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Key Points: 18 

 Model simulations that perform well on minimum standard metrics are not 19 

necessarily preferable for end-users with specific purposes. 20 

 More versatile metrics are essential in benchmarking simulations for specific 21 

fields of research. 22 

 Resolution of the driving sea surface temperature is important to simulate Indian 23 

Ocean Dipole-rainfall variability over Australia. 24 
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Abstract 26 

In this study, we employ the Conformal Cubic Atmospheric Model (CCAM), a variable-27 

resolution global atmospheric model, driven by two distinct sea surface temperature (SST) 28 

datasets: the 0.25° Optimum Interpolation Sea Surface Temperature (CCAM_OISST) version 29 

2.1 and the 2° Extended Reconstruction SSTs Version 5 (CCAM_ERSST5). Model 30 

performance is assessed using a benchmarking framework, revealing good agreement 31 

between both simulations and the climatological rainfall spatial pattern, seasonality, and 32 

annual trends obtained from the Australian Gridded Climate Data (AGCD). Notably, wet 33 

biases are identified in both simulations, with CCAM_OISST displaying a more pronounced 34 

bias. 35 

Furthermore, we have examined CCAM's ability to capture El Niño-Southern Oscillation 36 

(ENSO) and Indian Ocean Dipole (IOD) correlations with rainfall during Austral spring 37 

(SON) utilizing a novel hit rate metric. Results indicate that only CCAM_OISST successfully 38 

replicates observed SON ENSO- and IOD-rainfall correlations, achieving hit rates of 86.6% 39 

and 87.5%, respectively, compared to 52.7% and 41.8% for CCAM_ERSST5. Large SST 40 

differences are found surrounding the Australian coastline between OISST and ERSST5 41 

(termed the “Coastal Effect”). Differences can be induced by the spatial interpolation error 42 

due to the discrepancy between model and driving SST. An additional CCAM experiment, 43 

employing OISST with SST masked by ERSST5 in 5° proximity to the Australian continent, 44 

underscores the “Coastal Effect” has a significant impact on IOD-Australian rainfall 45 

simulations. In contrast, its influence on ENSO-Australian rainfall is limited. Therefore, 46 

simulations of IOD-Australian rainfall teleconnection are sensitive to local SST 47 

representation along coastlines, probably dependent on the spatial resolution of driving SST.  48 



Plain Language Summary 49 

In this research, the Conformal Cubic Atmospheric Model (CCAM), a global atmospheric 50 

model, is used to study the impact of different driving sea surface temperature (SST) datasets 51 

on Australian rainfall simulations. Two SST datasets, one with high resolution (OISST) and 52 

another at lower resolution (ERSST5), are employed to drive CCAM (CCAM_OISST and 53 

CCAM_ERSST5). Model performance is evaluated using a benchmarking approach, 54 

indicating that both SST-driven experiments are in good agreement with observed rainfall 55 

patterns in Australia. However, both simulations exhibit wet biases, with CCAM_OISST 56 

having a more noticeable bias. 57 

The study assesses CCAM's ability to capture the correlation between El Niño-Southern 58 

Oscillation (ENSO) and Indian Ocean Dipole (IOD) with rainfall during Austral spring. 59 

Results reveal that CCAM_OISST performs better, replicating observed correlations more 60 

accurately than CCAM_ERSST5. The research identifies strong SST differences found 61 

between OISST and ERSST5 around the Australian coastline. An additional experiment 62 

underscores that this "Coastal Effect” plays an important role in simulating IOD-Australian 63 

rainfall correlations, while its impact on ENSO-Australian rainfall is limited. In conclusion, 64 

robust simulations of IOD-Australian rainfall teleconnection require an accurate 65 

representation of local SST, which is related to the spatial resolution of SST products driving 66 

the model. 67 
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1 Introduction  72 

Australia's vast geographical expanse, extending from the tropics to the mid-latitudes, gives 73 

rise to a remarkably diverse climate. In-depth investigations into Australian climate 74 

variability and future climate projections necessitate robust model simulations of rainfall 75 

patterns. This complexity is further shaped by the influential phenomena of the El Niño-76 

Southern Oscillation (ENSO; Trenberth 1997) and the Indian Ocean Dipole (IOD; Saji et al. 77 

1999), which exert pronounced effects on rainfall seasonality and interannual variability 78 

within the region. 79 

During El Niño events, Australia is typically drier than average due to enhanced subsidence 80 

and elevated sea-level pressure over the western Pacific (Meyers et al. 2007, Wang and 81 

Hendon 2007, Cai et al. 2011). As reported by the Australian Bureau of Meteorology (BOM) 82 

(Australian Bureau of Meteorology 2021), El Niño tends to reduce rainfall, particularly 83 

during the winter-spring period, despite the peak of ENSO occurring around December. 84 

Moreover, El Niño is frequently associated with the onset of drought conditions, with severe 85 

droughts having been observed during the El Niño episodes of 1982, 1994, 2002, 2006, and 86 

2015. Conversely, La Niña events typically correspond to increased rainfall and an elevated 87 

risk of flooding in Australia (e.g., Kotwicki and Allan 1998, Coates et al. 2014, Liu et al. 88 

2018). Meanwhile, the Indian Ocean Dipole (IOD) influences Australia primarily through 89 

equivalent barotropic Rossby wave trains (Saji and Yamagata 2003, Cai et al. 2011, Gillett et 90 

al. 2022). Studies by Ashok et al. (2003) and Meyers et al. (2007) have documented a higher 91 

likelihood of reduced rainfall during the positive phase of IOD (pIOD). Ummenhofer et al. 92 

(2009) have suggested that negative IOD (nIOD) conditions favour increased moisture 93 

transport, resulting in heightened rainfall in southeastern Australia. Additionally, the 94 



influence of IOD on the Australian climate exhibits asymmetry, with the positive phase 95 

generally having a more substantial impact (Weller and Cai 2013a). 96 

Climate model simulations are invaluable to help unravel the intricacies of ENSO/IOD 97 

rainfall teleconnections in Australia. These simulations offer a self-contained and 98 

comprehensive representation of the physical relationship between ENSO/IOD and rainfall, 99 

shedding light on the underlying mechanisms. Moreover, they serve as a crucial tool for 100 

investigating the interplay between ENSO/IOD-induced rainfall variations and various 101 

internal and external factors, such as the influence of climate modes in different ocean basins 102 

and anthropogenic emissions. However, climate models with coarse spatial resolutions often 103 

fail to accurately capture rainfall at regional scales (e.g., Rauscher et al. 2010, Chen et al. 104 

2018, Huang et al. 2018). Meanwhile, it is crucial to acknowledge that running fine-105 

resolution simulations with a General Circulation Model (GCM) comes with substantial 106 

computational costs. In response to this challenge, dynamical downscaling techniques have 107 

been introduced (Giorgi 2019). 108 

Dynamical downscaling has emerged as a widely employed approach for investigating the 109 

teleconnections between ENSO/IOD and localized rainfall patterns (e.g., Boulard et al. 2013, 110 

Ratna et al. 2017, Whan and Zwiers 2017, Worku et al. 2018, Verma and Bhatla 2021, Safari 111 

et al. 2023). Regional Climate Models (RCMs) with typical resolutions higher than 30km are 112 

employed to simulate the atmosphere driven by reanalysis or general circulation model 113 

(GCM) outputs with coarser resolutions exceeding 100km.  Dynamical downscaling of low-114 

resolution GCM outputs has become prevalent for regional climate projection studies, such as 115 

the Coordinated Regional Climate Downscaling Experiment (CORDEX; Giorgi et al. 2015).  116 

