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Abstract18

Seismic waves contain information about the earthquake source, the geologic structure19

they traverse, and many forms of noise. Separating the noise from the earthquake is a20

difficult task because optimal parameters for filtering noise typically vary with time and,21

if chosen inappropriately, may strongly alter the original seismic waveform. Diffusion mod-22

els based on Deep Learning (DL) have demonstrated remarkable capabilities in restor-23

ing images and audio signals. However, those models assume a Gaussian distribution of24

noise, which is not the case for typical seismic noise. Motivated by the effectiveness of25

”cold” diffusion models in speech enhancement, medical anomaly detection, and image26

restoration, we present a cold variant for seismic data restoration. We describe the first27

Cold Diffusion Model for Seismic Denoising (CDiffSD), including key design aspects, model28

architecture, and noise handling. Using metrics to quantify the performance of CDiffSD29

models compared to previous works, we demonstrate that it provides a new standard in30

performance. CDiffSD significantly improved the Signal to Noise Ratio (SNR) by about31

18% compared to previous models. It also enhanced Cross-correlation by 6%, showing32

a better match between denoised and original signals. Moreover, testing revealed a 50%33

increase in the recall of P-wave picks for seismic picking. Our work show that CDiffSD34

outperforms existing benchmarks, further underscoring its effectiveness in seismic data35

denoising and analysis. Additionally, the versatility of this model suggests its potential36

applicability across a range of tasks and domains, such as GNSS, Lab Acoustic Emis-37

sion, and DAS data, offering promising avenues for further utilization.38

Plain Language Summary39

Seismic waves contain clues about earthquakes and what’s beneath the Earth’s sur-40

face, but any recording of these waves is often mixed with unwanted sounds or distur-41

bances to varying degrees. It’s important to filter out these disturbances from the earth-42

quake recordings to improve their clarity and, as a result, make any further analysis more43

accurate. However, this can be tricky because the nature of these disturbances can change44

over time, including their amplitude, or by analogy to audio: how loud they are and their45

pitch of high and low notes. Our work removes noise and thus cleans up recordings to46

make them more understandable. Recently, advanced computer methods that are good47

for improving images and sounds have shown promising results. But, these methods usu-48

ally look for disturbances that follow a certain pattern, which does not always work for49

more complex disturbances found in earthquake data. To address this, we introduce a50

strategy called the Cold Diffusion Model for Seismic Denoising (CDiffSD). This strat-51

egy is tailor-made to deal with the specific kinds of disturbances found in earthquake data,52

and it does a better job than previous methods at removing noise and making the earth-53

quake recordings clear again, providing a new standard in this area of study.54

1 Introduction55

Seismograms contain signals generated by earthquakes and by other unidentified56

sources categorized in general as ’noise’ (e.g., oceanic waves, wind, vehicular traffic, sonic57

booms, quarry activities, and instrument malfunctions.). It is standard practice in seis-58

mology to denoise waveforms to improve the performance of the subsequent analyses,59

such as P- and S-wave onset picking, earthquake source moment tensor inversion, and60

techniques of exploration seismology. Most commonly and in routine analysis, denois-61

ing is performed through bandpass filtering. However recent works have proposed sev-62

eral more sophisticated schemes to ”clean” seismic traces. These include methods based63

on the independent component analysis (ICA) (Comon, 1994; Cabras et al., 2010; Moni64

et al., 2012), beamforming methods (Gibbons et al., 2008; Boué et al., 2013; Brooks et65

al., 2009), and MUltiple SIgnal Classification(MUSIC) (Schmidt, 1986; Bear et al., 1999).66
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All of these methods, however, can fall short when the noise shares frequencies with the67

earthquake generated signal.68

Denoising models have evolved to incorporate time-frequency methods, with tech-69

niques like the Wavelet transform (Gaci, 2014; Siyuan & Xiangpeng, 2005; W. Liu et al.,70

2016; Zhang & Ulrych, 2003; S. Cao & Chen, 2005; Mousavi & Langston, 2017), the Short-71

Time Fourier Transform (STFT) (Mousavi & Langston, 2016), the S-transform (Tselentis72

et al., 2012), and other transformation-decomposition methods (Hennenfent & Herrmann,73

2006; Bekara & der Baan, 2009; Neelamani et al., 2008; Han & van der Baan, 2015; Y. Liu74

et al., 2013; Chen & Ma, 2014; Shan et al., 2009; Tang & Ma, 2011). These techniques75

have proven useful but the emergence of deep learning (DL) has provided new strate-76

gies with improved performance. A notable development in this area is the Deep Denoiser77

(DD) model (Zhu et al., 2019). The DD approach is based on a UNet architecture, which78

generates dual masks for seismic and noise signals, enhancing waveform extraction. An-79

other notable approach is that of van den Ende et al. (2021) who employed DL to de-80

noise Fiber-optic Distributed Acoustic Sensing (DAS) data. They demonstrate the po-81

tency of DL to enhance the quality of DAS and seismic data. Similarly, the Novoselov82

et al. (2022) project, utilizing a Dual-Path Recurrent Neural Network(DPRNN), led to83

another substantial stride in the application of deep learning for seismic signal denois-84

ing. These studies not only validate the efficacy of deep learning methods in seismic noise85

reduction but also pave the way for further innovations in this field.86

Here we built on this topic, drawing parallels with techniques used in speech en-87

hancement, a field closely related to seismic denoising. Speech enhancement has recently88

seen the use of models such as GANs (Pascual et al., 2017; Donahue et al., 2018; R. Cao89

et al., 2022; Kim et al., 2021) and VAEs (Fang et al., 2021; Leglaive et al., 2020, 2018;90

Bie et al., 2022). However, the recent trend points to the growing success of Diffusion91

Models (Sohl-Dickstein et al., 2015; Ho et al., 2020), which are now outperforming their92

predecessors (GAN & VAE) see (Lu et al., 2022; Richter et al., 2023). Using techniques93

like cold diffusion or Gaussian diffusion for denoising presents several advantages over94

approaches that use binary masks, especially in terms of flexibility, reconstruction qual-95

ity, and the ability to handle complex noise; while binary generally retain advantages in96

terms of simplicity, speed, interpretability, and computational efficiency. Here, we inves-97

tigate the application of diffusion models for seismic denoising. These models typically98

transform the input into an isotropic Gaussian distribution through the consistent ad-99

dition of Gaussian noise. In the reverse process, diffusion probabilistic models aim to re-100

move the anticipated noise from the corrupted input, thus recovering the original sig-101

nal. A pioneering approach to seismic denoising using diffusion models with Gaussian102

noise was introduced by (Durall et al., 2023), specifically applied on shot gathers used103

for seismic imaging and exploration.104

This challenge led us to explore the emerging Cold Diffusion model (Bansal et al.,105

