Anti-cancer effect of engineered recombinant interleukin 18. Advances in Clinical and Experimental Medicine: Official Organ Wroclaw Medical University , 29 (10), 1135–1143.
Saetang, J., Puseenam, A., Roongsawang, N., Voravuthikunchai, S. P., Sangkhathat, S., & Tipmanee, V. (2016). Immunologic Function and Molecular Insight of Recombinant Interleukin-18. PloS One ,11 (8), e0160321.
Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., & Serrano, L. (2005). The FoldX web server: An online force field.Nucleic Acids Research , 33 (suppl_2), W382–W388.
Shen, M., Siu, S., Byrd, S., Edelmann, K. H., Patel, N., Ketchem, R. R., Mehlin, C., Arnett, H. A., & Hasegawa, H. (2011). Diverse functions of reactive cysteines facilitate unique biosynthetic processes of aggregate-prone interleukin-31. Experimental Cell Research ,317 (7), 976–993.
Srivastava, S., Salim, N., & Robertson, M. J. (2010). Interleukin-18: Biology and role in the immunotherapy of cancer. Current Medicinal Chemistry , 17 (29), 3353–3357.
Swencki-Underwood, B., Cunningham, M. R., Heavner, G. A., Blasie, C., McCarthy, S. G., Dougherty, T., Brigham-Burke, M., Gunn, G. R., Goletz, T. J., & Snyder, L. A. (2006). Engineering human IL-18 with increased bioactivity and bioavailability. Cytokine , 34 (1–2), 114–124.
Tsutsumi, N., Kimura, T., Arita, K., Ariyoshi, M., Ohnishi, H., Yamamoto, T., Zuo, X., Maenaka, K., Park, E. Y., Kondo, N., Shirakawa, M., Tochio, H., & Kato, Z. (2014). The structural basis for receptor recognition of human interleukin-18. Nature Communications ,5 , 5340.
Yamamoto, Y., Kato, Z., Matsukuma, E., Li, A., Omoya, K., Hashimoto, K., Ohnishi, H., & Kondo, N. (2004). Generation of highly stable IL-18 based on a ligand-receptor complex structure. Biochemical and Biophysical Research Communications , 317 (1), 181–186.
Zhou, T., Damsky, W., Weizman, O.-E., McGeary, M. K., Hartmann, K. P., Rosen, C. E., Fischer, S., Jackson, R., Flavell, R. A., Wang, J., Sanmamed, M. F., Bosenberg, M. W., & Ring, A. M. (2020). IL-18BP is a secreted immune checkpoint and barrier to IL-18 immunotherapy.Nature , 583 (7817), 609–614.
Zhou, W., & Freed, C. R. (2004). Tyrosine-to-Cysteine Modification of Human α-Synuclein Enhances Protein Aggregation and Cellular Toxicity *.Journal of Biological Chemistry , 279 (11), 10128–10135.