Nevertheless, it is crucial to recognize that dynamical downscaling introduces additional 117 

sources of uncertainty. These uncertainties stem from differences in the spatiotemporal 118 



resolutions, dynamical cores and parameterization schemes employed by the RCM and the 119 

driving GCM. These disparities can make it challenging to attribute specific sources of error 120 

and bias (Marbaix et al. 2003, Castro et al. 2005, Tapiador et al. 2020). Additionally, the 121 

teleconnection pathway from ENSO/IOD to Australian rainfall primarily unfolds outside of 122 

Australia, covering a vast expanse of the Earth, particularly involving air-sea interaction 123 

processes. Defining the RCM domain to cover only the Australian continent excludes some 124 

crucial processes that occur far from Australia and are still handled by coarse-resolution 125 

GCMs. This exclusion can impact the accuracy of simulating teleconnections. However, it is 126 

also challenging to reduce computational costs effectively when including both the Pacific 127 

Ocean and Indian Ocean basins in RCMs. Furthermore, it is worth mentioning that outcomes 128 

from dynamical downscaling concerning regional ENSO/IOD influences are occasionally 129 

unsatisfactory and can even yield counterintuitive responses of rainfall to ENSO/IOD events 130 

(e.g., Boulard et al. 2013, Verma and Bhatla 2021).  131 

To harness the advantages of fine-resolution simulations using an RCM while maintaining a 132 

global-scale simulation simultaneously, GCMs with variable spatial resolution have been 133 

developed. One notable example is the Conformal Cubic Atmospheric Model (CCAM), 134 

which was developed by the Commonwealth Scientific and Industrial Research Organisation 135 

(CSIRO) in Australia (https://research.csiro.au/ccam). CCAM, an atmospheric GCM 136 

(AGCM), is the first model employing a gridding algorithm that projects the Earth’s 137 

atmosphere onto the surface of a cube (McGregor 2005; Thatcher and McGregor 2011). This 138 

projection method offers the flexibility to set varying horizontal resolutions across the six 139 

faces of the cube, facilitating global simulations with different resolutions in various regions. 140 

As a result, finer resolutions can be established over the specific domain of interest, while the 141 

opposite side of the Earth, which is typically less relevant to the study, can have coarser 142 

resolutions. The variable-resolution feature matches the purpose of enabling a global 143 

https://research.csiro.au/ccam


simulation of ENSO and IOD and their teleconnections to rainfall characteristics over 144 

Australia while managing computational cost simultaneously.  145 

CCAM has recently been used for climate projections in different Australian regions, 146 

including extreme weather projections developed by the National Environmental Science 147 

Programme's (NESP) Earth Systems and Climate Change Hub (ESCC Hub) and climate 148 

projections for the end of the 21
st
 century in Victoria, Tasmania, and Queensland for the 149 

government. CCAM has also been used in studies on the teleconnections between ENSO and 150 

regional weather (e.g., Chapman et al. 2020; Dechpichai et al. 2022) and long-term climate 151 

modelling (e.g., Katzfey et al. 2016; Nurlatifah et al. 2019; Toersilowati et al. 2022) in 152 

Southeast Asia. CCAM performs similarly to other RCMs in intercomparison assessments in 153 

Australia (Evans et al. 2016; Di Virgilio et al. 2019). Mantegna et al. (2017) show that 154 

CCAM can simulate extreme rainfall up to a 3-hourly scale. This gives us confidence that 155 

CCAM would be suitable for our study. However, most research has used CCAM as an RCM 156 

to downscale atmospheric data with coarser resolutions over a particular region based on 157 

global simulations with spatially varying resolutions. Recently, Gibson et al. (2023) evaluated 158 

CCAM as an AGCM in simulating New Zealand weather and climate. Their results showed 159 

that CCAM performed particularly well at simulating the variability and extremes of 160 

temperature and precipitation over New Zealand. Although they assessed CCAM's 161 

performance in simulating ENSO-precipitation patterns on a global scale during the Austral 162 

summer (DJF), there is a gap in the published evaluation of CCAM's performance in 163 

simulating the impact of ENSO on Australian rainfall during its most influential season, the 164 

Austral spring (SON), as specified by the Australian Bureau of Meteorology (2021).  165 

Meanwhile, the performance of CCAM as an AGCM in the context of IOD-driven rainfall 166 

variability over Australia remains largely unexplored. This study aims to address this critical 167 

gap by conducting an evaluation of CCAM’s performance of Australian rainfall, including its 168 



response to the ENSO and IOD. Isphording et al. (2023) introduced a benchmarking 169 

framework for assessing climate models' ability to meet prior expectations. Our study has 170 

adopted the framework to see whether CCAM can meet the minimum standard of simulating 171 

Australia rainfall variability. It is noted that this framework was initially developed for 172 

dynamically downscaled GCMs with various RCMs and was demonstrated using simulations 173 

over Australia. Whereas we have employed their benchmarking framework for CCAM driven 174 

by observed SSTs. In addition to the minimum standard metrics, our study also introduces 175 

novel metrics to investigate ENSO- and IOD-related rainfall variability.  176 

Various SST datasets with different timespan and data collecting methods are available for 177 

driving AGCM simulations. Longer-term SST products are preferred for investigating rainfall 178 

variability on scales beyond interannual patterns, such as ENSO- and IOD-driven rainfall. 179 

However, longer SST datasets often come with coarser spatial resolutions and increased 180 

uncertainty, particularly before the 1980s when satellite-based products were established. For 181 

instance, the Hadley Centre Sea Ice and Sea Surface Temperature data set (HadISST; Rayner 182 

et al. 2003), starting from 1871, has a fair spatial resolution of 1°× 1° which is comparable to 183 

a standard GCM simulation. It has been found to significantly underestimate IOD variability 184 

when compared to coral record-based SST reconstructions (see Pfeiffer et al. 2022). The 185 

Extended Reconstructed Sea Surface Temperature version 5 (ERSST5; Huang et al. 2017), 186 

with data available since 1854, is another well-known long-term SST dataset. It has a coarse 187 

spatial resolution of 2°×2°. While ERSST5 also tends to underestimate historical extreme 188 

positive IOD events, its IOD strength generally surpasses that of HadISST (Verdon-Kidd 189 

2018, Pfeiffer et al. 2022). Moreover, ERSSTv5 gives the magnitude of the recent 2019 190 

extreme pIOD more consistent with satellite-products (Ratna et al. 2021), while HadISST 191 

categorizes this event as a ‘moderate pIOD’. The advent of remote sensing via satellites in the 192 

1980s led to SST datasets that blend satellite and in situ data, resulting in higher spatial and 193 



temporal resolutions. For instance, the daily NOAA Optimum Interpolation Sea Surface 194 

Temperature (OISST) version 2.1 (Huang et al. 2021) offers a 0.25°×0.25° grided daily 195 

dataset. Such satellite-based SST products tend to exhibit reduced uncertainty in ENSO and 196 

IOD variability when compared to interpolation-based datasets (Huang et al. 2016, Pfeiffer et 197 

al. 2022).  198 

The accuracy of SST in proximity to the region of interest plays a pivotal role in the local 199 

teleconnection of ENSO and IOD events with rainfall patterns (Boulard et al. 2013). These 200 

SST values have a notable impact on smaller-scale atmospheric elements, including cumulus 201 

convection and the Madden-Julian Oscillation (MJO; Madden and Julian 1971, 1972) (Lim et 202 

al. 2021). The resolution of SST data has been identified as a critical factor affecting the 203 

performance of regional precipitation simulations (Cassola et al. 2016). A key issue arises 204 

when the resolution of the driving SST data is coarser than that of the model, resulting in a 205 

lack of SST values over model grid cells near coastlines. To address this, climate models 206 

resort to interpolation to estimate these missing values, which can lead to significant biases, 207 

particularly when temperature gradients are pronounced (Kara et al. 2008). Consequently, it 208 

is imperative to investigate the sensitivity of fine-resolution models, like CCAM, to the 209 

resolution and quality of the driving SST data in the context of ENSO and IOD-driven 210 

rainfall variability. 211 

In this paper, we present an evaluation of CCAM's performance in simulating rainfall over 212 