2022; Yen et al., 2023), which adapts the diffusion process by replacing Gaussian noise106

with other types of noise and signal degradation processes. The Cold Diffusion model107

demonstrates how diffusion models can effectively restore signals impaired by various types108

of degradation. Its inherent properties make it particularly suitable for tasks such as speech109

source separation in practical settings with non-Gaussian noise. Building on this, our110

research aims to adapt the cold diffusion paradigm for seismic trace denoising. This adap-111

tation involves specific modifications, primarily in the sampling algorithm, to suit the112

unique challenges of seismic data. The result is a Cold Diffusion Model for Seismic De-113

noising (CDiffSD).114

Here we list the key points and novel aspects of our model:115

• First to Utilize Cold Diffusion with Seismic Noise: This research pioneers the ap-116

plication of the Cold Diffusion model, adapting it to handle noise directly recorded117

from seismic stations.118
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• Promising Technique to facilitate downstream tasks: CDiffSD shows promising re-119

sults in impoving downstream tasks, such as phase picking, even in scenarios where120

background noise levels are nearly as high as the earthquake signals themselves121

• Thorough validation on reference benchmarks: The CDiffSD model not only in-122

troduces a new methodology but also demonstrates its capability to surpass ex-123

isting strong baselines such as DeepDenoiser, a commonly-used benchmark which124

is a reference for denoising.125

• Adaptation to Non-Gaussian Noise: Recognizing the limitations of traditional dif-126

fusion models that assume a Gaussian distribution of noise—which is often not127

the case in seismic applications—the paper introduces a ”cold” variant of diffu-128

sion models. This adaptation is specifically tailored to restore clean and noisy seis-129

mic traces more effectively.130

2 Methods131

The model we propose is based on a generalization of diffusion models, termed the132

Cold Diffusion model. In this section we introduce the model. Additional details are found133

in Appendix A (Diffusion Model) and Appendix B (Cold Diffusion Model).134

2.1 Proposed Method: Cold Diffusion Seismic Denoising (CDiffSD)135

Problem formulation: The core of our CDiffSD (Cold Diffusion Model for Seis-136

mic Denoising) involves degrading a one-dimensional earthquake, in the form of a seis-137

mic record, x0 (the target), with recorded seismic noise xn, to produce xT (noisy signal):138

xT = x0 + xn ∗NRF (1)

Here, x0 represents an earthquake recorded by a seismometer, while x0 serves as a ’clean’139

sample in our context, it’s important to note that it inherently contains some level of140

noise, given its real (non-synthetic) origin. Since we deal with normalized earthqaukes141

and noises in the range of [−1, 1] (for more details on the normalization process see 2.1.1);142

the Noise Reduce Factor (NRF) is a key element in our specific analysis. It’s responsi-143

ble for calibrating the amplitude of the noise signal (xn) in relation to the earthquake144

signal’s amplitude, often indicated by the amplitude of S-waves in the data. By choos-145

ing a NRF value within the range 0.4 to 0.65, we ensure that the noise does not dom-146

inate the trace compared to the earthquake. We work with data from different stations147

that independently record noise and earthquake signals. It’s worth mentioning that we148

mix earthquake x0 and noise xn recorded from different seismic stations, to improve gen-149

eralizability and robustness.150

Training: Regarding the specific operation of cold diffusion models, our approach151

is delineated using the improved training algorithm proposed by (Yen et al., 2023):152

Concerning the forward diffusion process degradation see Appendix.A Diffusion Model,153

we can rephrase the degradation at time t as follows:154

xt = DxT
(x0, t) =

√
αtx0 +

√
1− αtxT (2)

where x0 is the recorded earthquake, xt = x0+xn ∗NRF and α ∈ [0, 1] is the param-155

eter interpolation weight. α can also be regarded as the amount of information retained156

in the diffusion process, and it can alternatively be defined as 1 − β, where beta rep-157

resents the amount of noise introduced in the degradation, such parameters are defined158

a priori by a scheduler: {βt ∈ (0, 1)
T
t=1}.159
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Algorithm 1 Cold Diffusion Enhanced Training

for n = 1, ...., Niter do
Sample clean data x0

Sample t ∼ Uniform({1, ...., T})
xt ← D(x0, t), x̂0 ← Rθ(xt, t)
Sample t

′ ∼ Uniform({1, ...., t})
x̂t′ ← D(x̂0, t

′
), ˆ̂x0 ← Rθ(x̂t′ , t

′
)

Take gradient descent step on ∇θ(||x̂0 − x0||1 + ||ˆ̂x0 − x0||1)
end for

t: Represents a chosen random timestep within the predefined range [1, T ]160

t′: Signifies an earlier timestep than t, facilitating a recursive learning process where161

the model iterates through noise addition and removal at progressively earlier mo-162

ments.163

xt: Result of the degradation applied to the signal x0 following the forward process164

as a function of t165

D(x0, t): Refers to the degradation applied to the signal x0 following the forward process166

as a function of t167

Rθ(xt, t): Refers to the reconstruction applied to the signal xt and it results in producing:168

x̂0169

x̂0: the result of the Restoration: Rθ(xt, t)170

x̂t′ : Result of the degradation applied to the signal x̂0 following the forward process171

as a function of t′172

ˆ̂x0: the result of the Restoration: Rθ(x̂t′ , t
′
)173

This method improves the model’s ability to learn during training, especially when deal-174

ing with unusual, non-Gaussian noise. In the training stage, the model picks a random175

timestep t from the range [1,T]. At this time, noise is added to the signal, followed by176

a cleaning step. This is important because it teaches the model to remove noise, mim-177

icking the denoising process. The model’s learning is deepened by repeating these steps178

at an earlier moment t′, where t′ < t. Here, the model works not with the original earth-179

quake data but with the signal that was cleaned in the previous step. This signal is made180

noisy again up to the new time t′ and cleaned once more. By doing this over different181

times, the model learns more effectively, getting better at handling the complex types182

of noise found in real data. The training approach is designed to be forgiving of mistakes183

that can happen when choosing moments to sample from. As outlined in Algorithm 1,184

the training includes using x̂t′ , the cleaned signal. This introduces a way to deal with185

potential alignment mistakes that might happen during sampling.186

Sampling: Regarding the sampling, our model employ the same approach as187

used in ”Cold diffusion for speech enhancement”. Specifically, we take the sampling al-188

gorithm 4 in Appendix.B and substitute how xt−1 is calculated. In detail, our new xt−1189

becomes:190

xt−1 ←
√
αt−1x̂0 +

√
1− αt−1√
1− αt

(xt −
√
αtx̂0) (3)191
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2.1.1 Input Assumptions192

Uniform
Sampler

Batch = [1,3,3,5] Prediction
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2.
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Figure 1. The figure represents the overall framework of our model. Specifically, it shows

the handling of the input throughout the entire process: 1.Forward process definition in the

yellow box at the top left, we see an example of forward diffusion with T=5 (T = 5 for graphical

reasons). 2.Uniform Sampler involves uniform sampling [1,T]. 3.Batch At the bottom left, we

find an example of a drawn batch (batch size = 4). This batch provides us with different levels of

noise at the extracted time T. The batch, noised according to the rules of the previously defined

forward process, is passed to 4.Denoising UNet model, which returns 5.Predicion. This pre-

diction is then 6.Compute Loss compared with the original input, resulting in the calculation

of the loss.

