References
Adams, H. D. et al. 2017. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat. Ecol. Evol. 2017 19 1: 1285–1291. Available at: https://www.nature.com/articles/s41559-017-0248-x
Amissah, L., G. M. J. Mohren, B. Kyereh, and L. Poorter. 2015. The effects of drought and shade on the performance, morphology and physiology of ghanaian tree species. PLoS One 10: 1–22.
Anderegg, L. D. L., L. T. Berner, G. Badgley, M. L. Sethi, B. E. Law, and J. HilleRisLambers. 2018. Within-species patterns challenge our understanding of the leaf economics spectrum. Ecol. Lett. Available at: http://doi.wiley.com/10.1111/ele.12945.
Anderegg, W. R. L., T. Klein, M. Bartlett, L. Sack, A. F. A. Pellegrini, B. Choat, and S. Jansen. 2016. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proc. Natl. Acad. Sci. 113: 5024–5029. Available at: http://www.pnas.org/lookup/doi/10.1073/pnas.1525678113.
Anderegg, W. R. L., C. Schwalm, F. Biondi, J. J. Camarero, G. Koch, M. Litvak, K. Ogle, J. D. Shaw, E. Shevliakova, A. P. Williams, A. Wolf, E. Ziaco, and S. Pacala. 2015. Pervasive drought legacies in forest ecosystems and their implications for carbon cycles models. Science (80-. ). 349: 528–532.
Bartlett, M. K., T. Klein, S. Jansen, B. Choat, and L. Sack. 2016. The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought. Proc. Natl. Acad. Sci. 113: 13098–13103. Available at: http://www.pnas.org/lookup/doi/10.1073/pnas.1604088113.
Bartlett, M. K., C. Scoffoni, R. Ardy, Y. Zhang, S. Sun, K. Cao, and L. Sack. 2012. Rapid determination of comparative drought tolerance traits: Using an osmometer to predict turgor loss point. Methods Ecol. Evol. 3: 880–888.
Bates, D., M. Mächler, B. M. Bolker, and S. C. Walker. 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67.
Brodribb, T. J., and N. M. Holbrook. 2003. Stomatal Closure during Leaf Dehydration, Correlation with Other Leaf Physiological Traits. Plant Physiol. 132: 2166–2173. Available at: https://dx.doi.org/10.1104/pp.103.023879
Brodribb, T. J., N. M. Holbrook, E. J. Edwards, and M. V. Gutiérrez. 2003. Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant. Cell Environ. 26: 443–450. Available at: https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.2003.00975.x
Chave, J. et al (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology 20:3177–3190. https://doi.org/10.1111/gcb.12629
Chitra-Tarak, R., L. Ruiz, H. S. Dattaraja, M. S. Mohan Kumar, J. Riotte, H. S. Suresh, S. M. McMahon, and R. Sukumar. 2018. The roots of the drought: Hydrology and water uptake strategies mediate forest-wide demographic response to precipitation. J. Ecol. 106: 1495–1507.
Chitra‐Tarak, R. et al. 2021. Hydraulically‐vulnerable trees survive on deep‐water access during droughts in a tropical forest. New Phytol. 231: 1798–1813. Available at: https://onlinelibrary.wiley.com/doi/10.1111/nph.17464.
Choat, B. et al. 2012. Global convergence in the vulnerability of forests to drought. Nature 491: 752–755. https://doi.org/10.1038/nature11688
Chou, C., J. C. H. Chiang, C. W. Lan, C. H. Chung, Y. C. Liao, and C. J. Lee. 2013. Increase in the range between wet and dry season precipitation. Nat. Geosci. 6: 263–267. Available at: https://www.nature.com/articles/ngeo1744
Comita, L. S., and B. M. J. Engelbrecht. 2009. Seasonal and spatial variation in water availability drive habitat associations in a tropical forest. Ecology 90: 2755–2765. Available at: https://pubmed.ncbi.nlm.nih.gov/19886485
Comita, L. S., and B. M. J. Engelbrecht. 2014. Drought as a driver of tropical tree species regeneration dynamics and distribution patterns. For. Glob. Chang. 261–308.
Cornelissen, J. H. C., S. Lavorel, E. Garnier, S. Díaz, N. Buchmann, D. E. Gurvich, P. B. Reich, H. ter Steege, H. D. Morgan, van der M. G. A. Heijden, J. G. Pausas, and H. Poorter. 2003. A handbook of protocols for standardised and easy measurements of plant functional traits worldwide. Aust. J. Bot. 51, 335-380. Aust. J. Bot. 51: 335–380.
