Reference
1. IPCC, 2022: Climate Change 2022: Impacts, Adaptation, and
Vulnerability. Contribution of Working Group II to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change [H.-O.
Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A.
Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama
(eds.)]. Cambridge University Press. Cambridge University Press,
Cambridge, UK and New York, NY, USA, 3056 pp.,
doi:10.1017/9781009325844.
2. Huang, L. et al. Emerging unprecedented lake ice loss in
climate change projections. Nat. Commun. 13 , 5798
(2022).
3. Wang, K. J. et al. Group 2i Isochrysidales produce
characteristic alkenones reflecting sea ice distribution. Nat.
Commun. 12 , (2021).
4. Theroux, S., D’Andrea, W. J., Toney, J., Amaral-Zettler, L. & Huang,
Y. Phylogenetic diversity and evolutionary relatedness of
alkenone-producing haptophyte algae in lakes: Implications for
continental paleotemperature reconstructions. Earth Planet. Sci.
Lett. 300 , 311–320 (2010).
5. Richter, N. et al. Phylogenetic diversity in
freshwater‐dwelling Isochrysidales haptophytes with implications for
alkenone production. Geobiology 17 , 272–280 (2019).
6. Zink, K.-G., Leythaeuser, D., Melkonian, M. & Schwark, L.
Temperature dependency of long-chain alkenone distributions in recent to
fossil limnic sediments and in lake waters. Geochim. Cosmochim.
Acta 65 , 253–265 (2001).
7. Randlett, M.-È. et al. Alkenone distribution in Lake Van
sediment over the last 270 ka: influence of temperature and haptophyte
species composition. Quat. Sci. Rev. 104 , 53–62 (2014).
8. Zheng, Y., Huang, Y., Andersen, R. A. & Amaral-Zettler, L. A.
Excluding the di-unsaturated alkenone in the U K 37 index strengthens
temperature correlation for the common lacustrine and brackish-water
haptophytes. Geochim. Cosmochim. Acta 175 , 36–46
(2016).
9. Yao, Y. et al. Phylogeny, alkenone profiles and ecology of
Isochrysidales subclades in saline lakes: Implications for paleosalinity
and paleotemperature reconstructions. Geochim. Cosmochim. Acta317 , 472–487 (2022).
10. Brassell, S. C., Eglinton, G., Marlowe, I. T., Pflaumann, U. &
Sarnthein, M. Molecular stratigraphy: a new tool for climatic
assessment. Nature 320 , 129–133 (1986).
11. Liu, Z. et al. Global Cooling During the Eocene-Oligocene
Climate Transition. Science 323 , 1187–1190 (2009).
12. Rosellmele, A. Appraisal of a molecular approach to infer variations
in surface ocean freshwater inputs into the North Atlantic during the
last glacial. Glob. Planet. Change 34 , 143–152 (2002).
13. Bendle, J., Rosell-Melé, A. & Ziveri, P. Variability of unusual
distributions of alkenones in the surface waters of the Nordic seas:
PERCENT C 37:4 IN THE NORDIC SEAS.Paleoceanography 20 , n/a-n/a (2005).
14. Liao, S. & Huang, Y. Group 2i Isochrysidales flourishes at
exceedingly low growth temperatures (0 to 6 °C). Org. Geochem.174 , 104512 (2022).
15. Tesi, T. et al. Rapid Atlantification along the Fram Strait
at the beginning of the 20th century. Sci. Adv. 7 ,
eabj2946 (2021).
16. Romero, O. E., LeVay, L. J., McClymont, E. L., Müller, J. & Cowan,
E. A. Orbital and Suborbital‐Scale Variations of Productivity and Sea
Surface Conditions in the Gulf of Alaska During the Past 54,000 Years:
Impact of Iron Fertilization by Icebergs and Meltwater.Paleoceanogr. Paleoclimatology 37 , (2022).
17. Liu, C., Zhang, X. & Wang, X. DNA metabarcoding data reveals
harmful algal-bloom species undescribed previously at the northern
Antarctic Peninsula region. Polar Biol. 45 , 1495–1512
(2022).
18. Vermassen, F. et al. Evaluating ice‐rafted debris as a proxy
for glacier calving in Upernavik Isfjord, NW Greenland. J. Quat.
Sci. 34 , 258–267 (2019).
19. Vermassen, F. et al. A Major Collapse of Kangerlussuaq
Glacier’s Ice Tongue Between 1932 and 1933 in East Greenland.Geophys. Res. Lett. 47 , (2020).
20. Egge, E. S. et al. Seasonal diversity and dynamics of
haptophytes in the Skagerrak, Norway, explored by high-throughput
sequencing. Mol. Ecol. 24 , 3026–3042 (2015).
21. Enberg, S., Majaneva, M., Autio, R., Blomster, J. & Rintala, J.
Phases of microalgal succession in sea ice and the water column in the
Baltic Sea from autumn to spring. Mar. Ecol. Prog. Ser.599 , 19–34 (2018).
22. Kaiser, J. et al. Changes in long chain alkenone
distributions and Isochrysidales groups along the Baltic Sea salinity
gradient. Org. Geochem. 127 , 92–103 (2019).
23. Schwab, V. F. & Sachs, J. P. Hydrogen isotopes in individual
alkenones from the Chesapeake Bay estuary. Geochim. Cosmochim.
Acta 75 , 7552–7565 (2011).
24. Longo, W. M. et al. Temperature calibration and
phylogenetically distinct distributions for freshwater alkenones:
Evidence from northern Alaskan lakes. Geochim. Cosmochim. Acta180 , 177–196 (2016).