In our seismic denoising approach, we separately normalize the noise and earth-193

quake data. We adopt a trace-specific method, normalizing each seismic trace (earth-194

quake and noise) across its East-West (E), North-South (N), and Vertical (Z) channels.195

This normalization process aligns the maximum and minimum values within these chan-196

nels, standardizing the data to a range of [-1,1]. Such an approach ensures that each com-197

ponent retains its relative amplitude, enabling precise and balanced analysis. This also198

enhances generalizability for each type of seismic trace that the end user wants to de-199

noise.200

In the training phase for each seismic trace, we begin by merging a normalized earth-201

quake trace with a normalized noise trace. The noise component is scaled using the NRF ,202

adjusting its intensity in the noisy signal before the forward process is applied.203

The creation of the ’noisy signal’ xT , a combination of the earthquake and scaled204

noise signals, leads to the ’forward process’ see Fig. 1. Here, a stochastic variable t, rang-205

ing from 0 to a predetermined maximum T, is chosen for further noise modulation. At206

t = 0, we have a recorded earthquake signal with no additional noise, whereas at t =207

T , the noise is at its full scale.208
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2.1.2 Model Configuration209
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Figure 2. CDiffSD combines convolutional layers, ResNet blocks, attention mechanisms, and

positional encoding (with positional encoding detailed in the bottom plots) for effective one-

dimensional data processing.

In this subsection, we detail the model described in step 4, the Denoising UNet model,210

of Fig. 1. As a building block of the diffusion model, we adopt a neural network model211

inspired by the 1D U-Net (Ronneberger et al., 2015) design, for the processing of one-212

dimensional data streams such as time series or audio signals. The network begins with213

1D convolutional layers, each equipped with 64 filters of a kernel dimension of 7, instru-214

mental for the initial extraction of salient features. This is followed by the integration215

of temporal processing units that leverage sinusoidal positional encoding to effectively216

capture the temporal intricacies inherent within the data. These units then employ two217

linear layers dedicated to feature refinement and are paired with the Gaussian Error Lin-218

ear Unit (GELU) (Hendrycks & Gimpel, 2016) activation function to instill the requi-219

site non-linearity. As the architecture progresses, it introduces dimensionality manip-220

ulation layers consisting of ResNet modules (He et al., 2016) pivotal for feature conser-221

vation during downsampling and 1D convolutional layers for further data refinement. Post-222

downsampling, a series of upsampling layers are implemented, designed to elevate data223

dimensionality by merging ResNet blocks with dedicated upsampling operations. A note-224

worthy feature of our design is the mid-level blocks, each outfitted with dual residual units.225

They exploit attention mechanisms importal for highlighting pertinent data character-226

istics. The network culminates with terminal residual blocks that are succeeded by 1D227

convolutional layers, making definitive outputs typically manifest as singular channels.228

The U-Net block is applied for each iteration of the diffusion model from each ti to 0 and229

then again from ti−1 to 0 and so on until the end of the process.230

We trained models with 3 configurations: T = 20, T = 100, T = 300. These di-231

verse scheduler assumptions allowed us to evaluate how performance metrics vary with232
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increasing T, highlighting the trade-off between model performance and computation time,233

which is a crucial consideration in seismic monitoring room operations where balancing234

processing speed and precision is essential.235

Particularly in the inference phase, understanding the impact of T on both model236

performance and computational efficiency is vital. For applications requiring rapid trace237

processing, like real-time seismic monitoring, a preference for speed may be necessary,238

though it could impact precision. Conversely, in tasks where accuracy is the priority, such239

as dataset cleaning, a greater emphasis on precision may be warranted, even at the ex-240

pense of longer processing times.241

We compared our approach using the same seismic dataset with DD, that we con-242

sider as benchmark. For this task, DD underwent comprehensive training for 400 epochs,243

while our model completed its training in just 150 epochs. This difference was due to244

our model’s learning dynamics and efficiency. We initiated our model’s training with a245

learning rate of 1e-3 and employed a scheduler to reduce this rate gradually, ensuring246

controlled and stable convergence.247

2.1.3 Inference with Direct and Sampling Reconstruction248

Cold diffusion models involve distinct methods to reconstruct the signal including249

the adoption of direct or sampling reconstruction. These methods represent approaches250

within the framework of diffusion models, each with unique operational mechanisms and251

implications for model performance. Understanding the nuances of these methods is vi-252

tal for comprehending the overall efficacy and application potential of diffusion models.253

For the range of configurations used in training our models (T = [20, 100, 300]),254

we applied these configurations to both direct and sampling reconstruction. In the con-255

text of diffusion models, the distinction between ’direct’ and ’sampling’ approaches is256

pronounced, marked by their differing operational mechanisms.257

The ’direct’ method involves applying the reverse process using the U-Net archi-258

tecture to transition from a specific timestep tn directly to zero. Conversely, the ’sam-259

pling’ method incrementally applies this reverse transition from a specific timestep tn260

to zero, but crucially, it traverses through all intermediate timesteps ti, where i ∈ [n−261

1, 0]. This results in applying the U-Net architecture multiple times (n).262

A key aspect of the cold diffusion paradigm is evaluating the effectiveness of the263

sampling procedure, which is hypothesized to outperform the direct approach. If the di-264

rect method, particularly using U-Net alone, yields comparable results, it would call into265

question the necessity of the complex training infrastructure typically associated with266

diffusion models. We provide a detailed comparison between the direct and sampling meth-267

ods in section 4.268

2.1.4 Metrics269

For enhanced clarity, we define here the metrics used in our study now and then270

in Section 4 we provide a detailed commentary on the results.271

1. Signal to Noise Ratio (SNR) is a measure used to compare the level of a sig-272

nal (earthquake in this case) to the level of background noise. A higher SNR in-273

dicates that the seismic signal stands out clearly from the background noise, fa-274

cilitating accurate analysis and interpretation. We defined SNR as in (Zhu et al.,275

2019):276

10 log10
σsignal

σnoise
.
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where σnoise and σsignal are the standard deviation of waveforms before and af-277

ter the P arrival, respectively.278

2. Cross-correlation is a widely used measure of similarity between two signals.279

We compute the zero-lag cross-correlation (CC) between the recorded earthquake280

signals (before noise is added) that represents our ground truth x0 and the denoised281

ones to evaluate the performance of the different models in reconstructing the recorded282

waveform.283

3. To evaluate the picking performances of the proposed method, we applied the284

deep learning phase picker PhaseNet (Zhu & Beroza, 2019) to the waveforms and285

compared the retrieved arrival times with the labeled picked phases of the cata-286

log (∼ 70% of manually picked and ∼ 30% of automatic picked). In this way we287

can assess the impact of the denoiser on P and S arrival determination, the ac-288

curacy of which enables the calculation of a well constrained location.289

We evaluated picking performance by analyzing the distribution of time differences290

between picks identified by PhaseNet on the denoised traces and the labeled picks291

within the STEAD dataset. Additionally we employed a ”recall” metric that is292

calculated as the number of picks falling within ± 50 samples of the nearest la-293

beled pick, divided by the total number of labeled P or S arrivals.294
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3 Data Sources and Selection295