Australia, utilizing the benchmarking framework proposed by Isphording et al. (2023). Our 213 

analysis aims to determine whether CCAM meets the predefined minimum standards. 214 

Additionally, we introduce innovative metrics to assess CCAM's performance in capturing 215 

the teleconnections between ENSO/IOD and Australian rainfall. Furthermore, we undertake a 216 

comparative analysis of CCAM simulations driven by different SST datasets to discern the 217 

model's sensitivity to the quality and resolution of the driving SST data.  218 



2 Methodology 219 

2.1 Model Experiments and Data Used 220 

The research employed the Conformal Cubic Atmospheric Model (CCAM; McGregor and 221 

Dix 2008, McGregor 2015, Thatcher et al. 2023), version 2301, developed by the 222 

Commonwealth Scientific and Industrial Research Organisation (CSIRO), Environment 223 

Business Unit, Australia. Detailed documentation for CCAM can be accessed at 224 

https://research.csiro.au/ccam. CCAM utilizes a non-hydrostatic, semi-implicit, and semi-225 

Lagrangian atmospheric dynamical core, alongside a hydrostatic, semi-implicit, and semi-226 

Lagrangian ocean dynamical core. It also employs a reversible staggered grid to improve 227 

dispersion properties (McGregor 2005). The model incorporates an innovative mass-flux 228 

cumulus convection scheme, with its mathematical formulation elaborated in McGregor 229 

(2003). Subsequent versions of the scheme retained the same algorithm but underwent 230 

adjustments in parameters. Table 1 lists the other parameterisation schemes and model 231 

physics used, including surface models, aerosol models, radiation schemes, etc. 232 

 233 
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 245 

Table 1. Configurations details and adopted parameterization schemes of CCAM 246 

simulations discussed in this study. 247 

 248 

CCAM was the first three-dimensional atmospheric model to introduce the use of a cubic grid, 249 

known as the Conformal Cubic grid, which projects a sphere (i.e., the Earth's surface) onto a 250 

cube (McGregor 2005, Thatcher and McGregor 2011). This projection method allows users to 251 

set different horizontal resolutions across six faces of the cube, facilitating global simulations 252 

with variable resolutions in different geographical regions. Consequently, finer resolutions 253 

can be specified over regions of particular interest using a Schmidt coordinate transformation 254 

Simulation name CCAM_OISST CCAM_ERSST5 

Simulation period Sep 1981 – Dec 2022 Jan 1920 – Dec 2022 

Model timestep 400s 

No. vertical levels 54 

Land surface model CABLE (Kowalczyk et al. 2006), constant land-use 

Aerosol model Prognostic aerosol (Rotstayn and Lohmann 2002, Rotstayn 

et al. 2011) 

Cloud microphysics Lin et al. (1983) and Rotstayn (1997) 

Radiation  GFDL-AM4 radiation code with CMIP6 radiative forcings 

(Freidenreich and Ramaswamy 1999, Schwarzkopf and 

Ramaswamy 1999) 

Convective scheme Mass-flux cumulus convection scheme (McGregor 2003), 

version mod2015a 

Atmosphere turbulent mixing Hurley (2007) 

Gravity wave drag Chouinard et al. (1986) 



(Schmidt 1977), while other less critical areas of the Earth can be simulated with coarser 255 

resolution, effectively reducing computational demand. In Figure 1, we illustrate the CCAM 256 

resolution configuration applied in our study. This grid system allows us to achieve higher 257 

resolutions over Australia (~20-30km), with lower resolutions over the tropical Pacific and 258 

Indian Ocean (~50-100km). This is important to enable rainfall to be well simulated over the 259 

continent while allowing a reasonable resolution for the two climate modes analysed in this 260 

study – ENSO and IOD. For regions such as the Atlantic, where fine resolutions are not a 261 

primary concern, a coarser resolution is run (~130-150km). 262 

 263 

Figure 1. Spatial resolution (units: km) of CCAM simulations in this study. 264 

 265 

In this study, CCAM operated as an Atmospheric General Circulation Model (AGCM) driven 266 

by two distinct sea surface temperature (SST) products. The first was the monthly NOAA 267 

Extended Reconstruction SSTs Version 5 (ERSST5; Huang et al. 2017) with a spatial 268 

resolution of 2.0°×2.0°, chosen for its suitability as a long-term, but relatively low-resolution 269 

SST dataset. The second was the daily NOAA Optimum Interpolation Sea Surface 270 

Temperature (OISST; Huang et al. 2021) version 2.1, offering a post-satellite-era high-271 



resolution SST dataset at 0.25°×0.25° grid spacing. By comparing the simulation results 272 

driven by these two SST products, we aimed to explore the sensitivity of simulated rainfall 273 

over Australia to input SSTs. This examination also provides insights for striking a balance 274 

between longer temporal coverage and finer spatial details during model simulations. 275 

Alternative long-term SST datasets, such as the 1°x 1° Hadley Centre Sea Ice and Sea 276 

Surface Temperature (HadISST; Rayner et al. 2003) and the Centennial Observation-Based 277 

Estimates of SST (COBE; Ishii et al. 2005), were not considered due to their notable 278 

underestimation of IOD intensity when compared to OISST data and the reconstruction 279 

derived from reef records (Pfeiffer et al. 2022). For initializing CCAM simulations, we 280 

employed the ECMWF Reanalysis version 5 (ERA5) dataset (Hersbach et al. 2020), which 281 

was interpolated into a quasi-uniform cubic format. 282 

The OISST driven run (CCAM_OISST) covered September 1981 to December 2022, while 283 

the ERSST5 driven run (CCAM_ERSST5) spanned from January 1920 to December 2022. 284 

Although these two integrations began at different times, the analysis in this study was based 285 

on data covering the period from December 1982 to November 2022, in order to provide 286 

ample time for the CCAM_OISST simulation to reach a stable state (spin-up). This 287 

timeframe encompassed 40 complete years, with an equal representation of each season. The 288 

details of the configurations and parameterization schemes used in the CCAM simulations for 289 

this study are listed in Tab. 1 and Thatcher and McGregor (2011).  290 

In our study, model outputs were compared with observational data obtained from the 291 

Australian Gridded Climate Data version 1.0.1 (AGCD; Evans et al. 2020), specifically for 292 

rainfall and surface temperature. Additionally, atmospheric variables from ERA5 reanalysis 293 

data were used for comparison. Prior to the analysis, both the model output and 294 

observational/reanalysis datasets were interpolated to a common grid resolution of 295 

0.25°×0.25° for Australia and 1°×1° for the entire globe, following standard latitudinal and 296 



longitudinal grid boxes. Subsequently, the rainfall and surface temperature datasets 297 

underwent further post-processing using Climpact, a tool developed by the World 298 

Meteorological Organization's (WMO’s) Expert Team on Sector-Specific Climate Indices 299 

(ET-SCI) (Alexander and Herold 2016). This post-processing derived climate indices based 300 

on daily precipitation data to explore more “extreme” aspects of the precipitation distribution.  301 



2.2 Evaluation of CCAM’s performance 302 

In our analysis, we assessed the performance of CCAM's rainfall output within a 303 

benchmarking framework, as proposed by Isphording et al. (2023). To determine whether 304 