Engelbrecht, B. M. J., L. S. Comita, R. Condit, T. A. Kursar, M. T. Tyree, B. L. Turner, and S. P. Hubbell. 2007. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447: 80–82. http://www.nature.com/articles/nature05747.
Esquivel-Muelbert, A. et al. 2019. Compositional response of Amazon forests to climate change. Glob. Chang. Biol. 25: 39–56. https://doi.org/10.1111/gcb.14413
Fick SE, Hijmans RJ. (2017) WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Intl Journal of Climatology 37:4302–4315. https://doi.org/10.1002/joc.5086
Freschet, G. T. et al. 2021. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytol. 232: 1123–1158. Available at: https://onlinelibrary.wiley.com/doi/10.1111/nph.17072.
Hartmann, H., Moura, C.F., Anderegg, W.R.L., Ruehr, N.K., Salmon, Y., Allen, C.D., Arndt, S.K., Breshears, D.D., Davi, H., Galbraith, D., Ruthrof, K.X., Wunder, J., Adams, H.D., Bloemen, J., Cailleret, M., Cobb, R., Gessler, A., Grams, T.E.E., Jansen, S., Kautz, M., Lloret, F. and O’Brien, M. 2018. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol. 218: 15–28. Available at: https://doi.org/10.1111/nph.15048
Hoffmann, W. A., R. M. Marchin, P. Abit, and O. L. Lau. 2011. Hydraulic failure and tree dieback are associated with high wood density in a temperate forest under extreme drought. Glob. Chang. Biol. 17: 2731–2742.
Joslin, J. D., M. H. Wolfe, and P. J. Hanson. 2000. Effects of altered water regimes on forest root systems. New Phytol. 147: 117–129. Available at: http://doi.wiley.com/10.1046/j.1469-8137.2000.00692.x
Krishnadas, M., M. Sankaran, N. Page, J. Joshi, S. Machado, N. Nataraj, S. K. Chengappa, V. Kumar, A. Kumar, and R. Krishnamani. 2021. Seasonal drought regulates species distributions and assembly of tree communities across a tropical wet forest region A. Hampe (Ed.). Glob. Ecol. Biogeogr. geb.13350. Available at: https://onlinelibrary.wiley.com/doi/10.1111/geb.13350.
Kupers, S. J., C. Wirth, B. M. J. Engelbrecht, A. Hernández, R. Condit, S. J. Wright, and N. Rüger. 2019. Performance of tropical forest seedlings under shade and drought: an interspecific trade-off in demographic responses. Sci. Rep. 9: 18784. Available at: http://www.nature.com/articles/s41598-019-55256-x.
Laughlin, D.C., Mommer, L., Sabatini, F.M. et al. 2021. Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs. Nat. Ecol. Evol. 5: 1123–1134. Available at: http://dx.doi.org/10.1038/s41559-021-01471-7.
Lê, S., J. Josse, and F. Husson. 2008. FactoMineR : An R Package for Multivariate Analysis. J. Stat. Softw. 25: 1–18. Available at: https://www.jstatsoft.org/index.php/jss/article/view/v025i01.
McDowell, N., Pockman, W.T., Allen, C.D., Breshears, D.D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D.G. and Yepez, E.A. 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytologist 178:719–739. https://doi.org/10.1111/j.1469-8137.2008.02436.x
Medeiros, C. D., Scoffoni, C., John, G. P., Bartlett, M. K., Inman-Narahari, F., Ostertag, R., Cordell, S., Giardina, C., & Sack, L. 2019. An extensive suite of functional traits distinguishes Hawaiian wet and dry forests and enables prediction of species vital rates. Functional Ecology 33:712–734. https://doi.org/10.1111/1365-2435.13229
Muscarella, R., M. Uriarte, D. L. Erickson, N. G. Swenson, W. J. Kress, and J. K. Zimmerman. 2016. Variation of tropical forest assembly processes across regional environmental gradients. Perspect. Plant Ecol. Evol. Syst. 23: 52–62. Available at: http://dx.doi.org/10.1016/j.ppees.2016.09.007.
