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ABSTRACT

Several factors influence the degree of gene reuse during repeated adaptation, offering
insights into how evolution is constrained at the genomic level. Although numerous studies
have identified signatures of genomic repeatability in adaptive evolution, there is a lack of
synthesis regarding the statistical tests used to quantify gene reuse across lineages. In this
review, we survey published studies to (i) compile a comprehensive list of statistical indices
available for quantifying gene reuse during adaptation and (ii) compare patterns of the degree
of gene reuse across 120 taxa and four trait categories. Our analysis reveals that currently
gene reuse studies are biased in focal species and traits commonly studied. Importantly,
relatively few genomic loci contribute to repeatability and this variability is context dependent.
By summarizing currently available indices to quantify gene reuse, we propose a
straightforward methodological framework for designing studies that quantify gene reuse
during repeated adaptation. While this review advances our understanding of the degree of
gene reuse, we emphasize the need for broader and more inclusive research to uncover the
factors driving variability in gene reuse during adaptive evolution.
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In nature, different lineages often adapt to similar environmental pressures by reusing the
same genes, though not necessarily the same mutations—a phenomenon termed as repeated
adaptation (Arendt and Reznick 2008; Conte et al. 2012; Martin and Orgogozo 2013;
Bohutinska and Peichel 2024). Also referred to as replicated, parallel, or convergent
adaptation (Arendt and Reznick 2008), this process emphasizes the reuse of genes (hereafter
referred to as “gene reuse”) across lineages (see definition in (Bohutinska and Peichel 2024)
facing comparable environmental conditions (Martin and Orgogozo 2013). Also identified as
genetic parallelism (Rosenblum, Parent, and Brandt 2014), significant progress has been
made in understanding the factors influencing the probability of gene reuse during repeated
phenotypic evolution. However, there remains a gap in our knowledge about the factors
governing the degree of gene reuse or extent of genomic repeatability. Identifying these factors
is crucial to elucidate how genomic constraints shape evolutionary processes and affect the
predictability of adaptation (Speed and Arbuckle 2017; Yeaman et al. 2018; Pearless and
Freed 2024). By exploring the variability in the degree of gene reuse underlying repeated
evolution of different traits across various taxa, we can better understand the rules determining
repeatable patterns of evolution across the diversity of life.

Reverse genetic methods can be used to investigate gene reuse across different lineages
facing similar environmental challenges by using a genome scan approach to identify
candidate genes in populations subjected to contrasting environmental conditions (Bomblies
and Peichel 2022; Bohutinska and Peichel 2024). Additionally, experimental evolution studies
have successfully revealed the nature of parallel evolution in microbial systems (Speed and
Arbuckle 2017). In this review, we leverage published studies to discuss the key factors
influencing degree of gene reuse, examine current indices used to quantify genomic
parallelism, survey current literature to identify patterns of variation in degree of gene reuse,
and propose a conceptual framework to guide future research. Through this synthesis, we aim
to provide a comprehensive foundation for advancing the study of genomic basis of repeated
adaptation, offering insights into both its variability and broader implications for evolutionary
predictability.

Factors affecting the probability and degree of gene reuse underlying repeated
adaptation

The probability of parallelism—the likelihood of parallel genetic changes occurring at the
molecular level—is shaped by a variety of biological and ecological factors. In the most
preliminary model, which used extreme value theory, Orr (2005) explored the probability of
fixation of the same mutation in two independent populations and found the probability of
parallelism at the nucleotide level is greater under a model including natural selection
compared with a purely neutral model (Orr 2005). Since then, several studies have identified
various factors which can affect the probability of genetic parallelism (see (Rosenblum, Parent,
and Brandt 2014) for review of studies). In population genetics, three factors - the mutation
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rate of the locus, the probability that mutations at the locus are net beneficial and the average
magnitude of the fithess change caused by these mutational effects, are factors that predict if a
mutation will contribute to parallel evolution (Stern 2013).

