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Abstract18

Seismic waves contain information about the earthquake source, the geologic structure19

they traverse, and many forms of noise. Separating the noise from the earthquake sig-20

nal is a critical first step in seismic waveform analysis. This is, however, a difficult task21

because optimal parameters for filtering noise typically vary with time and, if chosen in-22

appropriately, they may strongly alter the original seismic waveform. Diffusion models23

based on Deep Learning (DL) have demonstrated remarkable capabilities in the restora-24

tion of images and audio signals. However, those models assume a Gaussian distribu-25

tion of noise, which is not the case for typical seismic noise. Diffusion models trained on26

Gaussian noise do not perform well in seismic applications; therefore, we introduce a ”cold”27

variant of diffusion models in which both clean and noisy seismic traces are restored. Here,28

we describe the first Cold Diffusion Model for Seismic Denoising (CDiffSD), including29

key design aspects, model architecture, and noise handling. We demonstrate that CD-30

iffSD provides a new standard in performance, outperforming existing methods. Our model31

provides a significant advance for seismic data denoising and establishes a new state-of-32

the-art in the field.33

Plain Language Summary34

Seismic waves contain information about earthquakes and the earth’s structure but35

any seismic waveform is, to a variable extent, contaminated by noise. Separating noise36

from earthquakes is important in order to enhance signals quality and, as a consequence,37

improve subsequent analyses. However, this task can be challenging because not only38

noise characteristics change in time, frequency and amplitude, but also because an in-39

correct denoising procedure might significantly alter important features of the seismic40

waves. Recently, deep learning techniques have proven to be valuable tools in enhanc-41

ing images and audio signals. But these techniques usually expect the noise to follow a42

certain pattern that doesn’t match the more complex noise found in seismic data. To43

solve this, we’ve developed a new approach called the Cold Diffusion Model for Seismic44

Denoising (CDiffSD). This model, specifically designed to handle the types of noise found45

in seismic data, shows better performances than previous methods in removing noise and46

restoring seismic signals, ultimately setting a new high standard in the field.47

1 Introduction48

Seismograms contain signals generated by earthquakes and by other unidentified49

sources categorized in general as ’noise’ (e.g., oceanic waves, wind, vehicular traffic, sonic50

booms, quarry activities, and instrument malfunctions.) It is standard practice in seis-51

mology to denoise waveforms to improve the performance of the subsequent analyses,52

such as P- and S-wave onset picking, earthquake source moment tensor inversion, and53

techniques of exploration seismology. Most commonly and in routine analysis, denois-54

ing is performed through bandpass filtering. However recent works have proposed sev-55

eral more sophisticated schemes to ”clean” seismic traces. These include methods based56

on the independent component analysis (ICA) (Comon, 1994; Cabras et al., 2010; Moni57

et al., 2012), beamforming methods (Gibbons et al., 2008; Boué et al., 2013; Brooks et58

al., 2009), and MUltiple SIgnal Classification(MUSIC) (Schmidt, 1986; Bear et al., 1999).59

All of these methods, however, can fall short when the noise shares frequencies with the60

earthquake generated signal.61

Denoising models have evolved to incorporate time-frequency methods, with tech-62

niques like the Wavelet transform (Gaci, 2014; Siyuan & Xiangpeng, 2005; W. Liu et al.,63

2016; Mousavi & Langston, 2016b; Mousavi et al., 2016; Mousavi & Langston, 2017), the64

Short-Time Fourier Transform (STFT) (Mousavi & Langston, 2016a), the S-transform65

(Tselentis et al., 2012), and other transformation-decomposition methods (Hennenfent66

& Herrmann, 2006; Bekara & der Baan, 2009; Neelamani et al., 2008; Han & van der Baan,67
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2015; Y. Liu et al., 2013; Chen & Ma, 2014; Shan et al., 2009; Tang & Ma, 2011). These68

techniques have proven useful but the emergence of deep learning (DL) has provided new69

strategies with improved performance. A notable development in this arena is the Deep70

Denoiser (DD) model (Zhu et al., 2019). The DD approach is based on a variant of the71

Variational Autoencoder (VAE)(Kingma & Welling, 2019), which generates dual masks72

for seismic and noise signals, enhancing waveform extraction. Another notable approach73

is that of van den Ende et al. (2021) who employed a DL to denoise Fiber-optic Distributed74

Acoustic Sensing (DAS) data. They demonstrate the potency of DL to enhance the qual-75

ity of DAS and seismic data. Similarly, the Novoselov et al. (2022) project, utilizing a76

Dual-Path Recurrent Neural Network(DPRNN), led to another substantial stride in the77

application of deep learning for seismic signal denoising. These studies not only validate78

the efficacy of deep learning methods in seismic noise reduction but also pave the way79

for further innovations in this field.80

Here we built on this topic, drawing parallels with techniques used in speech en-81

hancement, a field closely related to seismic denoising. Speech enhancement has recently82

seen the use of models such as GANs (Pascual et al., 2017; Donahue et al., 2018; Cao83

et al., 2022; Kim et al., 2021) and VAEs (Fang et al., 2021; Leglaive et al., 2020, 2018;84

Bie et al., 2022). However, the recent trend points to the growing success of Diffusion85

Models (Sohl-Dickstein et al., 2015; Ho et al., 2020), which are now outperforming their86

predecessors. Using techniques like cold diffusion or Gaussian diffusion for denoising presents87

several advantages over approaches that use binary masks, especially in terms of flex-88

ibility, reconstruction quality, and the ability to handle complex noise; while binary gen-89

erally retain advantages in terms of simplicity, speed, interpretability, and computational90

efficiency. Here, we investigate the application of diffusion models for seismic denoising.91