CCAM met the minimum standards for rainfall simulations, we adopted the benchmark 305 

metrics recommended by Isphording et al. These metrics included: 1. mean absolute 306 

percentage error (MAPE) of annual mean rainfall 2. spatial correlation (SCor) for annual 307 

mean rainfall, 3. conformity of wet and dry season, and 4. significance of difference in Theil–308 

Sen trends of annual rainfall in models and in the reference tested by corresponding p-value 309 

from the Mann-Kendall significance test (Hamed 2008). The computation and visualisation 310 

of these metrics are based on Isphording (2023). 311 

The calculations for MAPE and SCor were performed following standard procedures 312 

commonly used in the field. To assess the conformity of wet and dry seasons, we determined 313 

whether the wettest and driest periods in each year in the model outputs coincided with those 314 

in the reference data. Theil–Sen trend is calculated by the median of  
𝑦𝑗−𝑦𝑖

𝑥𝑗−𝑥𝑖
, where i and j 315 

represent different time points and 𝑖 ≠ 𝑗, to reduce the effect from outliers. The thresholds of 316 

the minimum standard metrics were set to 𝑀𝐴𝑃𝐸 ≤ 0.7, 𝑆𝐶𝑜𝑟 ≥ 0.75 and the difference in 317 

Theil–Sen slopes at 0.1 significance level, as in Isphording et al. (2023).  318 

In addition to the minimum standard metrics, our analysis encompassed several additional 319 

aspects to gain a comprehensive understanding of CCAM's performance in simulating rainfall 320 

variability (this is related to Isphording’s versatility metrics within the benchmarking 321 

framework). These aspects include rainfall seasonality, 12-month Standard Precipitation 322 

Index (SPI), and El Niño-Southern Oscillation (ENSO)/Indian Ocean Dipole (IOD)-rainfall 323 

correlation. For the seasonality, we have evaluated whether the spatial patterns of maximum 324 

rainfall month and seasonal rainfall amplitude in CCAM’s runs match with those in AGCD, 325 



following Isphording et al. (2023). We have calculated the mean absolute deviation (MAD; 326 

units: month) of the maximum rainfall month as a metric for the phase, and spatial correlation 327 

for the amplitude. For ENSO/IOD-rainfall correlation, we focus on the correlation between 328 

monthly rainfall and the NINO3.4 index (Bamston et al. 1997) or the Dipole Mode Index 329 

(DMI; Saji et al. 1999). NINO3.4 index is defined as the standardised SST anomaly over the 330 

central-eastern equatorial Pacific (5°N-5°S, 120-170°W) indicating the ENSO variability; 331 

while DMI is defined as the standardised difference in SST anomaly between the tropical 332 

western Indian Ocean (50° E–70° E, 10° S–10° N) and the tropical south-eastern Indian 333 

Ocean (90° E–110° E, 10° S–0). To quantify the performance of CCAM in simulating 334 

ENSO/IOD-rainfall correlation, a sign function is introduced: 335 

𝑆𝑔𝑛(𝑟) = {
1, 𝑟 > 𝑐
0, −𝑐 < 𝑟 < 𝑐

−1, 𝑟 < −𝑐 
, 

where r is the Pearson correlation coefficient between monthly rainfall and the corresponding 336 

index, and c is the critical value determined by the significance test for correlation 337 

coefficients at a 5% significance level. Then, we calculate a hit rate defined as:   338 

𝐻𝑖𝑡 𝑟𝑎𝑡𝑒 =
Σi𝑤𝑖𝐻𝑖𝑡(𝑟𝑚,  𝑟𝑜)𝑖

Σi𝑤𝑖|𝑆𝑔𝑛(𝑟𝑜)𝑖|
,  

𝑎𝑛𝑑 𝐻𝑖𝑡(𝑟𝑚, 𝑟𝑜)𝑖 = {
1, 𝑆𝑔𝑛(𝑟𝑚)𝑖 × 𝑆𝑔𝑛(𝑟𝑜)𝑖 = 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, where w is the area weight, subscripts i 339 

indicates a grid, while m and o represent model outputs and observations respectively. The hit 340 

rate, expressed on a scale from 0 (0%) to 1 (100%), represents the proportion of the area 341 

where the model output exhibits a significant correlation with the correct sign when such a 342 

correlation exists in the observation. Similarly, the false alarm rate, indicating the portion of 343 

the area where the model gives a significant correlation not found in the observation, is 344 

defined as follows:  345 



𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑒 =
Σi𝑤𝑖𝐹𝐴(𝑟𝑛,  𝑟𝑜)𝑖

Σi𝑤𝑖(1 − |𝑆𝑔𝑛(𝑟𝑜)𝑖|)
, 

and false alarm 𝐹𝐴 (𝑟𝑛,  𝑟𝑜)𝑖 = {
1, |𝑆𝑔𝑛(𝑟𝑚)𝑖| − |𝑆𝑔𝑛(𝑟𝑜)𝑖| = 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.  Therefore, the hit rate 346 

assesses the percentage of model areas that exhibited the same significant sign of 347 

ENSO/IOD-rainfall correlation as observed. Conversely, the false alarm rate measures the 348 

percentage of model areas that display significant correlations not observed in the reference 349 

data. This additional evaluation allows us to better understand the model's suitability for the 350 

specific application related to interannual rainfall variability. 351 

  352 



3 Results 353 

3.1 CCAM performance on Australian rainfall 354 

Annual mean rainfall, seasonal cycle, and annual rainfall trend were assessed using the 355 

minimum standard metrics outlined in the benchmarking framework proposed by Isphording 356 

et al. (2023). These assessments were conducted using the Australian Gridded Climate Data 357 

(AGCD) for the period spanning December 1982 to November 2022.  358 

 359 

Figure 2. (a and b) Annual mean rainfall bias compared to AGCD (units: mm) for (a) 360 

CCAM_OISST and (b) CCAM_ERSST5. The mean absolute percentage errors (MAPE) 361 

and the weighted spatial correlation of the annual mean rainfall (SCor) are included in 362 



the purple boxes (details are included in text). Grey shading masks areas without AGCD 363 

station data within a 0.5° proximity. Figure c is the monthly mean rainfall across 364 

Australia’s land area (units: mm) for (black solid line) AGCD, (blue dash line) 365 

CCAM_OISST, and (red dash line) CCAM_ERSST5. The period of analysis spans from 366 

December 1982 to November 2022. 367 

 368 

Figures 2a and 2b, the illustrate the annual rainfall bias of CCAM_OISST and 369 

CCAM_ERSST5, respectively. Generally, CCAM tends to simulate a wetter Australia, with a 370 

noticeable wet bias across most land areas for both model runs. However, it's worth noting 371 

that coastal areas in the southeast and southwest exhibit a dry bias. Importantly, the wet bias 372 

in CCAM_ERSST5, which is driven by coarser sea surface temperature (SST) data, appears 373 

to be less pronounced compared to CCAM_OISST. This leads to a smaller Mean Absolute 374 

Percentage Error (MAPE) for CCAM_ERSST5, although both MAPE values are relatively 375 

low, measuring less than 50%. In contrast to the wet bias, both CCAM_OISST and 376 

CCAM_ERSST5 demonstrate a high spatial correlation (SCor) in annual mean rainfall, with 377 

values exceeding 0.9. This high SCor suggests that the spatial pattern of annual rainfall in 378 

CCAM closely matches that observed in AGCD.  379 

 Figure 2c shows the analysis of average monthly rainfall over Australia in CCAM reveals a 380 

similar annual cycle to that observed in AGCD. In both CCAM runs and AGCD the wet 381 

season runs from November to April (NDJFMA) and the dry season from May to October 382 