Indeed theoretical studies have shown that the predictability of parallel evolution in natural
populations is influenced by factors like standing genetic variation (SGV) and gene flow (Elmer
and Meyer 2011; Conte et al. 2012; Ralph and Coop 2015; Hoban et al. 2016; Bomblies and
Peichel 2022). Beneficial alleles present in SGV or transferred via gene flow before selection
events can elevate the likelihood of parallel evolution, as supported by modeling studies. For
instance, Lee and Coop (2017) highlighted the role of shared selective sweeps under strong,
recent selection pressures (Lee and Coop 2017), while MacPherson and Nuismer (2017)
demonstrated that the probability of parallel genetic evolution increases with stronger selection
and larger effective population sizes, particularly for genes with significant phenotypic effects
(MacPherson and Nuismer 2017). Similarly, Chevin et al. (2010) showed that mutation
heterogeneity across loci favors parallel evolution, especially when pleiotropy is low or
variance in pleiotropy and fitness effects is high (Chevin, Martin, and Lenormand 2010). Gene
reuse is more probable when populations originate from a shared ancestor compared to when
they arise from distinct, divergent ancestors which has been now established using several
empirical studies (Conte et al. 2012; Bohutinska and Peichel 2024).

The factors limiting the probability of genetic parallelism can in theory also cause variability in
the degree of gene reuse. The probability of gene reuse depends on the beneficial nature of a
mutation such that the mutation should increase net fitness where the deleterious effects are
minimal. Thus, it can be predicted that the mutations that cause large phenotypic effects, such
as many null mutations, may not be favored by natural selection because pleiotropic effects on
traits have antagonistic effects on fitness (Stern 2013). But this inference of magnitude gets at
the fitness effect of mutations not the extent of reuse of mutations. Moreover, the probability of
gene reuse can be decoupled from the degree of gene reuse where similar factors such as
SGV or completely different factors can affect degree of gene reuse. Indeed, divergence time
between lineages is a key determinant, with gene reuse decreasing as divergence increases.
However, a comprehensive review of all possible factors which can drive this variability is
lacking and requires a timely assessment.

How do we quantify gene reuse currently?

Both non-parametric and parametric statistical tests have been used to quantify the degree of
gene reuse during repeated adaptation. An important distinction when using these indices is in
their consideration of the genetic architecture of the trait which has been essentially missing
until now. Borrowing from ecological studies (Connor and Simberloff 1979), similarity indices
have been extended to identify repeated phenotypic evolution with the caveat that these
indices are often not rooted in probability-based frameworks. These indices essentially indicate
if the observed number of genes underlying repeatability exceed null expectations. The
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conclusions about the causes of the degree of gene reuse is made after the significance
testing. We highlight a few such indices below.

Bailey, Rodrigue, and Kassen (2015) studied parallel evolution in bacterial populations and
used Jaccard similarity indices (J) to estimate the probability of genetic parallelism where J
describes that likelihood that the same gene is mutated in two independent lineages (Bailey,
Rodrigue, and Kassen 2015). They compared degree of parallelism across different biological
hierarchical levels by comparing gene overlap between lineages. Their results showed that
degree of parallelism followed a decreasing order with the highest J index value associated
with fitness and lowest to phenotype.

The hypergeometric test is frequently applied to calculate similarity in ecological contexts
(Connor and Simberloff 1979), but its extension to genomic datasets presents additional
complexity. To address this, Plaisier et al. (2010) introduced a modified version of this test
called the Rank—Rank Hypergeometric Overlap (RRHO), a threshold-free algorithm. RRHO
evaluates gene set overlap in differential expression datasets by iteratively comparing two
gene lists ranked by their differential expression levels across profiling experiments, calculating
the statistical significance of overlapping genes at each step (Plaisier et al. 2010). Subsequent
studies have adapted this approach to assess genic overlap among lineages, thereby
quantifying gene reuse in response to environmental changes. For instance, Cheng et al.
(2021) employed pairwise hypergeometric tests using the R function dhyper to show that East
Asian songbirds exhibit parallel functional responses to extreme elevation, despite relying on
different genes (Cheng et al. 2021). Their results revealed that on average, any two pairs of
bird lineages shared 10.9 candidate genes, with no single gene found in all comparisons.
Similarly, Wang et al. applied comparable methods to uncover substantial evidence of parallel
adaptation at the SNP, gene, and pathway levels in four highland maize populations (Wang et
al. 2021).