These models typically transform the input into an isotropic Gaussian distribution through92

the consistent addition of Gaussian noise. In the reverse process, diffusion probabilis-93

tic models aim to remove the anticipated noise from the corrupted input, thus recover-94

ing the original signal. However, given the non-Gaussian nature of seismic noise, tradi-95

tional diffusion models are not directly applicable.96

This challenge led us to explore the emerging Cold Diffusion model (Bansal et al.,97

2022; Yen et al., 2023), which adapts the diffusion process by replacing Gaussian noise98

with other types of degradation processes. The Cold Diffusion model demonstrates how99

diffusion models can effectively restore signals impaired by various types of degradation.100

Its inherent properties make it particularly suitable for tasks such as speech source sep-101

aration in practical settings with non-Gaussian noise. Building on this, our research aims102

to adapt the cold diffusion paradigm for seismic trace denoising. This adaptation involves103

specific modifications, primarily in the sampling algorithm, to suit the unique challenges104

of seismic data. The result is a Cold Diffusion Model for Seismic Denoising (CDiffSD).105

2 Methods106

2.1 Formalization of the problem107

We begin with problem formulation and application of a novel diffusion model specif-108

ically designed for seismic denoising. The primary challenge in seismic signal process-109

ing is to extract the earthquake signal, denoted as x0, from a noisy signal y = x0+xn.110

This signal y consists of the desired seismic signal x0 and an unwanted noise component111

xn. The goal is to develop a model that can effectively learn to approximate the func-112

tion f(y) = x0, thereby isolating the earthquake signal from the noise. To address this113

challenge, we introduce a diffusion probabilistic model, which utilizes both forward and114

reverse processes for noise reduction:115

1. Diffusion process (or Forward process) is defined as a T-step Markov chain that116

gradually adds Gaussian noise to the recorded earthquake x0:117
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D(x1:T |x0) :=

T∏
t=1

D(xt|xt−1) =

T∏
t=1

N(xt;
√

1− βtxt−1, βtI) (1)118

2. Reverse process (or Backward process) aims to restore x0 from the latent vari-119

able xT based on the following Markov chain:120

Rθ(x0:T ) := R(xT )

T∏
t=1

Rθ(xt−1|xt) := R(xT )

T∏
t=1

N(xt−1;µθ(xt, t),
∑
θ

(xt, t)) (2)

where β = 1 − α serves as a key parameter that controls the process of adding121

and removing noise in signal during the training and inference process. In partic-122

ular, the Markov formulation asserts that a given distribution depends only on the123

previous timestep, hence we can rewrite (2) as:124

Rθ(xt−1|xt) := N(xt−1;µθ(xt, t),
∑
θ

(xt, t)) (3)

Figure 1. Sketch of how the Diffusion Process is adapted for seismic data. The standard For-

ward Process, which typically adds Gaussian noise, is modified to incorporate real noise, which

defines so-called Cold Diffusion. The Reverse Process then employs neural networks to recover

the recorded earthquake from the noise-enhanced data, illustrating the transition from noisy data

back to the recorded data.

2.2 Diffusion Models125

We explore diffusion models in some detail in order to elucidate key aspects of the126

training phase for our DL model and its operational principles. Understanding these el-127

ements is essential for appreciating how diffusion models achieve effective noise reduc-128

tion and signal recovery in complex data sets. Starting from Equation (3), we can de-129

fine:130

µθ(xt, t) =
1
√
αt

(xt −
βt√
1− α̂t

ϵθ(xt, t)) (4)

The function µθ(xt, t) predicts the mean of xt−1 by removing the estimated Gaussian131

noise ϵθ(xt, t) in xt, and the variance of xt is fixed to a constant β̂t =
1−α̂t−1

1−α̂t
βt.132

The employed strategy is as follows: during training, a random time step t is sam-133

pled, and the signal is progressively degraded with Gaussian noise until reaching time134
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Algorithm 1 Diffusion Model Training

repeat
x0 ∼ D(x0)
t ∼ Uniform({1, ...., T})
ϵ ∼ N(0, I)
Take gradient descent step on ∇θ∥ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵt t)∥2

until converged

t, after which the signal is restored. Once the model is trained in this manner, the sam-135

pling process follows. The model removes noise step by step from time step t to T, as136

in Equations 1 and 2. This process is generally motivated by two factors. First, diffu-137

sion models can be harnessed to generate novel synthetic data starting from a strongly138

degraded step. The second motivation is that, particularly in denoising tasks, the step-139

by-step noise removal approach is expected to yield superior performance compared to140

a direct procedure. Our initial experiments involved adding Gaussian noise to earthquake

Algorithm 2 Diffusion Model Sampling

xT ∼ N(0, I)
for t = T, ...., 1 do
z ∼ N(0, I) if t > 1, else z = 0
xt−1 = 1√

αt
(xt − 1−αt√

1−αt
ϵθ(xt, t)) + σtz

end for
return x0

141

seismic traces, but we found that most seismic noise does not conform to Gaussian noise142

characteristics. Therefore, we adopted a more general and effective approach using a model143

based on Cold Diffusion (Bansal et al., 2022). This model generalizes diffusion models144

by replacing Gaussian noise with real noise. By using real seismic noise patterns, the model145

can more accurately and effectively perform denoising tasks, reflecting the actual com-146

plexities and variations found in seismic data, aligning better with the behavior of seis-147

mic traces to be denoised.148

This approach marks a significant leap forward in applying diffusion models to prac-149

tical tasks, integrating the use of real noise. Such integration not only confirms the find-150

ings of previous research (Bansal et al., 2022; Yen et al., 2023), which successfully ap-151

plied the cold diffusion model in computer vision and speech enhancement respectively,152

but also highlights the limitations of traditional methods dependent on Gaussian noise.153