In our study, we focus on a subset extracted from the STanford EArthquake Dataset296

(STEAD) (Mousavi et al., 2019). This section is dedicated to elucidating the composi-297

tion of the subset, detailing the following components:298

1. We selected specific seismic stations to gather earthquakes and others for noise,299

with some overlap, providing a clear trace of the data’s origin for our analysis (Fig-300

ure 4).301

2. The distribution of seismic events across the globe (Figure 4) is mapped out, with302

these events sorted into training, validation, and test sets. This classification helps303

us to assess the model’s effectiveness and its generalizability across different re-304

gions.305

3. We applied constraints to the dataset, including the magnitude and proximity to306

the seismic stations.307

STEAD features a significantly larger number of stations for earthquake data compared308

to those used for noise. Moreover, the majority of these stations are concentrated within309

the U.S. territory. In our study, we utilize a ratio of (1786/2613) stations for the extrac-310

tion of earthquake data, representing a fraction of the total available. For seismic noise,311

we have selected a subset corresponding to 306 stations dedicated to noise recording.312

Figure 3. The maps show the subset of stations of the STEAD (STanford EArthquake

Dataset) used for the recorded earthquake signal (upper) and the recorded noise (bottom).

Throughout our analysis, we consistently sample seismic traces of 30-second du-313

rations, based on the following criteria:magnitude > 2,earthquake-station distance < 100314
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km, and P-wave arrival after 7 seconds. Figure 5 shows the frequency-magnitude statis-315

tics for our data set.316

Figure 4. The histograms illustrate the frequency distribution of earthquake magnitudes

within our dataset, with the left panel representing the training and validation sets and the right

panel the test set.

We chose an inclusive approach for training, leveraging the full spectrum of avail-317

able data, without any SNR selection criteria. While this might seem disadvantageous318

initially, a model that performs well under these conditions can be versatile across var-319

ious scenarios. For researchers looking to retrain this model on their datasets, especially320

when specific datasets are limited, it may be advantageous not to put restrictive filters321

such as SNR.322

Our dataset was divided into training (30491 traces), validation (3441 traces), and323

test (5994 traces) as illustrated in Figure 6. Such a division in machine learning ensures324

model reliability and generalizability. The training set aids the model’s primary learn-325

ing, the validation set is used for hyperparameter adjustments, and the test set objec-326

tively evaluates the model’s performance on unseen data.327
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Figure 5. The image presents two maps of the geographical distribution of seismic events

used in our study, with the upper map illustrating the events for the training and validation

sets marked in red, and the bottom map showing the events for the test set in blue. The color

intensity on each map corresponds to the number of events, with darker shades indicating a lower

concentration of events in that location.

For more details on the specific train, validation, and test configurations, please re-328

fer to our GitHub repository (Trappolini, 2024a). Additionally, the dataset used in this329

study is available on Zenodo at (Trappolini, 2024b), which includes all necessary data330

and configurations.331
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4 Results332

In the following we present our results and discuss the validity of our model by adopt-333

ing quantitative and qualitative catagories. The metrics used for each are provided in334

Section 2.1.4.335

4.1 Quantitative Results336

4.1.1 Signal to Noise Ratio (SNR)337

A comparison of the SNR metric for the denoised waveforms obtained with differ-338

ent models and configurations is shown in Fig. 6. Note that Figure 7 includes the same339

metric for the original earthquake signals (labeled ”earthquake”) and those with added340

noise (labeled ”eqk + noise”). The latter are the inputs to the denoiser algorithm. The341

performances of the different models appear aligned, with DD differing by a slightly lower342

median but greater variability in output SNR. In Fig. 7 we classified the noisy obser-
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Figure 6. SNR comparisons using box-plots for various model configurations applied to the

test set. The original signals (earthquake) and the ones with added noise (eqk+noise) have re-

spectively the higher and lower SNR, as expected. The different denoising models appear overall

aligned, with direct and sampling showing slightly higher median values and tighter distributions

with respect to DD.

343

vations as a function of the SNR before denoising to highlight the effectiveness of our344

models in cleaning the seismic traces. The performance of our CDiffSD are consistently345

superior with respect to DD in low SNR scenarios. This aspect is crucial, given that low346

SNR conditions correspond to more complex and heavily noisy seismic traces precisely347

where an effective denoising solution is most needed. The high-quality performance of348

our model in these low SNR environments is demonstrated in Fig. 7. We note in par-349

ticular model reliability and efficacy in extracting correct signals from noisy data. This350

proficiency is important in real-world seismological applications, especially for discov-351

ering lower magnitude earthquakes often hidden in the noise.352
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Figure 7. Distributions of SNR values of denoised waveforms for different ranges of input

SNR. The SNR statistics after denoising are computed on 2dB wide ranges of input SNR. CD-

iffSD models show higher performances in low SNR scenarios, while DD is superior for the higher

SNR signals. We study the range: SNR < −2.0 and SNR > 16.0, which covers 99% of data.

Solid bars within each model (color) show the median value.

While the cold diffusion approach excels in low SNR scenarios, the binary mask-353

based method DD exhibits greater variability and tends to perform better in higher SNR354

conditions, benefiting from its ability to provide a clear-cut signal delineation (Fig. 6 and355

Fig. 7). In particular, DD shows improved performance when the input SNR is higher356

than ∼ 14 and is get worse at lower input SNR while our models remain consistently357

effective for a large range of input SNR. An example of high input SNR conditions can358

be found in the Supporting Information.359

4.1.2 Cross Correlation360

We evaluate the similarity between original signals and denoised signals, by show-361

ing the statistics of the computed CC values, in Fig. 8. A higher CC indicates a greater362

similarity between the denoised trace and the original signal. In this figure, we see that363

all CDiffSD models show similar performance and they are all consistently higher than364

DD. To better highlight the variability of CC values obtained from the different traces365

of the test set, in Fig. 9 we show the distribution of CC values between denoised and366

original traces as a function of CC of the noisy traces with original signals (x axis), that367

is, CC of traces before denoising is applied. The performances for both direct and sam-368

pling are higher than DD for every considered range of CC before denoising.369
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Figure 8. Cross-correlation (CC) comparisons for various model configurations applied to the

test set. Higher CC values indicate greater similarity between the denoised trace and the original

signal. All CDiffSD models show similar performance and that they are consistently higher than

DD.
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Figure 9. Distribution of CC values between original and denoised signals (y axis) as a func-

tion of CC before application of denoising (x axis). CDiffSD models outperform DD across all

CC ranges. The difference is more noticeable especially at low pre-denoising CC values. Statistics

are computed for ranges of 0.1. Note that the distribution of samples for ’CC before denoising’ is

identical to ’eqk+noise’ in Fig. 8. Consequently, the 0.1-wide bins may encompass significantly

varying numbers of samples.

