References
Adams CIM, Hepburn C, Jeunen G, et al (2023) Environmental DNA reflects common haplotypic variation. Environ DNA 5:906–919. https://doi.org/10.1002/edn3.352
Adams CIM, Knapp M, Gemmell NJ, et al (2019) Beyond Biodiversity: Can environmental DNA (eDNA) cut it as a population genetics tool? Genes 10:192. https://doi.org/10.3390/genes10030192
Allendorf FW, Funk WC, Aitken SN, et al (2022) Population Subdivision. In: Allendorf FW, Funk WC, Aitken SN, et al. (eds) Conservation and the Genomics of Populations. Oxford University Press, Oxford, pp 172–203
Andres KJ, Lodge DM, Andrés J (2023a) Environmental DNA reveals the genetic diversity and population structure of an invasive species in the Laurentian Great Lakes. Proc Natl Acad Sci 120:e2307345120. https://doi.org/10.1073/pnas.2307345120
Andres KJ, Lodge DM, Sethi SA, Andrés J (2023b) Detecting and analysing intraspecific genetic variation with eDNA: From population genetics to species abundance. Mol Ecol 32:4118–4132. https://doi.org/10.1111/mec.17031
Andres KJ, Sethi SA, Lodge DM, Andrés J (2021) Nuclear eDNA estimates population allele frequencies and abundance in experimental mesocosms and field samples. Mol Ecol 30:685–697. https://doi.org/10.1111/mec.15765
Berner (2019) Allele Frequency Difference AFD –An intuitive alternative to F ST for quantifying genetic population differentiation. Genes 10:308. https://doi.org/10.3390/genes10040308
Bohonak AJ, Roderick GK (2001) Dispersal of invertebrates among temporary ponds: Are genetic estimates accurate? Isr J Zool 47:367–386
Bohonak AJ, Vandergast AG (2011) The value of DNA sequence data for studying landscape genetics. Mol Ecol 20:2477–2479. https://doi.org/10.1111/j.1365-294X.2011.05122.x
Bolyen E, Rideout JR, Dillon MR, et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9
Bowcock AM, Ruiz-Linares A, Tomfohrde J, et al (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368:455–457. https://doi.org/10.1038/368455a0
Bowman J, Greenhorn JE, Marrotte RR, et al (2016) On applications of landscape genetics. Conserv Genet 17:753–760. https://doi.org/10.1007/s10592-016-0834-5
Callahan BJ, McMurdie PJ, Rosen MJ, et al (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869
Chihara L, Loy A (2023) CarletonStats: Functions for Statistics Classes at Carleton College
Couton M, Viard F, Altermatt F (2023) Opportunities and inherent limits of using environmental DNA for population genetics. Environ DNA 5:1048–1064. https://doi.org/10.1002/edn3.448
Diniz‐Filho JAF, De Campos Telles MP (2002) Spatial autocorrelation analysis and the identification of operational units for conservation in continuous populations. Conserv Biol 16:924–935. https://doi.org/10.1046/j.1523-1739.2002.00295.x
Doi H, Nakamura K (2023) Special issue: Environmental DNA as a practical tool for aquatic conservation and restoration. Landsc Ecol Eng 19:1–2. https://doi.org/10.1007/s11355-022-00534-6
El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839. https://doi.org/10.1007/BF00221895
Fukuzawa T, Shirakura H, Nishizawa N, et al (2023) Environmental DNA extraction method from water for a high and consistent DNA yield. Environ DNA 5:627–633. https://doi.org/10.1002/edn3.406
Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19. https://doi.org/10.18637/jss.v022.i07
Hall T (1999) BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98.
Hudson RR, Boos DD, Norman L. Kaplan (1992) A statistical test for detecting geographic subdivision. Mol Biol Evol 9:138–151. https://doi.org/10.1093/oxfordjournals.molbev.a040703
Ito N, Gotoh RO, Shirakuma T, et al (2018) Genetic structure of glacial-relict populations of a freshwater sculpin, Cottus nozawae , in Yamagata area of the Tohoku district. Biogeography 20:96–102. https://doi.org/10.11358/biogeo.20.96
Jo T, Murakami H, Masuda R, et al (2017) Rapid degradation of longer DNA fragments enables the improved estimation of distribution and biomass using environmental DNA. Mol Ecol Resour 17:e25–e33. https://doi.org/10.1111/1755-0998.12685
Leroy G, Carroll EL, Bruford MW, et al (2018) Next‐generation metrics for monitoring genetic erosion within populations of conservation concern. Evol Appl 11:1066–1083. https://doi.org/10.1111/eva.12564
Liu Z, Kishe MA, Gabagambi NP, et al (2024) Nuclear environmental DNA resolves fine-scale population genetic structure in an aquatic habitat. iScience 27:108669. https://doi.org/10.1016/j.isci.2023.108669
Macé B, Hocdé R, Marques V, et al (2022) Evaluating bioinformatics pipelines for population-level inference using environmental DNA. Environ DNA 4:674–686. https://doi.org/10.1002/edn3.269
Manel S, Holderegger R (2013) Ten years of landscape genetics. Trends Ecol Evol 28:614–621. https://doi.org/10.1016/j.tree.2013.05.012
Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197. https://doi.org/10.1016/S0169-5347(03)00008-9
Marshall NT, Stepien CA (2019) Invasion genetics from eDNA and thousands of larvae: A targeted metabarcoding assay that distinguishes species and population variation of zebra and quagga mussels. Ecol Evol 9:3515–3538. https://doi.org/10.1002/ece3.4985
Morin PA, Foote AD, Baker CS, et al (2018) Demography or selection on linked cultural traits or genes? Investigating the driver of low mtDNA diversity in the sperm whale using complementary mitochondrial and nuclear genome analyses. Mol Ecol 27:2604–2619. https://doi.org/10.1111/mec.14698