(MJJASO). The model tends to overestimate rainfall during the wet season, particularly 383 

during December to March. In addition, CCAM_OISST shows a peak in average rainfall in 384 

February, while CCAM_ERSST5 and AGCD exhibit this peak in January.  385 



 386 

Figure 3. (a, b, c) (black solid lines) Annual rainfall time-series from 1982-2022 for (a) 387 

AGCD, (b) CCAM_OISST, (c) CCAM_ERSST5. The bottom panel shows the 388 

differences between (d) CCAM_OISST and (e) CCAM_ERSST5 and AGCD. The 389 

purple solid lines are the Theil–Sen estimators representing the trends. The p-values of 390 

Theil–Sen trends from Mann-Kendall significance test (Hamed 2008) are provided in 391 

the purple boxes for (d) and (e). 392 

 393 

Both CCAM runs and AGCD exhibit a slight upward but not significant trend in rainfall over 394 

Australia (see Figs. 3a, 3b and 3c). Furthermore, despite AGCD giving a slightly stronger 395 

trend, no statistically significant trends are observed in the differences between the rainfall 396 

trends derived from CCAM runs and those from AGCD (Figs. 3d and 3e), with p-values 397 

around 0.4. Therefore, both simulations meet the minimum standard for the annual trend, thus 398 

satisfying all four minimum standard metrics. 399 



 400 

Figure 4. Spatial distribution of maximum rainfall month for (a) AGCD, (b) 401 

CCAM_OISST, and (c) CCAM_ERSST5. Each month is represented by a colour on the 402 

colour bar below the figure, from January (J) to December (D), indicating the 403 

corresponding month of maximum rainfall. Purple boxes display spatial weighted mean 404 

absolute deviations (MAD; units: month). Figures d, e and f are the climatological 405 

rainfall amplitude (units: mm), denoted by the range of average monthly mean rainfall, 406 



for the same set of data. The corresponding weighted spatial correlations (SCor) are 407 

shown in the purple boxes. Grey shading masks areas without AGCD station data 408 

within a 0.5° proximity. Figures g and h are the differences in amplitudes between 409 

CCAM’s outputs and AGCD for (g) CCAM_OISST minus AGCD and (h) 410 

CCAM_ERSST5 minus AGCD. 411 

 412 

In addition to the minimum standard metrics, our analysis also considered the phase and 413 

amplitude of rainfall seasonality. Figure 4 presents maps of the month with the maximum 414 

average monthly rainfall (phase of rainfall seasonality) in the upper panel and the range of 415 

average monthly rainfall (amplitude) in the lower panel. In the case of AGCD, most regions 416 

in Australia experience their maximum rainfall during DJF, with some exceptions. The 417 

southwestern and southern coastal areas, as well as some inland areas in the southeast and 418 

Tasmania, typically have their rainfall peaks during JJA. The southeastern region exhibits a 419 

diverse distribution, with maximum rainfall occurring from July to December. Both 420 

CCAM_OISST and CCAM_ERSST5 generally align with AGCD in most northern and 421 

inland areas of Australia, where the maximum rainfall is correctly simulated to occur during 422 

DJF, consistent with AGCD. However, both model runs fail to reproduce the correct 423 

maximum rainfall month over the southeastern region. While they both show a confined area 424 

that peaks in July, outside this area they show a peak in rainfall in January or February, which 425 

is similar to other regions in Australia. This deviation from AGCD results in an average one-426 

month displacement in the maximum rainfall month, with CCAM_OISST having a slightly 427 

larger deviation (1.20 months) than CCAM_ERSST5 (1.02 months). For the amplitude, both 428 

CCAM_OISST and CCAM_ERSST5 tend to overestimate the average monthly rainfall range 429 

across all regions in Australia. This overestimation is primarily due to an overestimation of 430 

DJF rainfall. Despite this, CCAM successfully reproduces a similar spatial pattern of 431 



seasonality amplitude compared to AGCD, with a high spatial correlation (SCor > 0.9) in 432 

both model runs. Although there are some deviations in the phase and amplitude of rainfall 433 

seasonality, both CCAM_OISST and CCAM_ERSST5 demonstrate reasonably good 434 

agreement with AGCD in most regions of Australia, highlighting CCAM’s ability to capture 435 

rainfall seasonality irrespective of the driving SST dataset. 436 

 437 

Figure 5. 12-month standard precipitation index (SPI; black solid lines) over Australia’s 438 

land area (with the grids contain no station within a 0.5 proximity in AGCD masked) 439 

for (a) AGCD, (b) CCAM_OISST, and (c) CCAM_ERSST5. Drought categories, as 440 

defined by the World Meteorological Organization (WMO, 2012), are indicated by 441 

coloured vertical bars. 442 



 443 

The evaluation of the 12-month Standard Precipitation Index (SPI), as shown in Figure 5, 444 

provides insights into the model's ability to capture historical drought events. Given that both 445 

runs are driven by observed Sea Surface Temperatures (SSTs), one would expect the timing 446 

of historical droughts to be similar between the simulations and AGCD. CCAM_OISST 447 

demonstrates the capability to reproduce a 12-month SPI time-series that coincides with 448 

AGCD, especially during events like the 2019 Black Summer (Davey and Sarre 2020). In 449 

contrast, CCAM_ERSST5 reproduces some drought events that are not present in AGCD, 450 

such as a severe drought in 2006-2007 and two long moderate droughts in 1983-1984 and 451 

2004-2005. The difference observed between the two model runs in the 12-month SPI time-452 

series suggests that CCAM_ERSST5 may perform less effectively in capturing interannual 453 

rainfall variability compared to CCAM_OISST. The interannual rainfall variability in 454 

Australia is largely influenced by teleconnections between large-scale climate drivers, such as 455 

ENSO and IOD, and local rainfall patterns. The divergence in performance between the two 456 

runs highlights the sensitivity of fine-resolution models like CCAM to the quality of the 457 

driving SSTs. Inaccurate representation of these SSTs can impact the model's ability to 458 

accurately simulate the teleconnections between climate drivers and rainfall, leading to 459 

discrepancies in the simulation of historical drought events.  460 

In summary, both CCAM_OISST and CCAM_ERSST5 meet the minimum standards for 461 

regional rainfall simulations as proposed by Isphording et al. (2023) over Australia. They also 462 

exhibit good performance in capturing rainfall seasonality. However, when it comes to 463 

reproducing the 12-month Standard Precipitation Index (SPI) time-series, it is only 464 

CCAM_OISST that closely matches AGCD, suggesting a more accurate representation of 465 

historical drought events in higher-resolution SST-forced runs. 466 



3.2 ENSO/IOD-related interannual rainfall variability 467 

The examination of ENSO and IOD related monthly rainfall variability during the SON 468 

season provides insights into the differences between CCAM_OISST and CCAM_ERSST5 469 

in capturing teleconnections between large-scale climate drivers and rainfall in Australia. 470 

Given the significant role of ENSO and IOD in influencing interannual rainfall variability, 471 

this analysis aims to uncover potential disparities between the two model runs and assess 472 

whether fine-resolution climate models are sensitive to the quality of driving SSTs when 473 

simulating these teleconnections, which operate on relatively longer timescales. 474 

 475 

Figure 6. Correlations between linearly detrended SON monthly rainfall from (a, b) 476 