Wilcoxon-signed rank tests can also be used to quantify similarity of genes between
lineages. Yeaman et al. (2016) used the null-W method to detect repeated gene reuse in
cases of convergent adaptation to environmental variables in two distantly related species,
lodgepole pine and interior spruce (Yeaman et al. 2016). Briefly, they used a Wilcoxon-signed
rank test to compare p? values of non-top-candidate genes and top-candidate orthologs to a
background set of 10,000 SNPs. Null distributions of W statistics were transformed into Z-
scores and empirical p-values were calculated by comparing these scores to the null
distribution. This approach accounts for the role of linkage disequilibrium in creating regions
with high association signals by chance. They quantified similarities in the signatures of
association underlying convergent adaptation by comparing the strength of association for
SNPs within top-candidate orthologs to a null distribution derived from non-top-candidate
orthologs. Their analysis suggested that around 10-18% of locally adapted genes were
evolving convergently.
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Chaturvedi et al. (2018) utilized an X-fold enrichment metric to evaluate and quantify the
excess overlap of SNPs associated with host plant use in Melissa blue butterflies (Chaturvedi
et al. 2018). The reported X-fold enrichment values served as indicators of predictability in the
context of parallel genetic changes underlying host use in multiple lineages. For instance, an
X-fold enrichment of 2.0 implies that twice as many SNPs are associated with host plant use in
repeated colonization events as would be expected by chance. This result indicates that
patterns of genomic change can be anticipated at twice the rate of random expectations. While
most SNPs were strongly associated with host use in none or only one lineage, the study
identified an approximate twofold excess of SNPs associated with host use across both
lineages. Chaturvedi et al. (2023) applied the same X-fold enrichment metric to explore
repeated gene reuse during adaptation to climatic variables in eight species of Timema stick
insects. Their findings underscored the collective influence of shared ecological factors and
genomic backgrounds on the degree of genomic parallelism (Chaturvedi et al. 2022). Their
analysis revealed a two- to fourfold excess of genomic parallelism for various climate variables
across species. Furthermore, the results demonstrated a predictable decline in genomic
parallelism with greater divergence times between species (also see (Régo et al. 2020) for
experimental evolution application).

While these indices are useful, they cannot always differentiate between the level of
repeatability and the proportion of genes available for adaptation by considering the genomic
architecture of the trait in question. Yeaman et al. (2018) introduced the C-score index, a
novel metric to quantify constraints driving the observed levels of repeated adaptation
(Yeaman et al. 2018). The C-scores are derived from the hypergeometric distribution and
allows for simultaneous analysis across multiple lineages. Their test produces three indices
Chyper, Ccnisq (collectively called C-scores) and P . Here the C-scores quantify the probability
of repeatability given the level of contraints (constraint is used here to indicate the number of
loci available for repeatability). Paix quantifies the proportion of genes available for
adaptation. Thus, if multiple genes are contributing to a trait, the Paix index will be high and
the C-scores will be low due to low level of constraints. Conversely, if only a single large effect
gene is contributing to a trait and is being repeated, the P,k index will be low and the C-
scores will be high due to high level of constraints. In this way, the three indices together
enable comparisons across species and trait types and provides a framework to estimate the
effective proportion of adaptation-capable genes within a genome. This builds on models
which identify the mode of convergent evolution wherein standing genetic variation or gene
flow before the selection episode could lead to different probabilities of genetic changes.

Finally, Yeaman, and Whitlock (2023) developed PicMin, a statistical approach which
estimates the significance of repeated molecular evolution for individual genes by leveraging
genome scan results (Booker, Yeaman, and Whitlock 2023). Importantly, the model is
adaptable to any number of lineages, with its statistical power increasing as more lineages
exhibit signals of repeated adaptation at a given gene. When applying PicMin to compare two



187
188
189
190
191
192
193

194
195

196

197
198
199
200
201
202
203
204

205

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

lineages, the p-value for each gene is calculated as the cumulative probability density for the
larger of the two p-values. The expected number of false positives is determined by
considering the number of orthologs being compared. The number of genes showing signals of
repeated adaptation can then be estimated by subtracting the expected false positives from
the total number of genes with a p-value below a given threshold. A binomial test is
subsequently used to determine the significance of the excess number of genes relative to the
null expectation.

Together these indices present a solid start towards recognizing a standard set of methods to
cross-validate the observed degree of gene reuse in repeated adaptation studies.

Quantitative Comparison of Degree of Gene Reuse from published studies

To objectively investigate the degree of gene reuse underlying repeated adaptation, we
conducted a quantitative review of published studies spanning diverse taxa and traits. Our goal
was to visualize patterns of variability and assess the consistency of genome-wide parallelism
across lineages while ensuring studies shared comparable sequencing methodologies,
analytical frameworks, and study designs. We briefly describe our methods here, please refer
to supplementary methods for details. We also discuss the major details of our analyses here
but have provided additional details from the studies in the supplementary table which can be
used by readers for future work.

