References
Adams, H. D. et al. 2017. A multi-species synthesis of
physiological mechanisms in drought-induced tree mortality. Nat. Ecol.
Evol. 2017 19 1: 1285–1291. Available at:
https://www.nature.com/articles/s41559-017-0248-x
Amissah, L., G. M. J. Mohren, B. Kyereh, and
L. Poorter. 2015. The effects of drought and shade on the
performance, morphology and physiology of ghanaian tree species. PLoS
One 10: 1–22.
Anderegg, L. D. L., L. T. Berner, G. Badgley,
M. L. Sethi, B. E. Law, and J.
HilleRisLambers. 2018. Within-species patterns challenge our
understanding of the leaf economics spectrum. Ecol. Lett. Available at:
http://doi.wiley.com/10.1111/ele.12945.
Anderegg, W. R. L., T. Klein, M. Bartlett,
L. Sack, A. F. A. Pellegrini, B. Choat, and
S. Jansen. 2016. Meta-analysis reveals that hydraulic traits
explain cross-species patterns of drought-induced tree mortality across
the globe. Proc. Natl. Acad. Sci. 113: 5024–5029. Available at:
http://www.pnas.org/lookup/doi/10.1073/pnas.1525678113.
Anderegg, W. R. L., C. Schwalm, F. Biondi,
J. J. Camarero, G. Koch, M. Litvak,
K. Ogle, J. D. Shaw, E. Shevliakova,
A. P. Williams, A. Wolf, E. Ziaco, and
S. Pacala. 2015. Pervasive drought legacies in forest
ecosystems and their implications for carbon cycles models. Science
(80-. ). 349: 528–532.
Bartlett, M. K., T. Klein, S. Jansen,
B. Choat, and L. Sack. 2016. The correlations and
sequence of plant stomatal, hydraulic, and wilting responses to drought.
Proc. Natl. Acad. Sci. 113: 13098–13103. Available at:
http://www.pnas.org/lookup/doi/10.1073/pnas.1604088113.
Bartlett, M. K., C. Scoffoni, R. Ardy,
Y. Zhang, S. Sun, K. Cao, and L.
Sack. 2012. Rapid determination of comparative drought tolerance
traits: Using an osmometer to predict turgor loss point. Methods Ecol.
Evol. 3: 880–888.
Bates, D., M. Mächler, B. M. Bolker, and
S. C. Walker. 2015. Fitting linear mixed-effects models using
lme4. J. Stat. Softw. 67.
Brodribb, T. J., and N. M. Holbrook. 2003. Stomatal
Closure during Leaf Dehydration, Correlation with Other Leaf
Physiological Traits. Plant Physiol. 132: 2166–2173. Available at:
https://dx.doi.org/10.1104/pp.103.023879
Brodribb, T. J., N. M. Holbrook, E. J.
Edwards, and M. V. Gutiérrez. 2003. Relations between stomatal
closure, leaf turgor and xylem vulnerability in eight tropical dry
forest trees. Plant. Cell Environ. 26: 443–450. Available at:
https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3040.2003.00975.x
Chave, J. et al (2014) Improved allometric models to estimate
the aboveground biomass of tropical trees. Global Change Biology
20:3177–3190. https://doi.org/10.1111/gcb.12629
Chitra-Tarak, R., L. Ruiz, H. S. Dattaraja,
M. S. Mohan Kumar, J. Riotte, H. S. Suresh,
S. M. McMahon, and R. Sukumar. 2018. The roots of the
drought: Hydrology and water uptake strategies mediate forest-wide
demographic response to precipitation. J. Ecol. 106: 1495–1507.
Chitra‐Tarak, R. et al. 2021. Hydraulically‐vulnerable trees
survive on deep‐water access during droughts in a tropical forest. New
Phytol. 231: 1798–1813. Available at:
https://onlinelibrary.wiley.com/doi/10.1111/nph.17464.
Choat, B. et al. 2012. Global convergence in the vulnerability
of forests to drought. Nature 491: 752–755.
https://doi.org/10.1038/nature11688
Chou, C., J. C. H. Chiang, C. W. Lan,
C. H. Chung, Y. C. Liao, and C. J. Lee. 2013.
Increase in the range between wet and dry season precipitation. Nat.
Geosci. 6: 263–267. Available at:
https://www.nature.com/articles/ngeo1744
Comita, L. S., and B. M. J. Engelbrecht. 2009.
Seasonal and spatial variation in water availability drive habitat
associations in a tropical forest. Ecology 90: 2755–2765. Available at:
https://pubmed.ncbi.nlm.nih.gov/19886485
Comita, L. S., and B. M. J. Engelbrecht. 2014. Drought
as a driver of tropical tree species regeneration dynamics and
distribution patterns. For. Glob. Chang. 261–308.
Cornelissen, J. H. C., S. Lavorel, E.
Garnier, S. Díaz, N. Buchmann, D. E.
Gurvich, P. B. Reich, H. ter Steege, H. D.
Morgan, van der M. G. A. Heijden, J. G. Pausas, and
H. Poorter. 2003. A handbook of protocols for standardised and
easy measurements of plant functional traits worldwide. Aust. J. Bot.