AGCD, (c) CCAM_OISST, (d) CCAM_ERSST5 and NINO3.4 from (a. c) OISST and (b, 477 

d) ERSST5, respectively. Dotted areas in the figure indicate grids with correlations that 478 



are statistically significant at the 95% confidence level. Grey shading masks areas 479 

without AGCD station data within a 0.5° proximity. 480 

 481 

ENSO and IOD are most effective during SON for Australia’s rainfall variability, so the 482 

analysis will focus on this season. Figure 6 displays the correlation between the NINO3.4 483 

index and SON monthly rainfall for AGCD and CCAM runs. In AGCD, rainfall is mostly 484 

negatively correlated with NINO3.4 over the eastern and central regions of Australia, with 485 

correlation values around -0.4. Notably, there is no significant correlation observed over the 486 

western side of the country. CCAM_OISST generally agrees with AGCD by showing a 487 

negative correlation between NINO3.4 and rainfall over eastern and central Australia. 488 

However, it fails to reproduce the significant negative correlation along the southeastern coast 489 

and Tasmania seen in the observations. Interestingly, CCAM_OISST exhibits a significant 490 

negative correlation over the western side of Australia, a feature not present in AGCD. In 491 

contrast, CCAM_ERSST5 does not reproduce the significant negative correlation between 492 

NINO3.4 and rainfall over most land areas, with some exceptions in northern Australia and 493 

the southeast region. This indicates that the teleconnection between rainfall and ENSO is 494 

notably weaker in CCAM_ERSST5 compared to CCAM_OISST. The performance of the 495 

NINO3.4-rainfall correlation is quantified using a hit rate and false alarm rate. 496 

CCAM_OISST achieves a high hit rate of 0.866, while CCAM_ERSST5 lags behind with a 497 

hit rate of 0.527. However, CCAM_OISST also incurs a much higher false alarm rate of 498 

0.705 compared to CCAM_ERSST5's lower false alarm rate of 0.173. This discrepancy is 499 

because CCAM_OISST tends to yield significant negative correlations across most of 500 

Australia, including regions where AGCD does not exhibit significant correlations. 501 

Conversely, CCAM_ERSST5 often produces no significant correlation, resulting in a lower 502 

false alarm rate. Given that there is a significant negative correlation over most of the land 503 



(>75%) in AGCD, the hit rate takes precedence over the false alarm rate in this context. 504 

Consequently, CCAM_OISST outperforms CCAM_ERSST5 in reproducing the SON ENSO-505 

rainfall correlation, indicating its better ability to capture ENSO's influence on rainfall during 506 

SON. 507 

 508 

Figure 7. Same as figure 6, but for DMI.  509 

 510 

The correlation between DMI and SON rainfall is shown in figure 7. AGCD exhibits a DMI-511 

rainfall correlation pattern that is similar to the NINO3.4-rainfall correlation, with a strong 512 

negative signal (< -0.4) observed over the southeast region of Australia. CCAM_OISST 513 

generally agrees with AGCD in terms of the DMI-rainfall correlation, but it falls short in 514 

reproducing the strong negative correlation over the southeast region. While the correlation is 515 



significant in many areas, it is weaker than that observed in AGCD. Meanwhile, 516 

CCAM_ERSST5 fails to produce a significant DMI-rainfall correlation over most of the area. 517 

Only some locations in the northeast and southeast show weak correlations (around 0.2). 518 

CCAM_OISST achieves a high hit rate of 0.875, while CCAM_ERSST5 has a lower hit rate 519 

of 0.418. CCAM_OISST also has a higher false alarm rate (0.536) compared to 520 

CCAM_ERSST5. However, as with the ENSO-rainfall correlation analysis, the hit rate takes 521 

precedence in quantifying the performance of the IOD-rainfall correlation, given the 522 

significant negative correlation across most of the area in AGCD.  523 

These results indicate that CCAM is capable of simulating the DMI-rainfall correlation well 524 

when driven by OISST, a high-resolution Sea Surface Temperature (SST) product. However, 525 

the correlation is significantly underestimated when CCAM is driven by ERSST5, which has 526 

a relatively coarse resolution. This underscores the sensitivity of fine-resolution climate 527 

models like CCAM to the quality and resolution of driving SST data when simulating 528 

teleconnections between climate drivers like IOD and regional rainfall patterns. 529 

3.3 Sensitivity experiment: testing the impact on Australian rainfall of different 530 

driving SSTs 531 

In order to understand the deficiency of CCAM_ERSST5 in reproducing the NINO3.4- and 532 

DMI-rainfall correlation, the difference between OISST and ERSST5 climatology after 533 

applying spatial interpolation by CCAM is examined. Prominent differences can be found 534 

over various regions, including western boundary currents such as the Kuroshio and Gulf 535 

Stream, as well as the Antarctic Circumpolar Current. Notably, there are substantial 536 

differences surrounding the Australian continent, with variations ranging from 0.5K to 1.0K, 537 

especially during JJA (Figs. 8a and 8b). Several factors contribute to these differences, 538 

including variations in data collection and post-processing methods. However, for values 539 



close to land, the resolution of the raw product plays an important role. ERSSTv5 has a 540 

resolution of 2°×2°, which is not fine enough to resolve values near the coastline. 541 

Consequently, when fine-resolution models like CCAM are driven by coarse-resolution SSTs, 542 

the model interpolates the SSTs to match its own resolution. This interpolation process 543 

involves statistically estimating SST values close to land based on surrounding SST data. 544 

When the SST gradient from the ocean to the land is strong, the interpolated SST values near 545 

land from a coarse-resolution product (e.g., ERSST5) deviate from the observed/measured 546 

values in a high-resolution product (e.g., OISST) significantly (hereafter referred to as the 547 

“Coastal Effect”). It also illustrates that the sign-switching of the difference between 548 

interpolated OISST and ERSST5 over northern Australia, where it is in general negative 549 

(positive) in JJA (DJF) when land is cooler (warmer) than ocean there, inducing a strong 550 

negative (positive) SST gradient towards land. The “Coastal Effect” might be a possible 551 

cause explaining why CCAM_OISST tends to produce wetter conditions than 552 

CCAM_ERSST5 over some regions surrounded by warmer OISST values. Warmer SST 553 

usually increases evaporation and convection, which can lead to enhanced rainfall. It is also 554 

suspected that this local SST difference in OISST and ERSST5 due to their resolution can be 555 

responsible for the distinction of the performance of ENSO/IOD-rainfall teleconnections. 556 



 557 

Figure 8. (a, b) Differencse between annual mean OISST and ERSST5 (units: K) after 558 

applying the spatial interpolation by CCAM in (a) JJA and (b) DJF. (c) is the difference 559 

between OISST and OISST_masked (units: K), which illustrates the experimental setup 560 

for CCAM_OISST_masked. In OISST_masked, sea surface temperatures surrounding 561 

Australia’s land area are masked with temporally and spatially interpolated ERSST5, 562 

while all other regions remain consistent with OISST. 563 

 564 

An experiment was conducted to investigate the impact of the "Coastal Effect" on the 565 

ENSO/IOD-rainfall teleconnection using CCAM. Initially, ERSST5 was temporally 566 

downscaled to daily resolution using the cubic interpolation method employed in CCAM. 567 

The daily ERSST5 was then spatially interpolated to a cubic grid with the same resolution as 568 



that used in CCAM_OISST and CCAM_ERSST5. The interpolated ERSST5 data were 569 

utilized to substitute the spatially interpolated OISST in the cubic grid over Australia. This 570 

modified SST dataset was employed to drive CCAM_OISST_masked (see Fig.8c as an 571 

illustration). Notably, CCAM_OISST_masked maintained all other settings identical to 572 

CCAM_OISST, with the sole distinction being the replacement of SST values surrounding 573 

the Australian continent (including Tasmania) with interpolated ERSST5 data within a 5° 574 

proximity. 575 

 576 

Figure 9. Correlations between linearly detrended SON monthly rainfall and (a) 577 

NINO3.4 and (b) DMI, respectively, from CCAM_OISST_masked. Dotted areas 578 



highlight grids with statistically significant correlations at the 95% confidence level. 579 