For each model considered we see better performance, with higher values of CC af-370

ter denoising (Fig. 9). Another noteworthy aspect is that at higher noise levels, thus lower371
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CC before denoising (values from 0.2 to 0.3), models with T = 300 outperform their coun-372

terparts. As expected, these performance disparities tend to converge with an increase373

in CC before denoising, corresponding to a relative reduction in noise compared to the374

signal.375

4.1.3 Phase arrival picks376
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Figure 10. The histograms display the distributions of P-wave (blue) and S-wave (orange)

arrival time differences between automated PhaseNet detections and label picks (in samples).

The results obtained using the original seismograms, eqk+noise and DD are shown for compar-

ison in the first, second and third row, respectively. The remaining rows show the results for

different CDiffSD models applied to the same data subset, offering insights into the accuracy of

wave arrival time detection by each model. Central tendency metrics, such as mean and median,

are indicated in these histograms, highlighting any potential skewness in the distribution towards

either early or late picks for both P and S waves.
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The histograms in Fig. 10 provide a visual representation of the efficacy of differ-377

ent seismic signal denoising methods — ”direct”, ”sampling”, and DD — in retrieving378

a signal and preserve P- and S-wave onsets. The accuracy of automated P and S-wave379

arrival time picks by PhaseNet is compared to label picks. The histograms are organized380

by method and parameter variations, displaying the distribution of arrival time discrep-381

ancies measured in samples.382

In the case of earthquake (i.e., no noise added, top histogram), the P-wave pick dif-383

ference distribution exhibits spreads that are narrower than those of the S-wave and this384

is in full agreement with the expected behavior.385

When noise is introduced, the pick difference distributions for P-waves and S-waves386

tend to converge towards a more similar pattern. This convergence can be attributed to387

the primary impact of noise on P-waves, owing to their lower amplitude compared to S-388

waves. As a result, the performance with added noise on P waves detection is much more389

degraded than on S waves detection with the same level of noise because P-waves have390

also smaller amplitudes. This observation is further supported by the recall values for391

S waves, which remain greater than 0.85 not only for all the denoising methods, but also392

for the noisy traces (earthquake + noise). In contrast, the recall rate for P-waves is con-393

sistently lowered by the presence of noise (Fig. 11). For these reasons we focus our anal-394

ysis on P-wave picks.395

As seen in Fig. 10 the distribution of the ”direct” methods show pronounced neg-396

ative skews, with mean values far from 0. This indicates a tendency of PhaseNet to pick397

P-waves slightly before the labeled picks for the waveforms denoised with ”direct” meth-398

ods. The reason of this behavior is most likely to be attributed to noise remaining in the399

denoised traces processed with the ”direct method”. This in turn can mislead PhaseNet400

to an early detection (see the ”direct” example in Fig. 12). This tendency, however, is401

mitigated completely by the CDiffSD ”sampling” method, as shown in Fig. 12. In par-402

ticular, we see that the ”sampling” methods display recall rates that are consistently high403

for both P and S, especially the 300 configuration, indicating a good denoising perfor-404

mance and the ability to recover the labeled phases.405
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Figure 11. Comparison of recall rates for P and S waves between the different methods

within a fixed window of 50 samples. S-waves recall rates are aligned almost for all models, indi-

cating that the noise level is not enough to affect the S-waves because of the greater amplitude.

P-waves recall rates instead show significant disparities between the DD approach and other

methods, suggesting a lower performance of DD in preserving the P onset in these cases. The

’sampling-300’ method is confirmed as the one with better performances.

From the comparison of the results obtained with the ”direct”, ”sampling”, and406

DD methods, it is evident that each method influences the automated pick accuracy dif-407

ferently. The ”sampling” method, particularly at higher parameter settings, demonstrates408

a notable alignment with label picks, suggesting its superiority in mitigating noise and409

enhancing the precision of automated picking systems. It is also noteworthy that the re-410

call values for P-waves shown in Fig. 11 are higher than DD for both ”sampling” and411

”direct” methods, which suggests that in these cases DD does not preserve accurate P-412

wave onsets.413

A comprehensive evaluation that considers all the proposed metrics in conjunction414

is essential for gaining a clear understanding of the various methods’ performances. While415

examining each metric individually offers valuable insights into specific aspects of per-416

formance, a truly clear picture only emerges when we analyze these metrics together. For417

instance, SNR alone offers no insight into denoising quality. This metric turns out to be418

the least informative in our analysis, as evidenced by the lack of clear separation between419

methods. Conversely, CC assesses the similarity between original and denoised signals,420

providing a valuable but general measure of output quality. Here, CDiffSD’s improve-421

ments are evident. Finally, the picking analysis tackles the crucial aspect of seismic wave422

onsets, focusing on the critical waveform portion where the noise-to-signal transition re-423

quires careful handling. Here the improvements of sampling versus direct and DD meth-424

ods are clearly highlighted. A summary of the quantitative results discussed above is pre-425

sented in Table 1.426
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Table 1. Summary of the metrics obtained with different denoising methods. Best score for

each metric in bold.

Model
SNR

(median)
CC

(median)
P picks diff
mean [samples]

P picks diff
STD [samples]

P picks recall

DD 11.796 0.891 -1.22 17.18 0.60
CDiffSD direct20 13.476 0.949 -7.98 18.34 0.85
CDiffSD direct100 13.589 0.947 -7.74 18.91 0.82
CDiffSD direct300 13.900 0.948 -5.97 18.24 0.84
CDiffSD sampling20 13.298 0.943 -2.09 14.23 0.89
CDiffSD sampling100 13.216 0.941 -2.80 14.69 0.86
CDiffSD sampling300 13.928 0.943 -0.41 13.90 0.90

4.2 Qualitative Results427

Qualitative factors are useful as side-by-side comparisons between the outcomes428

of different approaches. In the supplementary materials, we delve deeper into the anal-429

ysis of seismic traces, examining the impact of denoising on picking. This includes a thor-430

ough examination of both the strengths and limitations of our model. We highlight in-431

stances where our model excels in denoising, as well as situations in which it does not432

perform optimally.433

The examples below and those in the supplementary are organized with the same434

layout: in the top panel we compare the noisy signal (grey) with the denoised signal (black);435

in the middle panel we compare the original signal (green) with the denoised signal (black);436

the bottom panel is a zoom on the P-wave arrival.437
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4.2.1 Qualitative Picker Analysis: Direct Vs Sampling438

Figure 12. Comparison of a trace processed using ’direct 300’ and ’sampling 300’ methods.

Notably, the ’direct 300’ retains some of the noise preceding the P wave arrival, which is instead

filtered out in the ’sampling 300’ results. This noise before the P-wave retained with the the ’di-

rect 300’ method explains the tendency for this model to cause early picks (as seen in Fig. 10), as

the residual noise can lead to earlier detections.