51, 335-380. Aust. J. Bot. 51: 335–380.
Engelbrecht, B. M. J., L. S. Comita, R.
Condit, T. A. Kursar, M. T. Tyree, B. L.
Turner, and S. P. Hubbell. 2007. Drought sensitivity shapes
species distribution patterns in tropical forests. Nature 447: 80–82.
http://www.nature.com/articles/nature05747.
Esquivel-Muelbert, A. et al. 2019. Compositional response of
Amazon forests to climate change. Glob. Chang. Biol. 25: 39–56.
https://doi.org/10.1111/gcb.14413
Fick SE, Hijmans RJ. (2017) WorldClim 2: new 1‐km spatial
resolution climate surfaces for global land areas. Intl Journal of
Climatology 37:4302–4315. https://doi.org/10.1002/joc.5086
Freschet, G. T. et al. 2021. Root traits as drivers of plant
and ecosystem functioning: current understanding, pitfalls and future
research needs. New Phytol. 232: 1123–1158. Available at:
https://onlinelibrary.wiley.com/doi/10.1111/nph.17072.
Hartmann, H., Moura, C.F., Anderegg, W.R.L., Ruehr, N.K.,
Salmon, Y., Allen, C.D., Arndt, S.K., Breshears, D.D., Davi, H.,
Galbraith, D., Ruthrof, K.X., Wunder, J., Adams, H.D., Bloemen, J.,
Cailleret, M., Cobb, R., Gessler, A., Grams, T.E.E., Jansen, S., Kautz,
M., Lloret, F. and O’Brien, M. 2018. Research frontiers for improving
our understanding of drought-induced tree and forest mortality. New
Phytol. 218: 15–28. Available at:
https://doi.org/10.1111/nph.15048
Hoffmann, W. A., R. M. Marchin, P. Abit, and
O. L. Lau. 2011. Hydraulic failure and tree dieback are
associated with high wood density in a temperate forest under extreme
drought. Glob. Chang. Biol. 17: 2731–2742.
Joslin, J. D., M. H. Wolfe, and P. J. Hanson.
2000. Effects of altered water regimes on forest root systems. New
Phytol. 147: 117–129. Available at:
http://doi.wiley.com/10.1046/j.1469-8137.2000.00692.x
Krishnadas, M., M. Sankaran, N. Page,
J. Joshi, S. Machado, N. Nataraj, S.
K. Chengappa, V. Kumar, A. Kumar, and R.
Krishnamani. 2021. Seasonal drought regulates species distributions and
assembly of tree communities across a tropical wet forest region A.
Hampe (Ed.). Glob. Ecol. Biogeogr. geb.13350. Available at:
https://onlinelibrary.wiley.com/doi/10.1111/geb.13350.
Kupers, S. J., C. Wirth, B. M. J.
Engelbrecht, A. Hernández, R. Condit, S. J.
Wright, and N. Rüger. 2019. Performance of tropical forest
seedlings under shade and drought: an interspecific trade-off in
demographic responses. Sci. Rep. 9: 18784. Available at:
http://www.nature.com/articles/s41598-019-55256-x.
Laughlin, D.C., Mommer, L., Sabatini, F.M. et al. 2021. Root
traits explain plant species distributions along climatic gradients yet
challenge the nature of ecological trade-offs. Nat. Ecol. Evol. 5:
1123–1134. Available at: http://dx.doi.org/10.1038/s41559-021-01471-7.
Lê, S., J. Josse, and F. Husson. 2008.
FactoMineR : An R Package for Multivariate Analysis. J. Stat. Softw.
25: 1–18. Available at:
https://www.jstatsoft.org/index.php/jss/article/view/v025i01.
McDowell, N., Pockman, W.T., Allen, C.D., Breshears, D.D., Cobb,
N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D.G. and Yepez,
E.A. 2008. Mechanisms of plant survival and mortality during drought:
why do some plants survive while others succumb to drought? New
Phytologist 178:719–739.
https://doi.org/10.1111/j.1469-8137.2008.02436.x
Medeiros, C. D., Scoffoni, C., John, G. P., Bartlett, M. K.,
Inman-Narahari, F., Ostertag, R., Cordell, S., Giardina, C., & Sack,
L. 2019. An extensive suite of functional traits distinguishes Hawaiian
wet and dry forests and enables prediction of species vital rates.
Functional Ecology 33:712–734. https://doi.org/10.1111/1365-2435.13229
Muscarella, R., M. Uriarte, D. L. Erickson,
N. G. Swenson, W. J. Kress, and J. K.
Zimmerman. 2016. Variation of tropical forest assembly processes across
regional environmental gradients. Perspect. Plant Ecol. Evol. Syst. 23:
52–62. Available at: http://dx.doi.org/10.1016/j.ppees.2016.09.007.
O’Brien, M. J., B. M. J. J. Engelbrecht, J.
Joswig, G. Pereyra, B. Schuldt, S. Jansen,
J. Kattge, S. M. Landhäusser, S. R. Levick,
Y. Preisler, P. Väänänen, and C. Macinnis-Ng.
2017. A synthesis of tree functional traits related to drought-induced
mortality in forests across climatic zones J. Firn (Ed.). J. Appl. Ecol.