This is because Gaussian noise may not adequately represent the real-world character-154

istics of seismic data.155

2.3 Proposed Method: Cold Diffusion Seismic Denoising (CDiffSD)156

The core of our model involves degrading a one-dimensional earthquake, in the form157

of a seismic record, x0 (the target), with recorded seismic noise xn, to produce an out-158

of-domain sample (noisy signal): xT = x0 + xn ∗NRF . Here, x0 represents an earth-159

quake recorded by a seismometer. While x0 serves as a ’clean’ sample in our context, it’s160

important to note that it inherently contains some level of noise, given its real, non-synthetic161

origin.162

The ”Noise Reduce Factor” (NRF ) is a key element in our specific analysis. It’s163

responsible for calibrating the amplitude of the noise signal (xn) in relation to the earth-164

quake signal’s amplitude, often indicated by the amplitude of S-waves in the data. By165
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choosing a NRF value within the range 0.4 to 0.65, we ensure that the noise does not166

dominate the trace compared to the earthquake. We work with data from different sta-167

tions that independently record noise and earthquake signals. It’s worth mentioning that168

we mix earthquake x0 and noise xn recorded from different seismic stations, to improve169

generalizability and robustness. This setup provides our model with an input xT and a170

ground truth x0, enabling effective backpropagation of loss and performance measure-171

ment.172

Therefore, concerning the specific degradation introduced in diffusion models, we173

can rephrase the degradation at time T as follows:174

xt = DxT
(x0, t) =

√
αtx0 +

√
1− αtxT (5)

where x0 is the recorded earthquake xT = x0+xn ∗NRF and α ∈ [0, 1] is the param-175

eter interpolation weight. α can also be regarded as the amount of information retained176

in the diffusion process, and it can alternatively be defined as 1 − β, where beta rep-177

resents the amount of noise introduced in the degradation, such parameters are defined178

a priori by a scheduler.179

Regarding the specific operation of cold diffusion models, our approach is delineated180

using the improved training algorithm proposed by (Yen et al., 2023):181

Algorithm 3 Cold Diffusion Enanched Training

for n = 1, ...., Niter do
Sample clean data x0

Sample t ∼ Uniform({1, ...., T})
xt ← D(x0, t), x̂0 ← Rθ(xt, t)
Sample t

′ ∼ Uniform({1, ...., t})
x̂t′ ← D(x̂0, t

′
), ˆ̂x0 ← Rθ(x̂t′ , t

′
)

Take gradient descent step on ∇θ(||x̂0 − x0||1 + ||ˆ̂x0 − x0||1)
end for

This approach enhances the robustness of the training phase when applied in the182

presence of non-Gaussian noise. During the training phase, the model randomly selects183

a time step t within the range [0, T ]. At this point, the signal is degraded by introduc-184

ing recorded noise, after which a restoration operation is applied. This step is crucial as185

it simulates the process of denoising, where the model learns to reverse the effects of noise186

on the signal. The algorithm further deepens its learning by reiterating this process with187

a new time step t′ where t′ < t. At this stage, the signal undergoing degradation is not188

the recorded earthquake, but rather the one that has already been restored in the pre-189

vious step. The signal is then degraded again up to the new time step t′ and subsequently190

restored. This iterative process of degrading and restoring at various time steps allows191

the model to learn more robustly, adapting to the complexities introduced by real noise192

patterns. The improved training algorithm is tolerant to shifting errors during the sam-193

pling process. As we can observe, Algorithm 3, the training process incorporates x̂t′ , which194

is the denoised signal. This results in x̂t′, which now contains the misalignment error that195

may occur during the sampling process.196
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2.3.1 Input Assumptions197

Figure 2. An illustration of the forward process with real noise for T = 5. The recorded noise,

the recorded earthquake, and their various combinations are presented according to Equation 5.

Notably, the combinations of noise and earthquake magnitudes are dictated by a scheduler, which

pre-determines the levels of β and α. The level of noise at level T=5 is defined by the NRF.

In our seismic denoising approach, we separately normalize the noise and earth-198

quake data. We adopt a trace-specific method, normalizing each seismic trace (earth-199

quake and noise) across its East-West (E), North-South (N), and Vertical (Z) channels.200

This normalization process aligns the maximum and minimum values within these chan-201

nels, standardizing the data to a range of [-1,1]. Such an approach ensures that each com-202

ponent retains its relative amplitude, enabling precise and balanced analysis. This also203

enhances generalizability for each type of seismic trace that the end user wants to de-204

noise.205

In the training phase for each seismic trace, we begin by merging a normalized earth-206

quake trace with a normalized noise trace. The noise component is scaled using the NRF ,207

adjusting its intensity in the noisy signal before the forward process is applied.208

The creation of the ’noisy signal’ xT , a combination of the earthquake and scaled209

noise signals, leads to the ’forward process’. Here, a stochastic variable t, ranging from210

0 to a predetermined maximum T, is chosen for further noise modulation. At t = 0,211

we have a recorded earthquake signal with no additional noise, whereas at t = T , the212

noise is at its full scale, set at 1.213
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2.3.2 Model Configuration214

Figure 3. CDiffSD employ combinations of convolutional layers, ResNet blocks, and attention

mechanisms to process one-dimensional data efficiently. The attention mechanisms are particu-

larly important as they allow the models to selectively weigh the importance of different parts of

the input data, aiding in extracting meaningful features for downstream tasks.