In the first example shown in Fig. 12 we compare the ’direct 300’ and the ’sam-439

pling 300’ methods. Here ”sampling” method is found to be more effective than the ”di-440

rect” method in denoising the seismic signal, and this is particularly evident from the441

middle and bottom panels, where the denoised signal in the ”sampling” method match442

more closely the original signal. In contrast, the ”direct” method shows more significant443

deviation from the original, especially before the P-wave arrival. This example is also444

–20–



manuscript accepted for publication at JGR: Machine Learning and Computation on May 6,2024

useful because it provides insight into the tendency of the ”direct” methods to cause spu-445

rious early P-picks. The direct method, in fact, retains some pre-arrival noise, which can446

trigger an early pick in automatic approaches such as PhaseNet. This is less of an issue447

in the sampling method, as seen in the lower set of traces, where the denoised signal is448

cleaner, and the P-wave arrivals are closer to the labels. The implication for seismic pro-449

cessing is significant since the sampling method appears to produce cleaner signals and450

more accurate P-wave arrival times as a direct consequence. We note that this is cru-451

cial for various seismological applications such as earthquake location and tomographic452

imaging.453
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4.2.2 Qualitative Picker Analysis: DD Vs Sampling454

Figure 13. Comparison between a seismic trace processed with ’deep denoiser’ and ’sam-

pling 300’ methods. The ’sampling 300’ method demonstrates a closer match to label phase picks

and a more precise amplitude preservation, despite the substantial noise present in the original

signal. DD also retains a high amplitude noise signal at around 1500 samples that ’sampling 300’

manages to filter out almost completely.

Fig. 13 exemplifies the concepts previously discussed in Fig. 7, highlighting the per-455

formance of our model compared to that of the ’deep denoiser’ in scenarios with very low456

Signal-to-Noise Ratio (SNR) before denoising. The figure demonstrates clearly how an457

extreme noise situation can lead to an error in phase picking for the ’deep denoiser’, whereas458

the ’sampling’ method is capable to reconstruct accurately the correct P wave arrival459

despite the presence of significant noise.460
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4.2.3 Qualitative Amplitude Analysis: Direct Vs Sampling461

Figure 14. Comparison of a seismic trace processed with ’direct 300’ and ’sampling 300’

methods. It is particularly significant that the ’sampling 300’ technique demonstrates an en-

hanced ability for amplitude reconstruction compared to the ’direct 300’ method.

In Fig. 14 we show a comparative analysis of seismic signal denoising methods to462

investigate the importance of amplitude preservation. The Cold Diffusion Model employ-463

ing a sampling strategy (’sampling 300’) demonstrates a superior performance in main-464

taining the amplitudes of the seismic signal. In practice, the denoised signal aligns more465

accurately with the original waveform, preserving the integrity of the amplitude across466

the signal’s duration. This is particularly evident in the detailed zoomed-in analysis, where467

the ’sampling 300’ method displays remarkable congruence with the original signal, as468

evidenced by the minimal and consistent residuals. In contrast, the direct application469
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of a U-Net model (’direct 300’) displays a slight but discernible attenuation in ampli-470

tude, most noticeable in segments with higher amplitude peaks. The increased residu-471

als associated with the ’direct 300’ method suggest a more significant alteration of the472

signal after the denoising process. Therefore, the Cold Diffusion Model with sampling473

stands out as the most effective method for seismic data denoising (amongst those tested474

here), especially where the preservation of amplitude is critically important.475

5 Model assessment: Assessing the Impact of Exclusive Noise Input476

In this section we aim to test the behaviour of the model in no-earthquake scenar-477

ios, i.e. with inputs containing only noise. This is done in order to verify whether the478

model doesn’t generates any artifacts in the absence of signal generating false earthquakes.479

Cold Diffusion is based on the model’s ability to learn the broad data distribution480

during training, which generally includes a variety of seismic traces with different lev-481

els of noise. Therefore, the model should be able to generalize and identify traces that482

are entirely dominated by noise, even without direct exposure to specific types of earth-483

quake samples where there is no earthquake signal. Based on these assumptions, we seek484

to verify if our results align with the theoretical expectations.485

We have used the entire noise test set as input, without combining it with the earth-486

quake data. Theoretically, with a perfect denoising, the expected output would be a trace487

composed exclusively of zeros, in the real context the trace should approach zero.488

We applied the model without retraining, meaning the model’s weights have never489

been exposed to the absence of earthquake traces as ground truth. To assess the correct-490

ness of the output we set an amplitude threshold between ±0.02 to decide whether the491

output could resemble a trace of zeros. The direct and sampling methods have correctly492

reconstructed the expected signal in 60.3% and 88.6% of cases, respectively. This dif-493

ferent performance highlights the sampling method’s superior capability in recognizing494

the absence of earthquake signals and adapting to it.495

Figure 15. Example of the outputs of direct (in black) and sampling (in red) methods in case

of a noise only input (in grey). No retraining is performed here, i.e. the models have never been

exposed to zero-traces as ground truth for noise-only input. The direct method fails in recovering

a zero-trace since it introduces artificial signals. In contrast, the sampling method reconstructs

successfully an output that resembles a zero-trace.

Given the promising results just described, we further explored this scenario by re-496

training the model including no-signal traces as ground truth. We focused only on a sin-497
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gle channel for this test and incorporated 3% of the entire training set with zeroed traces498

to represent the absence of seismic events. The results align with our expectations, in-499

dicating an improvement in performance in the presence of noise alone. Specifically, the500

cases where zero traces are retrieved increases to 68.2% and 90.5% for direct and sam-501

pling methods, respectively. The direct method exhibits a more substantial improvement,502

starting from a lower baseline performance, whereas the sampling method shows a smaller503

increase, likely due to its performance already approaching saturation.504

Figure 16. Example of the comparison between the sampling method (in red) and the direct

method (in black), the input (in gray) for both methods is only noise. In this case the models

have been retrained with zero-traces as ground truth for noise-only traces. The sampling method

succeeds in reconstructing a zero-trace. On the other hand, the direct method outputs noise,

indicating a less accurate reconstruction in this scenario.