Grey shading masks areas without AGCD station data within a 0.5° proximity. (c) is the 580 

12-month SPI over Australia’s land area (with the grids contain no station within a 0.5 581 

proximity in AGCD masked) for CCAM_OISST_masked. Drought categories, defined 582 

by the WMO (2012), are indicated by coloured vertical bars. 583 

 584 

The ENSO- and IOD-rainfall correlations in CCAM_OISST_masked during SON are 585 

depicted in Figs. 9a and 9b. CCAM_OISST_masked performs similarly to CCAM_OISST in 586 

terms of ENSO-related rainfall correlations, with regions displaying significant negative 587 

correlations in CCAM_OISST mostly being replicated in CCAM_OISST_masked (see Fig. 588 

6c). The hit rate for CCAM_OISST_masked is 0.727, which falls between that of 589 

CCAM_OISST (0.866) and CCAM_ERSST5 (0.527) but is much closer to the former (see 590 

Tab. 2). This suggests that CCAM_OISST_masked can still produce satisfactory ENSO-591 

rainfall teleconnections over Australia. The similarity between CCAM_OISST_masked and 592 

CCAM_OISST in SON ENSO-rainfall correlation indicates that the influence of SST on the 593 

ENSO-rainfall teleconnection is likely remote. The "Coastal Effect" and differences in SST 594 

resolutions have limited impact on the performance of ENSO-rainfall teleconnections in 595 

CCAM. In contrast, CCAM_OISST_masked exhibits a performance similar to 596 

CCAM_ERSST5 in IOD-related rainfall correlations. Both simulations yield weaker 597 

correlations compared to AGCD and CCAM_OISST. Notably, CCAM_OISST_masked does 598 

produce some significant negative correlations over the west of 120°E, which are not 599 

observed in CCAM_ERSST5. When compared to AGCD, CCAM_OISST_masked has a low 600 

hit rate of 0.402, which is much closer to CCAM_ERSST5 (0.418) than CCAM_OISST 601 

(0.875) (see Tab. 2). This indicates that masking the high-resolution SST data surrounding 602 

Australia with lower-resolution SST data can significantly affect the IOD-rainfall 603 



teleconnection in a fine-resolution model, even if conditions elsewhere remain unchanged. 604 

For the 12-month SPI (Fig. 9c), CCAM_OISST_masked fails to reproduce the 2019 drought 605 

like CCAM_ERSST5 (Fig. 5c). Conversely, it does not simulate the 2007 severe drought 606 

observed in CCAM_ERSST5. The 12-month SPI curve in CCAM_OISST_masked deviates 607 

significantly from both CCAM_OISST and CCAM_ERSST5. This suggests that the "Coastal 608 

Effect" can impact a fine-resolution model's ability to accurately simulate droughts. 609 

 Hit Rate 

Runs NINO3.4-Rainfall DMI-Rainfall 

CCAM_OISST 0.866 0.875 

CCAM_ERSST5 0.527 0.418 

CCAM_OISST_masked 0.727 0.402 

 610 

Table 2. Hit rates for correlation (significant and correct sign) between NINO3.4 or 611 

DMI and SON monthly rainfall in CCAM simulations compared to AGCD. 612 

 613 

In conclusion, the "Coastal Effect" emerges as an important factor influencing a fine-614 

resolution model's ability to capture the IOD-rainfall teleconnection over Australia during 615 

SON. While ENSO-related rainfall teleconnections appear less affected by this Coastal Effect, 616 

the impact on IOD-related rainfall teleconnections can be significant, even if conditions 617 

elsewhere remain unchanged. Additionally, accurate drought simulations can also be affected 618 

by the Coastal Effect. 619 



 620 

Figure 10. Covariance between DMI and linearly detrended 500-hPa geopotential height 621 

(shading, units: m) and wind (arrows, units: m/s) for (a) ERA5, (b) CCAM_OISST, (c) 622 

CCAM_ERSST5, and (d) CCAM_OISST_masked. 623 

 624 



To investigate why IOD-rainfall teleconnection is heavily impacted by the “Coastal Effect”, 625 

larger scale circulations associated with IOD are investigated. IOD remotely affects Australia 626 

through equivalent barotropic geopotential anomalies, commonly referred to as equivalent 627 

barotropic Rossby waves. These waves play a crucial role in transmitting IOD’s influences 628 

through atmosphere and impacting regions at higher latitudes, including Australia (Saji and 629 

Yamagata 2003, Cai et al. 2011, Gillett et al. 2022). Figure 10 illustrates the covariance 630 

between DMI and 500hPa geopotential height (GHT) and wind for ERA5 and the three 631 

CCAM runs. A wavenumber 3 wave-like pattern is somewhat evident in ERA5 and CCAM 632 

runs, although it appears weaker in CCAM runs. This indicates that CCAM is capable of 633 

simulating how the IOD signal is transported to the atmosphere and influences regions at 634 

higher latitudes through the equivalent barotropic Rossby wave. The quasi-stationary positive 635 

500hPa GHT anomaly over Australia is responsible for dry conditions during a positive IOD 636 

(pIOD) and wet conditions during a negative IOD (nIOD). However, the high-pressure 637 

anomaly is notably weaker in CCAM runs compared to ERA5, highlighting that CCAM 638 

generally produces a weaker IOD-rainfall correlation than observed. The difference in the 639 

high-pressure anomaly is further explored in Figure 11. CCAM_OISST exhibits a weaker and 640 

less extensive high-pressure anomaly compared to ERA5, resulting in a weaker IOD-induced 641 

rainfall response over southern Australia. CCAM_ERSST5, on the other hand, gives a weaker 642 

DMI-500hPa GHT covariance over western and southeast Australia than CCAM_OISST, 643 

further suppressing the IOD-rainfall response. In the case of CCAM_OISST_masked, the 644 

IOD-induced high-pressure anomaly and rainfall response are weaker than in CCAM_OISST 645 

over most of Australia. However, there is no substantial difference in the magnitude of the 646 

high-pressure anomaly between CCAM_OISST_masked and CCAM_ERSST5, except for 647 

significant positive differences over the southeastern and southwestern corners due to the 648 

displacement of low-pressure anomalies. These differences induce a stronger easterly wind 649 



from the ocean to southeastern Australia, transporting more moisture and suppressing the 650 

IOD's impact. Conversely, in the western part of Australia, stronger winds from the land 651 

enhance the IOD-rainfall correlation.  652 

 653 

Figure 11. Differences in covariance between DMI and linearly detrended 500-hPa 654 

geopotential height (shading, units: m) and wind (arrows, units: m/s) for (a) 655 

CCAM_OISST minus ERA5, (b) CCAM_ERSST5 minus CCAM_OISST, (c) 656 

CCAM_OISST_masked minus CCAM_OISST, and (d) CCAM_OISST_masked minus 657 

CCAM_OISST5. 658 

 659 

In summary, the "Coastal Effect" primarily affects the location and amplitude of the IOD-660 

induced high-pressure anomaly over Australia, which, in turn, influences the local rainfall 661 



response. However, the precise dynamical mechanisms through which the "Coastal Effect" 662 

impacts the mid-level high anomaly require further investigation.  663 



4 Discussion and Recommendation 664 

4.1 Interpretation of the results within the benchmarking framework 665 

This study has shown that CCAM_ERSST5 produces consistently smaller error metrics than 666 

CCAM_OISST across all prescribed minimum standard metrics within the benchmarking 667 

framework proposed by Isphording et al. (2023). Notably, OISST, characterized by high 668 

spatial and temporal resolution blending with satellite data, was initially anticipated to yield 669 

improved simulated regional rainfall when employed as a boundary condition for AGCM, in 670 

comparison to ERSST5. Our results have also revealed that CCAM tends to simulate a wet 671 