As a building block of the diffusion model, we adopt a neural network model in-215

spired by the 1D U-Net (Ronneberger et al., 2015) design, for the processing of one-dimensional216

data streams such as time series or audio signals. The network begins with 1D convo-217

lutional layers, each equipped with 64 filters of a kernel dimension of 7, instrumental for218

the initial extraction of salient features. This is followed by the integration of tempo-219

ral processing units that leverage sinusoidal positional encoding to effectively capture220

the temporal intricacies inherent within the data. These units then employ two linear221

layers dedicated to feature refinement and are paired with the Gaussian Error Linear Unit222

(GELU) (Hendrycks & Gimpel, 2016) activation function to instill the requisite non-linearity.223

As the architecture progresses, it introduces dimensionality manipulation layers consist-224

ing of ResNet modules (He et al., 2016) pivotal for feature conservation during down-225

sampling and 1D convolutional layers for further data refinement. Post-downsampling,226

a series of upsampling layers are implemented, designed to elevate data dimensionality227

by merging ResNet blocks with dedicated upsampling operations. A noteworthy feature228

of our design is the mid-level blocks, each outfitted with dual residual units. They ex-229

ploit attention mechanisms crucial for highlighting pertinent data characteristics. The230

network culminates with terminal residual blocks that are succeeded by 1D convolutional231

layers, making definitive outputs typically manifest as singular channels.232

The U-Net block is applied for each iteration of the diffusion model from each ti to 0 and233

then again from ti−1 to 0 and so on until the end of the process.234

We trained models with 3 configurations: T = 20, T = 100, T = 300. These di-235

verse scheduler assumptions allowed us to evaluate how performance metrics vary with236

increasing T, highlighting the trade-off between model performance and computation time,237
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which is a crucial consideration in seismic monitoring room operations where balancing238

processing speed and precision is essential.239

Particularly in the inference phase, understanding the impact of T on both model240

performance and computational efficiency is vital. For applications requiring rapid trace241

processing, like real-time seismic monitoring, a preference for speed may be necessary,242

though it could impact precision. Conversely, in tasks where accuracy is the priority, such243

as dataset cleaning, a greater emphasis on precision may be warranted, even at the ex-244

pense of longer processing times.245

We compared our approach using the same seismic dataset with DD, that we con-246

sider as the reference for the state of the art. For this task, DD underwent comprehen-247

sive training for 400 epochs, while our model completed its training in just 150 epochs.248

This difference was due to our model’s learning dynamics and efficiency. We initiated249

our model’s training with a learning rate of 1e-3 and employed a scheduler to reduce this250

rate gradually, ensuring controlled and stable convergence.251

2.3.3 Inference with Direct and Sampling Reconstruction252

Cold diffusion models involve distinct methods to reconstruct the signal including253

the adoption of direct or sampling reconstruction. These methods represent approaches254

within the framework of diffusion models, each with unique operational mechanisms and255

implications for model performance. Understanding the nuances of these methods is cru-256

cial for comprehending the overall efficacy and application potential of diffusion mod-257

els.258

For the range of configurations used in training our models (T = [20, 100, 300]),259

we applied these configurations to both direct and sampling reconstruction. In the con-260

text of diffusion models, the distinction between ’direct’ and ’sampling’ approaches is261

pronounced, marked by their differing operational mechanisms.262

The ’direct’ method involves applying the reverse process using the U-Net archi-263

tecture to transition from a specific timestep tn directly to zero. Conversely, the ’sam-264

pling’ method incrementally applies this reverse transition from a specific timestep tn265

to zero, but crucially, it traverses through all intermediate timesteps ti, where i ∈ [n−266

1, 0]. This results in applying the U-Net architecture multiple times (n).267

A key aspect of the cold diffusion paradigm is evaluating the effectiveness of the268

sampling procedure, which is hypothesized to outperform the direct approach. If the di-269

rect method, particularly using U-Net alone, yields comparable results, it would call into270

question the necessity of the complex training infrastructure typically associated with271

diffusion models. We provide a detailed comparison between the direct and sampling meth-272

ods in section 4.273

2.3.4 Metrics274

For enhanced clarity, we define here the metrics used in our study now and then275

in Section 4 we provide a detailed commentary on the results.276

1. Signal to Noise Ratio (SNR) is a measure used to compare the level of a sig-277

nal (earthquake in this case) to the level of background noise. A higher SNR in-278

dicates that the seismic signal stands out clearly from the background noise, fa-279

cilitating accurate analysis and interpretation. We defined SNR as in (Zhu et al.,280

2019):281

10 log10
σsignal

σnoise
.
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where σnoise and σsignal are the standard deviation of waveforms before and af-282

ter the P arrival, respectively.283

2. Cross-correlation is a widely used measure of similarity between two signals.284

We compute the zero-lag cross-correlation (CC) between the recorded earthquake285

signals (before noise is added) that represents our ground truth x0 and the denoised286

ones to evaluate the performance of the different models in reconstructing the recorded287

waveform.288

3. To evaluate the picking performances of the proposed method, we applied the289

deep learning phase picker PhaseNet (Zhu & Beroza, 2019) to the waveforms and290

compared the retrieved arrival times with the labeled picked phases of the cata-291

log (∼ 70% of manually picked and ∼ 30% of automatic picked). In this way we292

can assess the impact of the denoiser on P and S arrival determination, the ac-293

curacy of which enables the calculation of a well constrained location.294
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3 Data Sources and Selection295

In our study, we focus on a subset extracted from the STanford EArthquake Dataset296

(STEAD) (Mousavi et al., 2019). This section is dedicated to elucidating the composi-297

tion of the subset, detailing the following components:298

1. We selected specific seismic stations to gather earthquakes and others for noise,299

with some overlap, providing a clear trace of the data’s origin for our analysis (Fig-300

ure 4).301

2. The distribution of seismic events across the globe (Figure 4) is mapped out, with302

these events sorted into training, validation, and test sets. This classification helps303

us to assess the model’s effectiveness and its generalizability across different re-304

gions.305

3. We applied constraints to the dataset, including the magnitude and proximity to306

the seismic stations.307

STEAD features a significantly larger number of stations for earthquake data compared308

to those used for noise. Moreover, the majority of these stations are concentrated within309

the U.S. territory. In our study, we utilize a ratio of (1786/2613) stations for the extrac-310

tion of earthquake data, representing a fraction of the total available. For seismic noise,311

we have selected a subset corresponding to 306 stations dedicated to noise recording.312

Figure 4. The maps show the subset of stations of the STEAD (STanford EArthquake

Dataset) used for the recorded earthquake signal (upper) and the recorded noise (bottom).