Regarding the results post-retraining, it should be noted that the output trace of505

the sampling method shown in Figure 16 is indeed close to the expected zero-trace. On506

the contrary, low amplitude noise was still present in the output of the non retrained-507

case shown in Figure 15. This highlights the importance of including flat traces during508

the training.509

In this evaluation of the CDiffSD on these cases comprised solely of noise, we proved that510

it is not imperative to include such examples in training to accurately discern between511

noise and genuine seismic signals. However, including these kind of signals in training,512

improves the capability of effectively identifying traces that are comprised solely of noise.513

514

6 Conclusion515

Our study demonstrates promising results and affirms the validity of cold diffusion516

denoising for seismological applications. We employed three key metrics to quantify the517

enhancement brought by the CDiffSD model. Specifically, the CDiffSD model showcased518

a substantial improvement over DD in denoising seismic traces (see Table 1), enhanc-519

ing the SNR by approximately 18%. Furthermore, we observed a 5.84% increase in Cross-520

Correlation, indicating a higher congruence between the denoised signals and the orig-521

inal ones. Finally, as a third metric, our approach significantly enhanced the accuracy522

of seismic event detection, achieving a 50% improvement in recall for P-wave picks, in-523

dicating a much better preservation of the P-onset even for noisy seismic data. Regard-524

ing the evaluation of different CDiffSD versions, it is important to highlight that, despite525

SNR and CC metrics aligning between the ”direct” and ”sampling” configurations, the526

”sampling” systematically demonstrates its superiority in applied contexts, such as P-527
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phase picking. Focusing on ”direct” versus ”sampling” we observe significant enhance-528

ments: e.g. comparing both configurations with T = 300, the average difference from529

labeled picks reduces significantly from -5.97 to -0.41 samples. Similarly, the standard530

deviation drops from 18.2 to 13.9. This trend of improved performance holds true across531

all levels of T . Moreover, ”sampling” yields a notable 6.7% increase in P picks recall com-532

pared to the ”direct” method. However, it is noteworthy that the computation time in-533

creases with an increase in T. A more detailed study is reported in the supplementary534

materials. Therefore, the size of T should be considered when using these models in real-535

time scenarios such as in a seismic monitoring room. We emphasize the importance of536

looking at the results as a whole. That is, while SNR and CC are important metrics for537

assessing, respectively, the raw denoising power and the quality of the reconstructed sig-538

nal, in fact, the preservation of the integrity of the P- and S-wave arrivals is of critical539

importance for a reliable denoising technique. Among the models evaluated in Section540

4, the one utilizing ”sampling” with T=300 emerged as the most effective according to541

the three combined metrics. The model’s fidelity in preserving seismic trace character-542

istics, especially at the signal-to-noise transition, highlights its practical advantages in543

real-world seismological applications.544

We note however, that while our results provide an important advance, they should545

be regarded as a preliminary step towards addressing a broader spectrum of open ques-546

tions and potential model enhancements. A significant direction for future advancement547

lies in applying these techniques to broader datasets. Our initial explorations aimed to548

establish the feasibility of these methods.549

Moving forward we could potentially develop a more generalized model by retrain-550

ing on large datasets such as INSTANCE (Michelini et al., 2021) and STEAD, which en-551

compass several million traces compared to the ∼ 40k traces used in this study. The use552

of larger datasets would allow treatment of noise in a wide range of seismological con-553

texts without the need for further retraining, thus significantly boosting model applica-554

bility and robustness across diverse seismic scenarios.555

Our model exhibits significant potential for cleaning and enhancing seismic traces.556

Moreover, it holds promise for recovering earthquakes hidden by noise that may have eluded557

both human and automatic detection. Such capability could contribute to expanding seis-558

mic catalogs. While further refinements are conceivable, this method, which is borrowed559

from speech enhancement tasks, has proven its validity in the intricate domain of seis-560

mological analysis. This cross-disciplinary innovation underscores the model’s versatil-561

ity and suggests broader applicability in extracting and analyzing subtle seismic signals.562

563

Acronyms564

AttDD Attention Deep Denoiser565

CC Cross Correlation566

CDiffSD Cold Diffusion Model for seismic denoising567

DAS Distributed Acoustic Sensing568

DD Deep Denoiser569

DL Deep Learning570

DM Diffusion Model571

DPRNN Dual-Path Recurrent Neural Network572

E East-West573

eqk Earthquake574

ERC European Research Council575

GAN Generative Adversarial Network576

GELU Gaussian Error Linear Unit577
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ICA Independent Component Analysis578

INGV Istituto Nazionale di Geofisica e Vulcanologia579

INSTANCE Italian Seismic Dataset For Machine Learning580

MUSIC MUltiple SIgnal Classification581

N North-South582

NRF Noise Reduce Factor583

ResNet Residual Neural Network584

SNR Signal to Noise Ratio585

STEAD STanford EArthquake Dataset586

STFT Short-Time Fourier Transform587

VAE Variational Autoencoder588

Z Vertical589

Open Research Section590

The STEAD dataset (Mousavi et al., 2019) (Seismological Tools for Earthquake591

Analysis and Detection) is openly accessible. For data manipulation, ObsPy, a Python592

library for processing seismological data, can also be used (for more information on Ob-593

sPy, see its documentation (Beyreuther et al., 2010)).594

To replicate the data accurately, it is necessary to apply the filters described in Sec-595

tion 3 to chunk2 of the STEAD dataset. Furthermore, specific data related to this re-596

search are available in Zenodo with the identifier (Trappolini, 2024b). For additional de-597

tails, see GitHub repository (Trappolini, 2024a).598

Acknowledgments599

We would like to thank the editor Yangkang Chen, the reviewer Martijn Van Den Ende600

and two anonymous reviewers for their helpful and detailed reviews that greatly enhanced601

the quality of our paper. This study was supported by MUR PNRR FAIR project (PE00000013),602

the INGV Pianeta Dinamico 2021 Tema 8 SOME project (CUP D53J1900017001) funded603

by the Italian Ministry of University and Research and by the European Research Coun-604

cil (ERC) under grant 835012 (TECTONIC).605

References606

Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A next-607

generation hyperparameter optimization framework. In Proceedings of the608

25th ACM SIGKDD international conference on knowledge discovery and data609

mining.610

Bansal, A., Borgnia, E., Chu, H.-M., Li, J. S., Kazemi, H., Huang, F., . . . Goldstein,611

T. (2022). Cold diffusion: Inverting arbitrary image transforms without noise.612

arXiv preprint arXiv:2208.09392 .613

Bear, L. K., Pavlis, G. L., & Bokelmann, G. H. (1999). Multi-wavelet analysis of614

three-component seismic arrays: application to measure effective anisotropy at615

pinon flats, california. Bulletin of the Seismological Society of America, 89 (3),616

693–705.617

Bekara, M., & der Baan, M. V. (2009). Random and coherent noise attenuation618

by empirical mode decomposition. Geophysics, vol. 74, no. 5, pp. V89–V98,619

2009 .620

Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., & Wassermann, J.621

(2010). Obspy: A python toolbox for seismology. Seismological Research622

Letters, 81 (3), 530–533.623

Bie, X., Leglaive, S., Alameda-Pineda, X., & Girin, L. (2022). Unsupervised speech624

–27–



manuscript accepted for publication at JGR: Machine Learning and Computation on May 6,2024

enhancement using dynamical variational autoencoders. IEEE/ACM Transac-625

tions on Audio, Speech, and Language Processing , 30 , 2993–3007.626
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Appendix768