Australia. Therefore, advanced model evaluations are required to understand why 672 

CCAM_ERSST5 reduces the overestimation of rainfall amount over Australia.  673 

Our findings underscore the inadequacy of relying on minimum standard metrics for ranking 674 

model outputs. While the conventional model evaluation approach favours CCAM_ERSST5 675 

over CCAM_OISST based on these metrics, further examination reveals that CCAM_OISST 676 

outperforms CCAM_ERSST5 in replicating ENSO- and IOD-driven rainfall. As elucidated in 677 

Isphording et al. (2023), metrics within a benchmarking framework serve as binary indicators, 678 

filtering out simulations that fail to meet predefined performance expectations. For instance, 679 

we established a passing threshold for the mean absolute percentage bias (MAPE) in annual 680 

rainfall climatology at 0.7, designating simulations with a MAPE exceeding this threshold as 681 

unsuitable for further application. Both CCAM_OISST and CCAM_ERSST5 surpass the 682 

minimum standard metrics, indicating their capability in capturing basic Australian rainfall 683 

characteristics. However, the application of these models for specific purposes necessitates 684 

more targeted metrics. In our case, the evaluation of ENSO- and IOD-driven rainfall 685 

correlation, as highlighted in this paper, reveals the deficiency of CCAM_ERSST5 in 686 

reproducing these patterns over Australia. Consequently, CCAM_ERSST5 may not be 687 



suitable for ENSO/IOD-Australian rainfall studies. This result aligns with the perspective 688 

emphasized by Isphording et al. (2023) that the inclusion of more versatile metrics is 689 

essential in benchmarking simulations for specific fields of research. A collaborative effort 690 

within the climate research community is crucial to establish a consensus on prior 691 

performance expectations, or the passing thresholds of metrics, across diverse regions and 692 

aspects. Fostering a more robust and standardized benchmarking framework will help 693 

mitigate inconsistencies and subjectivity in assessing model performance. 694 

  695 



4.2 Uncertainty of assessing model performance in IOD-rainfall  696 

Some studies have found some disagreement between paleoclimate proxy records and 697 

observed long-term SST products (e.g., Abram et al. 2020, Pfeiffer et al. 2022), suggesting 698 

that considerable uncertainty of IOD variability might exist in long-term SST observations. 699 

This uncertainty is primarily attributed to the limited frequency and spatial coverage of 700 

observations from ships and buoys, particularly in the Southern Hemisphere and over the 701 

Indian Ocean (Freeman et al. 2017, Gopika et al. 2020). The scarcity of in situ observations 702 

introduces ambiguity into our understanding of IOD variability and, consequently, hinders an 703 

accurate representation of the IOD’s teleconnection with Australian rainfall. While the 704 

availability of satellite observations since the 1980s offers a valuable means to mitigate the 705 

uncertainty associated with IOD variability, the temporal coverage of satellite products is 706 

relatively short in the context of the IOD's characteristic timescales. This limitation is 707 

exacerbated by the relatively weak impact of IOD on Australian mean rainfall, with a 708 

correlation coefficient in the range of -0.3 to -0.4, as illustrated in Fig. 7. A robust analysis of 709 

the IOD's contribution to regional weather hence necessitates a sufficient number of IOD 710 

cases under diverse conditions. The limitations in data quality and spatiotemporal coverage of 711 

SST records thus add uncertainty in determining whether a climate model can replicate the 712 

observed IOD-rainfall relationship. 713 

Apart from that, the overlapping influence of ENSO and IOD adds complexity to rainfall 714 

variability and extremes in Australia. In fact, ENSO and IOD often occur at the same time 715 

with the same phase (Abram et al. 2020).  The correlation between monthly NINO3.4 and 716 

DMI in OISST is 0.6 during SON for the 1981-2020 period. The co-occurrence of ENSO and 717 

IOD can affect the remote impacts on local weather (e.g., Ashok et al. 2001, Cai et al. 2011, 718 

Ummenhofer et al. 2011). In the Australian context, the impacts of ENSO and IOD on rainfall 719 

often coexist (see Figs. 6 and 7). Consequently, the observed IOD-induced Australian rainfall 720 



may be partially attributed to ENSO. This interdependence implies that the observed 721 

relationship between IOD and rainfall is highly correlated to variations in ENSO, posing a 722 

challenge to the evaluation of model performance in capturing IOD-rainfall teleconnections.  723 

IOD and its associated impacts display robust internal variability. Model experiments indicate 724 

that even a minor perturbation in initial conditions can lead to a substantial spread in IOD 725 

patterns and their correlated rainfall outcomes (Ng et al. 2018, Bodman et al. 2020). 726 

Consequently, it is plausible that the observed IOD-rainfall relationship represents just one 727 

realization among multiple potential impacts of the IOD. Moreover, the pronounced 728 

interdecadal variability of the IOD (Lim et al. 2017) introduces additional uncertainty into the 729 

assessment of observed IOD impacts. This is exemplified by the weak correlation between 730 

the DMI and Australian rainfall reported by Cai et al. (2011) for the period 1979-2008, 731 

wherein significant correlations, around -0.3, are primarily confined to Southeast Australia, 732 

with correlations elsewhere seldom stronger than -0.2. Contrastingly, during the period 1982-733 

2022, as illustrated in Figure 7a, a markedly stronger correlation is observed across most of 734 

Australia. Notably, this intensified IOD-rainfall signal is predominantly contributed by the 735 

post-2000 period. Consequently, the reliability of IOD-rainfall teleconnections remains 736 

highly uncertain in the absence of sufficiently long-term and accurate SST and rainfall 737 

records. This prevailing uncertainty poses challenges in evaluating a model's ability to 738 

replicate the IOD-rainfall relationship, particularly when confidence in the observed IOD 739 

impacts remains low. 740 

  741 



5 Conclusion 742 

Our investigation utilizes the benchmarking framework proposed by Isphording et al. (2023) 743 

to assess the suitability of the variable-resolution AGCM, CCAM, for ENSO/IOD-rainfall 744 

research over Australia. We examine CCAM simulations driven by high-resolution OISST at 745 

0.25° (CCAM_OISST) and low-resolution ERSST5 at 2° (CCAM_ERSST5). Both 746 

CCAM_OISST and CCAM_ERSST5 meet prior performance expectations in terms of 747 

minimum standards of basic rainfall characteristics, including rainfall climatology, 748 

seasonality and annual trends. However, both simulations tend to overestimate mean rainfall 749 

across most of Australia, with CCAM_OISST displaying a more pronounced overestimation 750 

than CCAM_ERSST5. Further verification of CCAM simulations in SON ENSO/IOD-751 

rainfall reveals that only CCAM_OISST can replicate a realistic ENSO/IOD-rainfall 752 

relationship. Large differences in seasonal mean SST values, reaching up to 1K, between 753 

OISST and ERSST5 are found along the Australian coastline after spatial interpolation by 754 

CCAM. One potential contributor to this "Coastal Effect" is the dissimilarity in spatial 755 

resolution between the model and the driving SST. To further investigate this effect, an 756 

additional CCAM experiment, involving the replacement of SST values within a 5° proximity 757 

around the Australian continent in OISST with those from ERSST5 after spatial interpolation, 758 

underscores the sensitivity of IOD-induced rainfall to the "Coastal Effect". As a result, an 759 

accurate representation of local SST is important for model simulations in reproducing 760 

realistic IOD-rainfall responses over Australia. Moreover, climate model simulations with a 761 

considerable discrepancy in spatial resolutions between the model and the driving SST should 762 

be used with caution when analysing the impact of IOD on Australian rainfall. 763 
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