Throughout our analysis, we consistently sample seismic traces of 30-second du-313

rations, based on the following criteria:magnitude > 2,earthquake-station distance < 100314

–11–



manuscript submitted to JGR: Machine Learning and Computation

km, and P-wave arrival after 7 seconds. Figure 5 shows the frequency-magnitude statis-315

tics for our data set.316

Figure 5. The histograms illustrate the frequency distribution of earthquake magnitudes

within our dataset, with the left panel representing the training and validation sets and the right

panel the test set.

We chose an inclusive approach for training, leveraging the full spectrum of avail-317

able data, without any SNR selection criteria. While this might seem disadvantageous318

initially, a model that performs well under these conditions can be versatile across var-319

ious scenarios. For researchers looking to retrain this model on their datasets, especially320

when specific datasets are limited, it may be advantageous not to put restrictive filters321

such as SNR.322

Our dataset was divided into training (30491 traces), validation (3441 traces), and323

test (5994 traces) as illustrated in Figure 6. Such a division in machine learning ensures324

model reliability and generalizability. The training set aids the model’s primary learn-325

ing, the validation set is used for hyperparameter adjustments, and the test set objec-326

tively evaluates the model’s performance on unseen data.327
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Figure 6. The image presents two maps of the geographical distribution of seismic events

used in our study, with the upper map illustrating the events for the training and validation

sets marked in red, and the bottom map showing the events for the test set in blue. The color

intensity on each map corresponds to the number of events, with darker shades indicating a lower

concentration of events in that location.

For more details on the specific train, validation and test configurations, please re-328

fer to our GitHub repository at the following link:329

https://github.com/Daniele-Trappolini/Diffusion-Model-for-Earthquake.330
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4 Results331

In the following we present our results and discuss the validity of our model by adopt-332

ing quantitative and qualitative catagories. The metrics used for each are provided sec-333

tion 2.3.4.334

4.1 Quantitative Results335

4.1.1 Signal to Noise Ratio (SNR)336

A comparison of the SNR metric for the denoised waveforms obtained with differ-337

ent models and configurations is shown in Fig. 7. Note that Figure 7 includes the same338

metric for the original earthquake signals (labeled ”earthquake”) and those with added339

noise (labeled ”eqk + noise”). The latter are the inputs to the denoiser algorithm. The340

performances of the different models appear aligned, with DD differing by a slightly lower341

median but greater variability in output SNR. In Fig. 8 we classified the noisy obser-
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test set. The original signals (earthquake) and the ones with added noise (eqk+noise) have re-

spectively the higher and lower SNR, as expected. The different denoising models appear overall

aligned, with direct and sampling showing slightly higher median values and tighter distributions

with respect to DD.

342

vations as a function of the SNR before denoising to highlight the effectiveness of our343

models in cleaning the seismic traces. The performance of our CDiffSD are consistently344

superior with respect to DD in low SNR scenarios. This aspect is crucial, given that low345

SNR conditions correspond to more complex and heavily noisy seismic traces precisely346

where an effective denoising solution is most needed. The high-quality performance of347

our model in these low SNR environments is demonstrated in Fig. 8. We note in par-348

ticular model reliability and efficacy in extracting correct signals from noisy data. This349

proficiency is important in real-world seismological applications, especially for discov-350

ering lower magnitude earthquakes often hidden in the noise.351
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Figure 8. Distributions of SNR values of denoised waveforms for different ranges of input

SNR. The SNR statistics after denoising are computed on 2dB wide ranges of input SNR. CD-

iffSD models show higher performances in low SNR scenarios, while DD is superior for the higher

SNR signals. We study the range: SNR < −2.0 ∪ SNR > 16.0, which covers 99% of real data.

Solid bars within each model (color) show the median value.

While the cold diffusion approach excels in low SNR scenarios, the binary mask-352

based method DD exhibits greater variability and tends to perform better in higher SNR353

conditions, benefiting from its ability to provide a clear-cut signal delineation (Fig. 7 and354

Fig. 8). In particular, DD shows improved performance when the input SNR is higher355

than ∼ 14 and is get worse at lower input SNR while our models remain consistently356

effective for a large range of input SNR. An example of high input SNR conditions can357

be found in the Supporting Information.358

4.1.2 Cross Correlation359

We evaluate the similarity between original signals and denoised signals, by show-360

ing the statistics of the computed CC values, in Fig. 9. A higher CC indicates a greater361

similarity between the denoised trace and the original signal. In this figure, we see that362

all CDiffSD models show similar performance and they are all consistently higher than363

DD. To better highlight the variability of CC values obtained from the different traces364

of the test set, in Fig. 10 we show the distribution of CC values between denoised and365

original traces as a function of CC of the noisy traces with original signals (x axis), that366

is, CC of traces before denoising is applied. The performances for both direct and sam-367

pling are higher than DD for every considered range of CC before denoising.368
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Figure 9. Cross-correlation (CC) comparisons for various model configurations applied to the

test set. Higher CC values indicate greater similarity between the denoised trace and the original

signal. All CDiffSD models show similar performance and that they are consistently higher than

DD.
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Figure 10. Distribution of CC values between original and denoised signals (y axis) as a

function of CC before application of denoising. The statistics are computed for ranges of 0.1.

CDiffSD models show better performances with respect to DD for all the ranges considered. The

difference is more noticeable especially at low CC values before denoising.