25. Yao, Y. et al. New insights into environmental controls on
the occurrence and abundance of Group I alkenones and their paleoclimate
applications: Evidence from volcanic lakes of northeastern China.Earth Planet. Sci. Lett. 527 , 115792 (2019).
26. Keck, F. et al. Assessing the response of micro-eukaryotic
diversity to the Great Acceleration using lake sedimentary DNA.Nat. Commun. 11 , 3831 (2020).
27. Bielewicz, S. et al. Protist diversity in a permanently
ice-covered Antarctic Lake during the polar night transition. ISME
J. 5 , 1559–1564 (2011).
28. Li, W., Podar, M. & Morgan-Kiss, R. M. Ultrastructural and
Single-Cell-Level Characterization Reveals Metabolic Versatility in a
Microbial Eukaryote Community from an Ice-Covered Antarctic Lake.Appl. Environ. Microbiol. 82 , 3659–3670 (2016).
29. Simon, M., López‐García, P., Moreira, D. & Jardillier, L. New
haptophyte lineages and multiple independent colonizations of freshwater
ecosystems. Environ. Microbiol. Rep. 5 , 322–332.
30. Hamisi, M., Lugomela, C., Lyimo, T., Bergman, B. & Díez, B.
Plankton composition, biomass, phylogeny and toxin genes in Lake Big
Momela, Tanzania. Afr. J. Aquat. Sci. 42 , 109–121
(2017).
31. Alves-de-Souza, C. et al. Does environmental heterogeneity
explain temporal β diversity of small eukaryotic phytoplankton? Example
from a tropical eutrophic coastal lagoon. J. Plankton Res.39 , 698–714 (2017).
32. Endo, H., Ogata, H. & Suzuki, K. Contrasting biogeography and
diversity patterns between diatoms and haptophytes in the central
Pacific Ocean. Sci. Rep. 8 , 10916 (2018).
33. Ellegaard, M., Moestrup, Ø., Joest Andersen, T. & Lundholm, N.
Long-term survival of haptophyte and prasinophyte resting stages in
marine sediment. Eur. J. Phycol. 51 , 328–337 (2016).
34. Toney, J. L. et al. Culturing of the first 37:4 predominant
lacustrine haptophyte: Geochemical, biochemical, and genetic
implications. Geochim. Cosmochim. Acta 78 , 51–64
(2012).
35. Theroux, S. et al. Successional blooms of alkenone‐producing
haptophytes in Lake George, North Dakota: Implications for continental
paleoclimate reconstructions. Limnol. Oceanogr. (2019)
doi:10.1002/lno.11311.
36. Meire, L. et al. Marine-terminating glaciers sustain high
productivity in Greenland fjords. Glob. Change Biol. 23 ,
5344–5357 (2017).
37. Gérikas Ribeiro, C., dos Santos, A. L., Gourvil, P., Le Gall, F.,
Marie, D., Tragin, M., … & Vaulot, D. Culturable diversity of Arctic
phytoplankton during pack ice melting. Elem Sci
Anth , 8 , 6. (2020)
38. Alkhamis, Y. & Qin, J. G. Cultivation of Isochrysis galbanain Phototrophic, Heterotrophic, and Mixotrophic Conditions. BioMed
Res. Int. 2013 , 1–9 (2013).
39. Alkhamis, Y. & Qin, J. G. Comparison of N and P requirements of
Isochrysis galbana under phototrophic and mixotrophic conditions.J. Appl. Phycol. 27 , 2231–2238 (2015).
40. Alkhamis, Y. & Qin, J. G. Comparison of pigment and proximate
compositions of Tisochrysis lutea in phototrophic and mixotrophic
cultures. J. Appl. Phycol. 28 , 35–42 (2016).
41. Godrijan, J., Drapeau, D. & Balch, W. M. Mixotrophic uptake of
organic compounds by coccolithophores. Limnol. Oceanogr.65 , 1410–1421 (2020).
42. Dolhi, J. M., Teufel, A. G., Kong, W. & Morgan-Kiss, R. M.
Diversity and spatial distribution of autotrophic communities within and
between ice-covered Antarctic lakes (McMurdo Dry Valleys): Autotrophic
communities in Antarctic lakes. Limnol. Oceanogr. 60 ,
977–991 (2015).
43. Kaiser, J., van der Meer, M. T. J. & Arz, H. W. Long-chain
alkenones in Baltic Sea surface sediments: New insights. Org.
Geochem. 112 , 93–104 (2017).
44. Coolen, M. Combined DNA and lipid analyses of sediments reveal
changes in Holocene haptophyte and diatom populations in an Antarctic
lake. Earth Planet. Sci. Lett. 223 , 225–239 (2004).
45. Egge, E. et al. 454 Pyrosequencing to Describe Microbial
Eukaryotic Community Composition, Diversity and Relative Abundance: A
Test for Marine Haptophytes. PLoS ONE 8 , e74371 (2013).
46. Deagle, B. E. et al. Counting with DNA in
metabarcoding studies: How should we convert sequence reads to dietary
data? Mol. Ecol. 28 , 391–406 (2019).
47. Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES
Science Gateway for inference of large phylogenetic trees. in 2010
Gateway Computing Environments Workshop (GCE) 1–8 (IEEE, 2010).
doi:10.1109/GCE.2010.5676129.
48. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and
post-analysis of large phylogenies. Bioinformatics 30 ,
1312–1313 (2014).