Nakajima S, Sueyoshi M, Hirota SK, et al (2021) A strategic sampling design revealed the local genetic structure of cold-water fluvial sculpin: a focus on groundwater-dependent water temperature heterogeneity. Heredity 127:413–422. https://doi.org/10.1038/s41437-021-00468-z
Nakajima S, Suzuki H, Nakatsugawa M, et al (2023) Inferring future changes in gene flow under climate change in riverscapes: a pilot case study in fluvial sculpin. Landsc Ecol 38:1351–1362. https://doi.org/10.1007/s10980-023-01633-x
Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci 70:3321–3323. https://doi.org/10.1073/pnas.70.12.3321
Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4:347–354. https://doi.org/10.1111/j.1365-294X.1995.tb00227.x
R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, et al (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34:3299–3302. https://doi.org/10.1093/molbev/msx248
Ruppert KM, Kline RJ, Rahman MS (2019) Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Glob Ecol Conserv 17:e00547. https://doi.org/10.1016/j.gecco.2019.e00547
Saitoh T (2021) High variation of mitochondrial DNA diversity as compared to nuclear microsatellites in mammalian populations. Ecol Res 36:206–220. https://doi.org/10.1111/1440-1703.12190
Savary P, Foltête J, Moal H, et al (2021) Analysing landscape effects on dispersal networks and gene flow with genetic graphs. Mol Ecol Resour 21:1167–1185. https://doi.org/10.1111/1755-0998.13333
Sigsgaard EE, Jensen MR, Winkelmann IE, et al (2020) Population‐level inferences from environmental DNA—Current status and future perspectives. Evol Appl 13:245–262. https://doi.org/10.1111/eva.12882
Sigsgaard EE, Nielsen IB, Bach SS, et al (2016) Population characteristics of a large whale shark aggregation inferred from seawater environmental DNA. Nat Ecol Evol 1:0004. https://doi.org/10.1038/s41559-016-0004
Slatkin M, Barton NH (1989) A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43:1349–1368. https://doi.org/10.1111/j.1558-5646.1989.tb02587.x
Snyder MR, Stepien CA (2020) Increasing confidence for discerning species and population compositions from metabarcoding assays of environmental samples: case studies of fishes in the Laurentian Great Lakes and Wabash River. Metabarcoding Metagenomics 4:e53455. https://doi.org/10.3897/mbmg.4.53455
Sommer S, McDevitt AD, Balkenhol N (2013) Landscape genetic approaches in conservation biology and management. Conserv Genet 14:249–251. https://doi.org/10.1007/s10592-013-0473-z
Suyama Y, Matsuki Y (2015) MIG-seq: an effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform. Sci Rep 5:16963. https://doi.org/10.1038/srep16963
Suzuki K, Ishiyama N, Koizumi I, Nakamura F (2021) Combined effects of summer water temperature and current velocity on the distribution of a cold-water-adapted sculpin (Cottus nozawae ). Water 13:975. https://doi.org/10.3390/w13070975
Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680. https://doi.org/10.1093/nar/22.22.4673
Toews DPL, Brelsford A (2012) The biogeography of mitochondrial and nuclear discordance in animals. Mol Ecol 21:3907–3930. https://doi.org/10.1111/j.1365-294X.2012.05664.x
Tsuji S, Maruyama A, Miya M, et al (2020a) Environmental DNA analysis shows high potential as a tool for estimating intraspecific genetic diversity in a wild fish population. Mol Ecol Resour 20:1248–1258. https://doi.org/10.1111/1755-0998.13165
Tsuji S, Miya M, Ushio M, et al (2020b) Evaluating intraspecific genetic diversity using environmental DNA and denoising approach: A case study using tank water. Environ DNA 2:42–52. https://doi.org/10.1002/edn3.44
Tsuji S, Shibata N, Inui R, et al (2023) Environmental DNA phylogeography: Successful reconstruction of phylogeographic patterns of multiple fish species from cups of water. Mol Ecol Resour 23:1050–1065. https://doi.org/10.1111/1755-0998.13772
Turon X, Antich A, Palacín C, et al (2020) From metabarcoding to metaphylogeography: separating the wheat from the chaff. Ecol Appl 30:e02036. https://doi.org/10.1002/eap.2036
Wakimura K, Uchii K, Kikko T (2023) Evaluation of genetic diversity in an endangered fish Gnathopogon caerulescens using environmental DNA and its potential use in fish conservation. Environ DNA 5:973–986. https://doi.org/10.1002/edn3.408
Wang IJ (2010) Recognizing the temporal distinctions between landscape genetics and phylogeography. Mol Ecol 19:2605–2608. https://doi.org/10.1111/j.1365-294X.2010.04715.x
Wang IJ (2011) Choosing appropriate genetic markers and analytical methods for testing landscape genetic hypotheses. Mol Ecol 20:2480–2482. https://doi.org/10.1111/j.1365-294X.2011.05123.x
Weitemier K, Penaluna BE, Hauck LL, et al (2021) Estimating the genetic diversity of Pacific salmon and trout using multigene eDNA metabarcoding. Mol Ecol 30:4970–4990. https://doi.org/10.1111/mec.15811
Yamamoto S (2019) Genetic population structure of Japanese river sculpinCottus pollux (Cottidae) large‐egg type, inferred from mitochondrial DNA sequences. J Fish Biol 94:325–329. https://doi.org/10.1111/jfb.13890
Yokoyama R, Goto A (2002) Phylogeography of a freshwater sculpin,Cottus nozawae , from the northeastern part of Honshu Island, Japan. Ichthyol Res 49:147–155. https://doi.org/10.1007/s102280200019