For each model considered we see better performance, with higher values of CC af-369

ter denoising (Fig. 10). Another noteworthy aspect is that at higher noise levels, thus370

lower CC before denoising (values from 0.2 to 0.3), models with T = 300 outperform their371

counterparts. As expected, these performance disparities tend to converge with an in-372
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crease in CC before denoising, corresponding to a relative reduction in noise compared373

to the signal.374

4.1.3 Phase arrival picks375
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Figure 11. The histograms display the distributions of P-wave (blue) and S-wave (orange)

arrival time differences between automated PhaseNet detections and label picks (in samples).

The results obtained using the original seismograms, eqk+noise and DD are shown for compar-

ison in the first, second and third row, respectively. The remaining rows show the results for

different CDiffSD models applied to the same data subset, offering insights into the accuracy of

wave arrival time detection by each model. Central tendency metrics, such as mean and median,

are indicated in these histograms, highlighting any potential skewness in the distribution towards

either early or late picks for both P and S waves.
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The histograms in Fig. 11 provide a visual representation of the efficacy of differ-376

ent seismic signal denoising methods — ”direct”, ”sampling”, and DD — in retrieving377

a signal and preserve P- and S-wave onsets. The accuracy of automated P and S-wave378

arrival time picks by PhaseNet is compared to label picks. The histograms are organized379

by method and parameter variations, displaying the distribution of arrival time discrep-380

ancies measured in samples.381

In the case of earthquake (i.e., no noise added, top histogram), the P-wave pick dif-382

ference distribution exhibits spreads that are narrower than those of the S-wave and this383

is in full agreement with the expected behavior.384

When noise is introduced, the pick difference distributions for P-waves and S-waves385

tend to converge towards a more similar pattern. This convergence can be attributed to386

the primary impact of noise on P-waves, owing to their lower amplitude compared to S-387

waves. As a result, the performance with added noise on P waves detection is much more388

degraded than on S waves detection with the same level of noise because P-waves have389

also smaller amplitudes. This observation is further supported by the recall values for390

S waves, which remain greater than 0.85 not only for all the denoising methods, but also391

for the noisy traces (earthquake + noise). In contrast, the recall rate for P-waves is con-392

sistently lowered by the presence of noise (Fig. 12). For these reasons we focus our anal-393

ysis on P-wave picks.394

As seen in Fig. 11 the distribution of the ”direct” methods show pronounced neg-395

ative skews, with mean values far from 0. This indicates a tendency of PhaseNet to pick396

P-waves slightly before the labeled picks for the waveforms denoised with ”direct” meth-397

ods. The reason of this behavior is most likely to be attributed to noise remaining in the398

denoised traces processed with the ”direct method”. This in turn can mislead PhaseNet399

to an early detection (see the ”direct” example in Fig. 13). This tendency, however, is400

mitigated completely by the CDiffSD ”sampling” method, as shown in Fig. 13. In par-401

ticular, we see that the ”sampling” methods display recall rates that are consistently high402

for both P and S, especially the 300 configuration, indicating a good denoising perfor-403

mance and the ability to recover the labeled phases.404
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Figure 12. Comparison of recall rates for P and S waves between the different methods

within a fixed window of 50 samples. S-waves recall rates are aligned almost for all models, indi-

cating that the noise level is not enough to affect the S-waves because of the greater amplitude.

P-waves recall rates instead show significant disparities between the DD approach and other

methods, suggesting a lower performance of DD in preserving the P onset in these cases. The

’sampling-300’ method is confirmed as the one with better performances.

From the comparison of the results obtained with the ”direct”, ”sampling”, and405

DD methods, it is evident that each method influences the automated pick accuracy dif-406

ferently. The ”sampling” method, particularly at higher parameter settings, demonstrates407

a notable alignment with label picks, suggesting its superiority in mitigating noise and408

enhancing the precision of automated picking systems. It is also noteworthy that the re-409

call values for P-waves shown in Fig. 12 are higher than DD for both ”sampling” and410

”direct” methods, which suggests that in these cases DD does not preserve accurate P-411

wave onsets.412

4.2 Qualitative Results413

Qualitative factors are useful as side-by-side comparisons between the outcomes414

of different approaches. In the supplementary materials, we delve deeper into the anal-415

ysis of seismic traces, examining the impact of denoising on picking. This includes a thor-416

ough examination of both the strengths and limitations of our model. We highlight in-417

stances where our model excels in denoising, as well as situations in which it does not418

perform optimally.419

The examples below and those in the supplementary are organized with the same420

layout: in the top panel we compare the noisy signal (grey) with the denoised signal (black);421

in the middle panel we compare the original signal (green) with the denoised signal (black);422

the bottom panel is a zoom on the P-wave arrival.423
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4.2.1 Qualitative Picker Analysis: Direct Vs Sampling424
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Figure 13. Comparison of a trace processed using ’direct 300’ and ’sampling 300’ methods.

Notably, the ’direct 300’ retains some of the noise preceding the P wave arrival, which is instead

filtered out in the ’sampling 300’ results. This noise before the P-wave retained with the the ’di-

rect 300’ method explains the tendency for this model to cause early picks (as seen in Fig. 11), as

the residual noise can lead to earlier detections.