A.Diffusion Model769

In this appendix, we will briefly explain how diffusion models work. Diffusion mod-770

els are inspired by the physical process of diffusion, where particles spread out from ar-771

eas of higher concentration to areas of lower concentration over time (Sohl-Dickstein et772

al., 2015). In the context of generative modeling, this process is simulated in a reverse773

manner. The model starts with a distribution of random noise and gradually refines this774

noise into a coherent sample from the target distribution over a series of steps. The the-775

oretical foundation of diffusion models is rooted in stochastic differential equations (SDEs)776

and involves two key phases: the forward diffusion (or noise addition) process and the777

reverse diffusion (or denoising) process.778

Forward diffusion process: In this phase, the model incrementally adds noise779

to data from the original distribution over a series of steps, transforming it into a dis-780

tribution of pure noise. Mathematically, this can be represented as a Markov chain that781

gradually transitions the data distribution p(x0) to a noise distribution p(xT ), where T782

is the total number of diffusion steps and x0 to xT represents the data at each step of783

the forward diffusion process. The step sizes are controlled by a variance schedule {βt ∈ (0, 1)
T
t=1}.784

q(xt|xt−1) = N(xt;
√
1− βtxt−1, βtI) (4)785
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786

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1) (5)787

A nice property of the process above is that we can reparametrizes xt in terms of ϵ (i.e.788

the added gaussian noise), which is independent of the model parameters, allowing the789

gradient of the loss function to be backpropagated through the deterministic part of the790

model. We can perform this using the reparametrization trick. Let αt = 1 − βt and791

ᾱt =
∏t

i=1 αi:792

xt =
√
αtxt−1 +

√
1− αtϵt−1

=
√
αtαt−1xt−2 +

√
1− αtαt−1ϵ̄t−2

= ...

=
√
ᾱtx0 +

√
1− ᾱtϵ

q(xt|x0) = N(xt;
√
ᾱtx0, (1− ᾱt)I)

(6)793

Reverse diffusion process: The reverse process involves learning to denoise794

the data, starting from the noise distribution and progressively reconstructing the data795

distribution through a series of learned denoising steps. The goal of the model during796

this phase is to learn the conditional distribution p(xt−1|xt).797

pθ(x0:T ) = p(xT )
∏

pθ(xt−1|xt) (7)798

pθ(xt−1|xt) = N(xt−1;µθ(xt, t),Σθ(xt, t)) (8)799

For a more detailed discussion, please refer to the paper: (Ho et al., 2020).800

Training: Training diffusion models involves optimizing the parameters of the801

reverse diffusion process to minimize the difference between the original data distribu-802

tion and the distribution of the generated samples. This is typically achieved through803

variational inference, where the model learns to predict the noise that was added at each804

step of the forward process, thereby allowing it to reverse the diffusion.

Algorithm 2 Diffusion Model Training

repeat
x0 ∼ q(x0)
t ∼ Uniform({1, ...., T})
ϵ ∼ N(0, I)
Take gradient descent step on ∇θ∥ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2

until converged

805

The training of diffusion models begins with the application of the forward diffusion pro-806

cess to the training data, which generates noisy versions of the data at various timesteps,807

sampled using the uniform distribution in 2. Following this initial step, the model be-808

gins the phase of noise prediction for each noisy sample. It attempts to accurately pre-809

dict the specific noise that was added at each timestep. The accuracy of this prediction810

is measured against the actual noise used during the forward process, utilizing typically811

the mean squared error (MSE) as the loss function. Once the loss has been calculated,812

it is then backpropagated through the model to update its parameters. It is during this813

phase that the reparametrization trick plays an important role, as it allows for the gra-814

dients to flow through the stochastic sampling of noise, thus enabling the optimization815

process to proceed (letting the ϵ parameter to be a trainable parameter).816
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Sampling: After the model has been trained to reverse diffusion process. It can817

generate new samples starting from noise, or denoise new inputs. This process is the in-818

verse of the forward diffusion process, where noise is gradually added to the data. In-819

stead, starting with a purely noisy distribution, the model iteratively generates/denoise820

data that increasingly resembles the target distribution. The algorithm 3 give a closer821

look at how the sampling process unfolds. The sampling process begins with an initial

Algorithm 3 Diffusion Model Sampling

xT ∼ N(0, I)
for t = T, ...., 1 do
z ∼ N(0, I) if t > 1, else z = 0
xt−1 = 1√

αt
(xt − 1−αt√

1−αt
ϵθ(xt, t)) + σtz

end for
return x0

822

noise vector sampled from a Gaussian distribution. This noise vector xT represents the823

final state of the forward diffusion process and serves as the starting point for genera-824

tion. From this initial state, the model iteratively applies the learned reverse diffusion825

steps to reduce the noise and move closer to the data distribution. At each step t, the826

model uses its parameters to estimate the cleaner version of the current state xt−1 from827

xt. This is based on the conditional probability learned during training, which models828

how to reverse the noise addition for that particular step. After the final reverse diffu-829

sion step, the output is a sample that closely resembles/denoises the target data distri-830

bution. This sample is the model’s ”best guess” at a real data point, having transformed831

from pure noise (for generation) or a noised input (for denoising) to structured data through832

the reverse diffusion process. The sampling process in diffusion models exemplifies how833

structured data can emerge from randomness (for generation) or from noisesness (for de-834

noising) through iterative refinement, helped by the complex statistical relationships learned835

during training.836

B.Cold Diffusion Model837

Cold diffusion models are very recent designs, and currently, there are limited works838

implementing such architecture. The original concept of diffusion models (Bansal et al.,839

2022) involves extending and generalizing degradation using non-Gaussian noise. This840

becomes achievable due to enhancements in the sampling algorithm. In particular, as841

stated in (Bansal et al., 2022), they start from a simple assumption: the original sam-842

pling: Algorithm 3 works well when the restoration operator is perfect. This means that:843

R(D(x0, t), t) = x0 for all t. (9)844

With restoration operator is pθ in Eq. 8 that here is reffered as R. However, in the sce-845

nario where the restoration is imperfect, this causes the model to make errors, leading846

it to deviate from D(x0, s), D stands for Degradation operator hence: q(x1:T |x0) in Eq.847

4. The implemented sampler possesses excellent mathematical capabilities that are not848

detailed in this work (for further details, refer to 3.3 Properties of the Algorithm in (Bansal849

et al., 2022)), enabling the accurate reconstruction of the signal even in cases where the850

restoration operator R fails to completely invert D.851

As a starting point to address our task, we have taken animorphosis as a reference (for852

further details, see Section 5.3 ”Generation using other transformations” (Bansal et al.,853

2022)). In this context, a ”clean” sample (an image of a person) is systematically sub-854

jected to a series of transformations resulting in an out-of-domain ”degraded” sample855

(an image of an animal). However, it’s important to highlight that our approach devi-856

ates from this process. Our degraded sample retains the underlying information of the857
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Algorithm 4 Improved Sampling for Cold Diffusion

Input: A degraded sample xt

for s = t, t− 1, ....1 do
x̂0 ← R(xs, s)
x̂s−1 = xs −D(x̂0, s) +D(x̂0, s− 1)

end for

clean sample, as our degradation process now introduces an out-of-domain sample in con-858

junction with the clean sample. Such a degradation does not correspond to any of those859

addressed in (Bansal et al., 2022).860
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