REFERENCES
1. Tollefson J. World looks ahead post-Copenhagen.Nature. 2009;462(7276):966-967.
2. Xu X, Moulijn JA. Mitigation of CO2 by Chemical Conversion:  Plausible Chemical Reactions and Promising Products. Energy Fuels. 1996;10(2):305-325.
3. Datta SJ, Khumnoon C, Lee ZH, et al. CO2capture from humid flue gases and humid atmosphere using a microporous coppersilicate. Science. 2015;350(6258):302-306.
4. Wang W, Zeng C, Tsubaki N. Recent advancements and perspectives of the CO2 hydrogenation reaction.Green Carbon. 2023;1(2):133-145.
5. Meehl GA, Washington WM, Collins WD, et al. How Much More Global Warming and Sea Level Rise? Science.2005;307(5716):1769-1772.
6. Song C. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal. Today. 2006;115(1-4):2-32.
7. Wang W, Wang S, Ma X, Gong J. Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev.2011;40(7):3703-3727.
8. Porosoff MD, Yan B, Chen JG. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities. Energy Environ. Sci. 2016;9(1):62-73.
9. Förtsch D, Pabst K, Groß-Hardt E. The product distribution in Fischer–Tropsch synthesis: An extension of the ASF model to describe common deviations. Chem. Eng. Sci. 2015;138:333-346.
10. Visconti CG, Martinelli M, Falbo L, Fratalocchi L, Lietti L. CO2 hydrogenation to hydrocarbons over Co and Fe-based Fischer-Tropsch catalysts. Catal. Today.2016;277:161-170.
11. Riduan SN, Zhang Y. Recent developments in carbon dioxide utilization under mild conditions. Dalton Trans.2010;39(14):3347-3357.
12. Sha F, Tang S, Tang C, Feng Z, Wang J, Li C. The role of surface hydroxyls on ZnZrO solid solution catalyst in CO2 hydrogenation to methanol. Chinese J. Catal.2023;45:162-173.
13. Meng S, Wu L, Liu M, et al. Plasma-driven CO2 hydrogenation to CH3OH over Fe2O3/γ-Al2O3catalyst. AIChE Journal. 2023;69(10).
14. Qin Zz, Su Tm, Ji Hb, Jiang Yx, Liu Rw, Chen Jh. Experimental and theoretical study of the intrinsic kinetics for dimethyl ether synthesis from CO2 over Cu-Fe-Zr/HZSM-5.AIChE Journal. 2015;61(5):1613-1627.
15. Gao W, Guo L, Cui Y, et al. Selective Conversion of CO2 into para-Xylene over a ZnCr2O4-ZSM-5 Catalyst.ChemSusChem. 2020;13(24):6541-6545.
16. Wang T, Yang C, Gao P, et al. ZnZrOx integrated with chain-like nanocrystal HZSM-5 as efficient catalysts for aromatics synthesis from CO2 hydrogenation. Appl Catal B-Environ. 2021;286:119929.
17. Li T, Shoinkhorova T, Gascon J, Ruiz-Martínez J. Aromatics Production via Methanol-Mediated Transformation Routes. ACS Catal. 2021;11(13):7780-7819.
18. Guo L, Sun S, Li J, et al. Boosting liquid hydrocarbons selectivity from CO2 hydrogenation by facilely tailoring surface acid properties of zeolite via a modified Fischer-Tropsch synthesis. Fuel. 2021;306:121684.
19. Bui M, Adjiman CS, Bardow A, et al. Carbon capture and storage (CCS): the way forward. Energy Environ. Sci.2018;11(5):1062-1176.
20. Fischer F, Tropsch H. Über die direkte Synthese von Erdöl-Kohlenwasserstoffen bei gewöhnlichem Druck. (Erste Mitteilung).chem.ber. 1926;59(4):830-831.
21. Guo L, Sun J, Ge Q, Tsubaki N. Recent advances in direct catalytic hydrogenation of carbon dioxide to valuable C2+ hydrocarbons. J. Mater. Chem. A.2018;6(46):23244-23262.
22. Al-Dossary M, Ismail AA, Fierro JLG, Bouzid H, Al-Sayari SA. Effect of Mn loading onto MnFeO nanocomposites for the CO2 hydrogenation reaction. Appl Catal B-Environ.2015;165:651-660.
23. Wei J, Sun J, Wen Z, Fang C, Ge Q, Xu H. New insights into the effect of sodium on Fe3O4-based nanocatalysts for CO2 hydrogenation to light olefins.Catal. Sci. Technol. 2016;6(13):4786-4793.
24. Guo L, Li J, Cui Y, et al. Spinel-structure catalyst catalyzing CO2 hydrogenation to full spectrum alkenes with an ultra-high yield. Chem. Comm. 2020;56(65):9372-9375.
25. Visconti CG, Martinelli M, Falbo L, et al. CO2 hydrogenation to lower olefins on a high surface area K-promoted bulk Fe-catalyst. Appl Catal B-Environ.2017;200:530-542.
26. Yang Y. Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer-Tropsch synthesis. APPL CATAL A-GEN. 2004;266(2):181-194.
27. Choi PH, Jun K-W, Lee S-J, Choi M-J, Lee K-W. Hydrogenation of carbon dioxide over alumina supported Fe-K catalysts. Catal. Letters 1996;40(1):115-118.