In the first example shown in Fig. 13 we compare the ’direct 300’ and the ’sam-425

pling 300’ methods. Here ”sampling” method is found to be more effective than the ”di-426

rect” method in denoising the seismic signal, and this is particularly evident from the427

middle and bottom panels, where the denoised signal in the ”sampling” method match428

more closely the original signal. In contrast, the ”direct” method shows more significant429

deviation from the original, especially before the P-wave arrival. This example is also430

useful because it provides insight into the tendency of the ”direct” methods to cause spu-431

rious early P-picks. The direct method, in fact, retains some pre-arrival noise, which can432

trigger an early pick in automatic approaches such as PhaseNet. This is less of an issue433
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in the sampling method, as seen in the lower set of traces, where the denoised signal is434

cleaner, and the P-wave arrivals are closer to the labels. The implication for seismic pro-435

cessing is significant since the sampling method appears to produce cleaner signals and436

more accurate P-wave arrival times as a direct consequence. We note that this is cru-437

cial for various seismological applications such as earthquake location and tomographic438

imaging.439

4.2.2 Qualitative Picker Analysis: DD Vs Sampling440
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Figure 14. Comparison between a seismic trace processed with ’deep denoiser’ and ’sam-

pling 300’ methods. The ’sampling 300’ method demonstrates a closer match to label phase picks

and a more precise amplitude preservation, despite the substantial noise present in the original

signal. DD also retains a high amplitude noise signal at around 1500 samples that ’sampling 300’

manages to filter out almost completely.
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Fig. 14 exemplifies the concepts previously discussed in Fig. 8, highlighting the per-441

formance of our model compared to that of the ’deep denoiser’ in scenarios with very low442

Signal-to-Noise Ratio (SNR) before denoising. The figure demonstrates clearly how an443

extreme noise situation can lead to an error in phase picking for the ’deep denoiser’, whereas444

the ’sampling’ method is capable to reconstruct accurately the correct P wave arrival445

despite the presence of significant noise.446

4.2.3 Qualitative Amplitude Analysis: Direct Vs Sampling447
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Figure 15. Comparison of a seismic trace processed with ’direct 300’ and ’sampling 300’

methods. It is particularly significant that the ’sampling 300’ technique demonstrates an en-

hanced ability for amplitude reconstruction compared to the ’direct 300’ method.

In Fig. 15 we show a comparative analysis of seismic signal denoising methods to448

investigate the importance of amplitude preservation. The Cold Diffusion Model employ-449

ing a sampling strategy (’sampling 300’) demonstrates a superior performance in main-450

taining the amplitudes of the seismic signal. In practice, the denoised signal aligns more451
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accurately with the original waveform, preserving the integrity of the amplitude across452

the signal’s duration. This is particularly evident in the detailed zoomed-in analysis, where453

the ’sampling 300’ method displays remarkable congruence with the original signal, as454

evidenced by the minimal and consistent residuals. In contrast, the direct application455

of a U-Net model (’direct 300’) displays a slight but discernible attenuation in ampli-456

tude, most noticeable in segments with higher amplitude peaks. The increased residu-457

als associated with the ’direct 300’ method suggest a more significant alteration of the458

signal after the denoising process. Therefore, the Cold Diffusion Model with sampling459

stands out as the most effective method for seismic data denoising (amongst those tested460

here), especially where the preservation of amplitude is critically important.461

5 Model assessment: Assessing the Impact of Exclusive Noise Input462

In this section we aim to test the behaviour of the model in no-earthquake scenar-463

ios, i.e. with inputs containing only noise. This is done in order to verify whether the464

model doesn’t generates any artifacts in the absence of signal generating false earthquakes.465

Cold Diffusion is based on the model’s ability to learn the broad data distribution466

during training, which generally includes a variety of seismic traces with different lev-467

els of noise. Therefore, the model should be able to generalize and identify traces that468

are entirely dominated by noise, even without direct exposure to specific types of earth-469

quake samples where there is no earthquake signal. Based on these assumptions, we seek470

to verify if our results align with the theoretical expectations.471

We have used the entire noise test set as input, without combining it with the earth-472

quake data. Theoretically, with a perfect denoising, the expected output would be a trace473

composed exclusively of zeros, in the real context the trace should approach zero.474

We applied the model without retraining, meaning the model’s weights have never475

been exposed to the absence of earthquake traces as ground truth. To assess the correct-476

ness of the output we set an amplitude threshold between ±0.02 to decide whether the477

output could resemble a trace of zeros. The direct and sampling methods have correctly478

reconstructed the expected signal in 60.3% and 88.6% of cases, respectively. This dif-479

ferent performance highlights the sampling method’s superior capability in recognizing480

the absence of earthquake signals and adapting to it.481

Figure 16. Example of the outputs of direct (in black) and sampling (in red) methods in case

of a noise only input (in grey). No retraining is performed here, i.e. the models have never been

exposed to zero-traces as ground truth for noise-only input. The direct method fails in recovering

a zero-trace since it introduces artificial signals. In contrast, the sampling method reconstructs

successfully an output that resembles a zero-trace.
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Given the promising results just described, we further explored this scenario by re-482

training the model including no-signal traces as ground truth. We focused only on a sin-483

gle channel for this test and incorporated 3% of the entire training set with zeroed traces484

to represent the absence of seismic events. The results align with our expectations, in-485

dicating an improvement in performance in the presence of noise alone. Specifically, the486

cases where zero traces are retrieved increases to 68.2% and 90.5% for direct and sam-487

pling methods, respectively. The direct method exhibits a more substantial improvement,488

starting from a lower baseline performance, whereas the sampling method shows a smaller489

increase, likely due to its performance already approaching saturation.490

Figure 17. Example of the comparison between the sampling method (in red) and the direct

method (in black), the input (in gray) for both methods is only noise. In this case the models

have been retrained with zero-traces as ground truth for noise-only traces. The sampling method

succeeds in reconstructing a zero-trace. On the other hand, the direct method outputs noise,

indicating a less accurate reconstruction in this scenario.