O’Brien, M. J., B. M. J. J. Engelbrecht, J. Joswig, G. Pereyra, B. Schuldt, S. Jansen, J. Kattge, S. M. Landhäusser, S. R. Levick, Y. Preisler, P. Väänänen, and C. Macinnis-Ng. 2017. A synthesis of tree functional traits related to drought-induced mortality in forests across climatic zones J. Firn (Ed.). J. Appl. Ecol. 54: 1669–1686. Available at: http://doi.wiley.com/10.1111/1365-2664.12874.
Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs, and H. Wagner. 2020. vegan: Community Ecology Package. R package version 2.5-7. Available at: https://cran.r-project.org/package=vegan.
Paz, H., F. Pineda-García, and L. F. Pinzón-Pérez. 2015. Root depth and morphology in response to soil drought: comparing ecological groups along the secondary succession in a tropical dry forest. Oecologia 179: 551–561. Available at: https://link.springer.com/article/10.1007/s00442-015-3359-6
Peres-neto, P. R., and D. A. Jackson. 2001. How well do multivariate data sets match ? The advantages of a Procrustean superimposition approach over the Mantel test. 169–178.328.x
Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, and R. C. Team. 2022. nlme: Linear and Nonlinear Mixed Effects Models. R Packag. version 3.1-157 14: 0–21. Available at: https://cran.r-project.org/package=nlme.
Poorter, L., and L. Markesteijn. 2008. Seedling traits determine drought tolerance of tropical tree species. Biotropica 40: 321–331.Reich PB (2014) The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. Journal of Ecology 102:275–301. https://doi.org/10.1111/1365-2745.12211
Rowland, L., A. C. L. Da Costa, D. R. Galbraith, R. S. Oliveira, O. J. Binks, A. A. R. Oliveira, A. M. Pullen, C. E. Doughty, D. B. Metcalfe, S. S. Vasconcelos, L. V. Ferreira, Y. Malhi, J. Grace, M. Mencuccini, and P. Meir. 2015. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528: 119–122. Available at: http://dx.doi.org/10.1038/nature15539.
Rüger, N., L. S. Comita, R. Condit, D. Purves, B. Rosenbaum, M. D. Visser, S. J. Wright, and C. Wirth. 2018. Beyond the fast–slow continuum: demographic dimensions structuring a tropical tree community. Ecol. Lett. 21: 1075–1084.
Santiago, L. S., M. E. De Guzman, C. Baraloto, J. E. Vogenberg, M. Brodie, B. Hérault, C. Fortunel, and D. Bonal. 2018. Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. New Phytol. 218: 1015–1024.
Skelton, R. P., T. J. Brodribb, S. A. M. McAdam, and P. J. Mitchell. 2017. Gas exchange recovery following natural drought is rapid unless limited by loss of leaf hydraulic conductance: evidence from an evergreen woodland. New Phytol. 215: 1399–1412. Available at: https://onlinelibrary.wiley.com/doi/10.1111/nph.14652
Skelton, R. P., A. G. West, and T. E. Dawson. 2015. Predicting plant vulnerability to drought in biodiverse regions using functional traits. Proc. Natl. Acad. Sci. 112: 5744–5749. Available at: https://pnas.org/doi/full/10.1073/pnas.1503376112.
Slot, M., and L. Poorter. 2007. Diversity of Tropical Tree Seedling Responses to Drought. Biotropica 39: 683–690. Available at: https://onlinelibrary.wiley.com/doi/10.1111/j.1744-7429.2007.00328.x
Sterling, T. M. 2005. Transpiration: Water Movement through Plants. J. Nat. Resour. Life Sci. Educ. 34: 123–123. Available at: https://onlinelibrary.wiley.com/doi/full/10.2134/jnrlse.2005.0123
Sun, S., E. Jung, J. Gaviria, and B. M. J. Engelbrecht. 2020. Drought survival is positively associated with high turgor loss points in temperate perennial grassland species K. McCulloh (Ed.). Funct. Ecol. 34: 788–798. Available at: https://onlinelibrary.wiley.com/doi/10.1111/1365-2435.13522
Suresh, H. S., H. S. Dattaraja, and R. Sukumar. 2010. Relationship between annual rainfall and tree mortality in a tropical dry forest: Results of a 19-year study at Mudumalai, southern India. For. Ecol. Manage. 259: 762–769. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0378112709006628
Weemstra, M., T. W. Kuyper, F. J. Sterck, and M. N. Umaña. 2023. Incorporating belowground traits: avenues towards a whole‐tree perspective on performance. Oikos 2023: 1–14. Available at: https://onlinelibrary.wiley.com/doi/10.1111/oik.08827