54: 1669–1686. Available at:
http://doi.wiley.com/10.1111/1365-2664.12874.
Oksanen, J., F. G. Blanchet, M. Friendly,
R. Kindt, P. Legendre, D. McGlinn, P.
R. Minchin, R. B. O’Hara, G. L. Simpson, P.
Solymos, M. H. H. Stevens, E. Szoecs, and H.
Wagner. 2020. vegan: Community Ecology Package. R package version
2.5-7. Available at: https://cran.r-project.org/package=vegan.
Paz, H., F. Pineda-García, and L. F.
Pinzón-Pérez. 2015. Root depth and morphology in response to soil
drought: comparing ecological groups along the secondary succession in a
tropical dry forest. Oecologia 179: 551–561. Available at:
https://link.springer.com/article/10.1007/s00442-015-3359-6
Peres-neto, P. R., and D. A. Jackson. 2001. How well
do multivariate data sets match ? The advantages of a Procrustean
superimposition approach over the Mantel test. 169–178.328.x
Pinheiro, J., D. Bates, S. DebRoy, D.
Sarkar, and R. C. Team. 2022. nlme: Linear and Nonlinear Mixed
Effects Models. R Packag. version 3.1-157 14: 0–21. Available at:
https://cran.r-project.org/package=nlme.
Poorter, L., and L. Markesteijn. 2008. Seedling traits
determine drought tolerance of tropical tree species. Biotropica 40:
321–331.Reich PB (2014) The world-wide ‘fast-slow’ plant economics
spectrum: a traits manifesto. Journal of Ecology 102:275–301.
https://doi.org/10.1111/1365-2745.12211
Rowland, L., A. C. L. Da Costa, D. R.
Galbraith, R. S. Oliveira, O. J. Binks, A. A.
R. Oliveira, A. M. Pullen, C. E. Doughty, D.
B. Metcalfe, S. S. Vasconcelos, L. V. Ferreira,
Y. Malhi, J. Grace, M. Mencuccini, and
P. Meir. 2015. Death from drought in tropical forests is
triggered by hydraulics not carbon starvation. Nature 528: 119–122.
Available at: http://dx.doi.org/10.1038/nature15539.
Rüger, N., L. S. Comita, R. Condit,
D. Purves, B. Rosenbaum, M. D. Visser,
S. J. Wright, and C. Wirth. 2018. Beyond the
fast–slow continuum: demographic dimensions structuring a tropical tree
community. Ecol. Lett. 21: 1075–1084.
Santiago, L. S., M. E. De Guzman, C.
Baraloto, J. E. Vogenberg, M. Brodie, B.
Hérault, C. Fortunel, and D. Bonal. 2018.
Coordination and trade-offs among hydraulic safety, efficiency and
drought avoidance traits in Amazonian rainforest canopy tree species.
New Phytol. 218: 1015–1024.
Skelton, R. P., T. J. Brodribb, S. A. M.
McAdam, and P. J. Mitchell. 2017. Gas exchange recovery
following natural drought is rapid unless limited by loss of leaf
hydraulic conductance: evidence from an evergreen woodland. New Phytol.
215: 1399–1412. Available at:
https://onlinelibrary.wiley.com/doi/10.1111/nph.14652
Skelton, R. P., A. G. West, and T. E. Dawson.
2015. Predicting plant vulnerability to drought in biodiverse regions
using functional traits. Proc. Natl. Acad. Sci. 112: 5744–5749.
Available at: https://pnas.org/doi/full/10.1073/pnas.1503376112.
Slot, M., and L. Poorter. 2007. Diversity of Tropical
Tree Seedling Responses to Drought. Biotropica 39: 683–690. Available
at: https://onlinelibrary.wiley.com/doi/10.1111/j.1744-7429.2007.00328.x
Sterling, T. M. 2005. Transpiration: Water Movement through
Plants. J. Nat. Resour. Life Sci. Educ. 34: 123–123. Available at:
https://onlinelibrary.wiley.com/doi/full/10.2134/jnrlse.2005.0123
Sun, S., E. Jung, J. Gaviria, and B.
M. J. Engelbrecht. 2020. Drought survival is positively associated with
high turgor loss points in temperate perennial grassland species K.
McCulloh (Ed.). Funct. Ecol. 34: 788–798. Available at:
https://onlinelibrary.wiley.com/doi/10.1111/1365-2435.13522
Suresh, H. S., H. S. Dattaraja, and R.
Sukumar. 2010. Relationship between annual rainfall and tree mortality
in a tropical dry forest: Results of a 19-year study at Mudumalai,
southern India. For. Ecol. Manage. 259: 762–769. Available at:
https://linkinghub.elsevier.com/retrieve/pii/S0378112709006628
Weemstra, M., T. W. Kuyper, F. J. Sterck, and
M. N. Umaña. 2023. Incorporating belowground traits: avenues
towards a whole‐tree perspective on performance. Oikos 2023: 1–14.
Available at: https://onlinelibrary.wiley.com/doi/10.1111/oik.08827