Regarding the results post-retraining, it should be noted that the output trace of491

the sampling method shown in Figure 17 is indeed close to the expected zero-trace. On492

the contrary, low amplitude noise was still present in the output of the non retrained-493

case shown in Figure 16. This highlights the importance of including flat traces during494

the training.495

In this evaluation of the CDiffSD on these cases comprised solely of noise, we proved that496

it is not imperative to include such examples in training to accurately discern between497

noise and genuine seismic signals. However, including these kind of signals in training,498

improves the capability of effectively identifying traces that are comprised solely of noise.499

500

6 Conclusion501

Our study has demonstrated promising results in pick accuracy (4.1.3), Signal-to-502

Noise Ratio (SNR) enhancement (4.1.1), and Cross-Correlation metrics (4.1.2), thus af-503

firming the validity of cold diffusion denoising for seismological applications. In addition504

to these achievements, it is important to emphasize that, despite SNR and Cross-Correlation505

metrics aligning with other models, the sampling with T = 300 demonstrates its su-506

periority in practical, applied contexts, such as P-phase onset picking.507

While SNR and Cross-Correlation are critical metrics for assessing the quality of508

the reconstructed signal, not every part of the seismic trace holds equal significance. In509

fact, the preservation of the integrity of the P- and S-wave arrivals is fundamental. As510

–24–



manuscript submitted to JGR: Machine Learning and Computation

highlighted in Section 4, the most effective model in this regard is the one utilizing sam-511

pling with T = 300. This model’s ability to maintain the aspects of the seismic trace,512

particularly the arrival times of these key waveforms, underscores its practical superi-513

ority in applied seismological contexts.514

The findings discussed in Section 4, while serving as a good base, should be regarded,515

however, as a preliminary step towards addressing a broader spectrum of open questions516

and potential model enhancements.517

A significant direction for future advancement lies in the broadening of our dataset.518

Our initial explorations aimed to establish the feasibility of these methods. Moving for-519

ward we could potentially develop a more generalized model by retraining on the full STEAD520

and INSTANCE (Michelini et al., 2021) datasets, encompassing collectively several mil-521

lion traces compared to the ∼ 40k traces used in this study. This expanded model would522

be capable of effectively treating noise in a wide range of seismological contexts with-523

out the need for further retraining, thus significantly boosting its applicability and ro-524

bustness across diverse seismic scenarios.525

In conclusion, the model presented exhibits significant potential for enhancing seis-526

mic traces, facilitating more accurate onset picking of P- and S-waves. Moreover, it holds527

promise for extracting earthquakes from noise—events that may have eluded human de-528

tection or other approaches. Such capability could contribute to expanding seismic cat-529

alogs. While further refinements are conceivable, this method, which is borrowed from530

speech enhancement tasks, has proven its validity in the intricate domain of seismolog-531

ical analysis. This cross-disciplinary innovation underscores the model’s versatility and532

suggests broader applicability in extracting and analyzing subtle seismic signals.533

Acronyms534

CC Cross Correlation535

CDiffSD Cold Diffusion Model for seismic denoising536

DAS Distributed Acoustic Sensing537

DD Deep Denoiser538

DL Deep Learning539

DM Diffusion Model540

DPRNN Dual-Path Recurrent Neural Network541

E East-West542

eqk Earthquake543

ERC European Research Council544

GAN Generative Adversarial Network545

GELU Gaussian Error Linear Unit546

ICA Independent Component Analysis547

INGV Istituto Nazionale di Geofisica e Vulcanologia548

INSTANCE Italian Seismic Dataset For Machine Learning549

MUSIC MUltiple SIgnal Classification550

N North-South551

NRF Noise Reduce Factor552

ResNet Residual Neural Network553

SNR Signal to Noise Ratio554

STEAD STanford EArthquake Dataset555

STFT Short-Time Fourier Transform556

VAE Variational Autoencoder557

Z Vertical558
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Open Research Section559

The STEAD (Mousavi et al., 2019)(Seismological Tools for Earthquake Analysis560

and Detection) dataset is openly accessible at the following link: https://github.com/smousavi05/STEAD561

or by utilizing ObsPy, a Python library for processing seismological data (for more in-562

formation on ObsPy, refer to their official site: https://docs.obspy.org/).563

To replicate the data accurately, it is necessary to apply the filters described in the564

Section 3 to chunk2 of the STEAD dataset. Furthermore, specific data related to this565

research will soon be made available on the GitHub repository at https://github.com/Daniele-Trappolini/Diffusion-Model-for-Earthquake.566

Acknowledgments567

This research was made possible by the generous support of both the Istituto Nazionale568

di Geofisica e Vulcanologia (INGV) and the European Research Council (ERC) grant569

835012 (TECTONIC). We acknowledge partial funding from the MUR PNRR FAIR (PE00000013)570

project. Complementary funding was provided by the project INGV Pianeta Dinamico571

2021 Tema 8 SOME (CUP D53J1900017001) funded by the Italian Ministry of Univer-572

sity and Research “Fondo finalizzato al rilancio degli investimenti delle amministrazioni573

centrali dello Stato e allo sviluppo del Paese, legge 145/2018”. The funding and resources574

provided by these institutions have been instrumental in advancing the scope and depth575

of our study. We extend our sincere gratitude to the INGV for their valuable contribu-576

tions and to the ERC for their commitment to fostering scientific research and innova-577

tion.578

References579

Bansal, A., Borgnia, E., Chu, H.-M., Li, J. S., Kazemi, H., Huang, F., . . . Goldstein,580

T. (2022). Cold diffusion: Inverting arbitrary image transforms without noise.581

arXiv preprint arXiv:2208.09392 .582

Bear, L. K., Pavlis, G. L., & Bokelmann, G. H. (1999). Multi-wavelet analysis of583

three-component seismic arrays: application to measure effective anisotropy at584

pinon flats, california. Bulletin of the Seismological Society of America, 89 (3),585

693–705.586

Bekara, M., & der Baan, M. V. (2009). Random and coherent noise attenuation587

by empirical mode decomposition. Geophysics, vol. 74, no. 5, pp. V89–V98,588

2009 .589

Bie, X., Leglaive, S., Alameda-Pineda, X., & Girin, L. (2022). Unsupervised speech590

enhancement using dynamical variational autoencoders. IEEE/ACM Transac-591

tions on Audio, Speech, and Language Processing , 30 , 2993–3007.592
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