28. Cui X, Gao P, Li S, et al. Selective Production of Aromatics Directly from Carbon Dioxide Hydrogenation. ACS Catal.2019;9(5):3866-3876.
29. Wang J, You Z, Zhang Q, Deng W, Wang Y. Synthesis of lower olefins by hydrogenation of carbon dioxide over supported iron catalysts. Catal Today. 2013;215:186-193.
30. Guo L, Gao X, Gao W, et al. High-yield Production of Liquid Fuels in CO2 Hydrogenation on a Zeolite-free Fe-based Catalyst.Chem Sci. 2023;14:171.
31. Choi YH, Jang YJ, Park H, et al. Carbon dioxide Fischer-Tropsch synthesis: A new path to carbon-neutral fuels.Appl Catal B-Environ. 2017;202:605-610.
32. Zhang L, Dang Y, Zhou X, et al. Direct conversion of CO2 to a jet fuel over CoFe alloy catalysts.The Innovation. 2021;2(4):100170.
33. Wang Y, Tan L, Tan M, et al. Rationally Designing Bifunctional Catalysts as an Efficient Strategy To Boost CO2 Hydrogenation Producing Value-Added Aromatics.ACS Catal. 2018;9(2):895-901.
34. Cheng K, Zhou W, Kang J, et al. Bifunctional Catalysts for One-Step Conversion of Syngas into Aromatics with Excellent Selectivity and Stability. Chem. 2017;3(2):334-347.
35. Pérez-Alonso FJ, Ojeda M, Herranz T, et al. Carbon dioxide hydrogenation over Fe–Ce catalysts. Catal Commun.2008;9(9):1945-1948.
36. Wang C, Zhang L, Huang X, et al. Maximizing sinusoidal channels of HZSM-5 for high shape-selectivity to p-xylene. Nat Commun. 2019;10(1):4348.
37. Li Y, Li L, Yu J. Applications of Zeolites in Sustainable Chemistry. Chem. 2017;3(6):928-949.
38. Lu S, Yang H, Zhou Z, et al. Effect of In2O3 particle size on CO2 hydrogenation to lower olefins over bifunctional catalysts. Chinese J. Catal. 2021;42(11):2038-2048.
39. Wei J, Ge Q, Yao R, et al. Directly converting CO2 into a gasoline fuel. Nat Commun.2017;8:15174-15181.
40. Wei J, Yao R, Ge Q, et al. Catalytic Hydrogenation of CO2 to Isoparaffins over Fe-Based Multifunctional Catalysts. ACS Catal. 2018;8:9958−9967.
41. Noreen A, Li M, Fu Y, et al. One-Pass Hydrogenation of CO2 to Multibranched Isoparaffins over Bifunctional Zeolite-Based Catalysts. ACS Catal. 2020;10(23):14186-14194.
42. Wang X, Zeng C, Gong N, et al. Effective Suppression of CO Selectivity for CO2 Hydrogenation to High-Quality Gasoline. ACS Catal. 2021;11(3):1528-1547.
43. Wei J, Yao R, Ge Q, et al. Catalytic Hydrogenation of CO2 to Isoparaffins over Fe-Based Multifunctional Catalysts. ACS Catal. 2018;8(11):9958-9967.
44. Wei C, Zhang W, Yang K, et al. An efficient way to use CO2 as chemical feedstock by coupling with alkanes.Chinese J. Catal. 2023;47:138-149.
45. Wang S, Wang P, Qin Z, et al. Relation of Catalytic Performance to the Aluminum Siting of Acidic Zeolites in the Conversion of Methanol to Olefins, Viewed via a Comparison between ZSM-5 and ZSM-11. ACS Catal. 2018;8(6):5485-5505.
46. Xu Y, Wang J, Ma G, Lin J, Ding M. Designing of Hollow ZSM-5 with Controlled Mesopore Sizes To Boost Gasoline Production from Syngas. ACS Sustain. Chem. Eng. 2019;7(21):18125-18132.
47. Kang J, Cheng K, Zhang L, et al. Mesoporous zeolite-supported ruthenium nanoparticles as highly selective Fischer-Tropsch catalysts for the production of C5-C11 isoparaffins. Angew Chem Int Ed. 2011;50(22):5200-5203.
48. Xiao J, Cheng K, Xie X, et al. Tandem catalysis with double-shelled hollow spheres. Nat Mater. 2022;21(5):572-579.
49. Yang G, Kawata H, Lin Q, et al. Oriented synthesis of target products in liquid-phase tandem reaction over a tripartite zeolite capsule catalyst. Chem Sci. 2013;4(10): 3958-3964.
50. Tan L, Wang F, Zhang P, et al. Design of a core-shell catalyst: an effective strategy for suppressing side reactions in syngas for direct selective conversion to light olefins. Chem Sci.2020;11(16):4097-4105.
51. Song G, Li M, Yan P, Nawaz MA, Liu D. High Conversion to Aromatics via CO2-FT over a CO-Reduced Cu-Fe2O3 Catalyst Integrated with HZSM-5. ACS Catal. 2020;10(19):11268-11279.
52. Gao P, Li S, Bu X, et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat. Chem. 2017;9:1019-1024.
53. Wei J, Yao R, Ge Q, et al. Precisely regulating Brønsted acid sites to promote the synthesis of light aromatics via CO2 hydrogenation. Appl Catal B-Environ.2021;283:119648.