Literature Search Criteria and Data Collection

Using comprehensive literature search criteria, we compiled data from 104 studies
investigating repeated genomic adaptation across two or more lineages. These studies
included mostly studies using reverse-genetics approach to identify genomic regions
associated with repeated adaptation. We also included studies from microbial systems which
included experimental evolution to include microbial taxa in our list of species. From these
studies, we extracted key information including the trait category, types of genomic loci
analyzed, the total number of loci tested, and the proportion of loci shared across lineages
(among others, see Supplementary methods). Traits were categorized as morphological,
physiological, life-history, or behavioral, resulting in 97 unique traits (see Supplementary Table
1). We identified the types of loci used to test for parallel adaptation, which included single
nucleotide variants (SNVs), quantitative trait loci (QTLs), mutations, structural variants (SVs),
genes or orthologues, and differentially expressed genes (DEGs). For studies with variation in
the number of loci associated with a trait across lineages, we used an average to approximate
the number of loci. Additionally, we noted whether studies applied formal significance testing to
check if the observed number of parallel or repeated loci were more than expected under
random chance. Genome size for each focal species was recorded from the original
manuscript or NCBI-SRA. Lastly, we summarized patterns of variation in shared loci based on
species or phylum, trait category, genomic locus type, and genome size.
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What does the data tell us about studies on genomic basis of repeated adaptation?

Our final dataset spanned 13 phyla and approximately 97 unique species (Figure 2). Chordata
was the most represented phylum, particularly fishes (N = 42), followed by Tracheophyta (N =
17) and Arthropoda (N = 17). Across all four trait categories, physiological traits dominated (N
= 86), while behavioral traits were the least represented (N = 6) (Figure 3A). Only 20 out of 107
studies focused on oligogenic traits, whereas most studies investigated traits with polygenic
genetic architectures and most of our selected studies were focused on multi-locus traits which
was essential for our comparison (Figure 3A).

Most studies in our dataset utilized SNVs to identify parallel genomic changes (N = 56, Figure
2). To address genome coverage limitations, many studies employed a window-based
approach or aggregated SNVs to the gene level, treating "genes" as the loci for comparison.
We observed that genome size significantly influenced the number of shared loci across
lineages, with clear variation linked to taxonomic classification (Figure 3B, R? = 0.016; p-value
= <0.005).

We summarized how many genetic variants contribute to repeatability across studies by
calculating the proportion of trait-associated loci identified as "shared loci" within each study.
On average, 15.85% of SNVs were shared in SNV-based datasets (N = 28 studies), 14% of
genes in gene-based datasets (N = 21), 17.6% of mutations in mutation-based datasets (N =
10), 22% of QTLs in QTL-based datasets (N = 5), and only 0.64% of differentially expressed
genes in expression-based datasets (N = 5). However, this comparison was limited due to
inconsistencies in how gene reuse numbers were reported across studies. To address this, we
selected 20 SNP-based and 14 gene-based studies where comparisons were clearly defined.
Among these, we found that, on average, only 13.2% of total SNVs in a dataset were trait-
associated, of which 20.3% were shared across lineages. In contrast, 89.5% of total genes
were trait-associated, but only 14% were shared. This analysis highlights that relatively few
genomic loci contribute to repeatability, with gene reuse being least detected in gene
expression studies.

Several methods were employed to identify outlier loci, including genotype-by-environment
association analyses, Fstoutlier tests, parametric and non-parametric tests, QTL analyses, and
linear mixed models. Several statistical tests were applied to identify if the observed number of
shared loci were more than expected under chance. These included Jaccard Similarity Index
(J) (5 studies), Hyper-Geometric tests (5 studies), False Discovery Rate (FDR) statistics and
Fisher Exact Test (12 studies), and permutation tests or X-fold enrichment tests or Null-W (12
studies) (Supplementary Table 1).

Based on an analysis of 104 published studies spanning 120 taxa, three key themes emerged
about the current state of studies on gene reuse during adaptation (Figure 2). First, most
studies focus on specific traits, predominantly morphological or life-history traits. Behavioral
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traits are grossly underrepresented. This can be fixed as we have made considerable
advances in studying the genetics of behavioral traits (Hoekstra and Robinson 2022). Second,
measures of degree of gene reuse vary widely across species, traits, evolutionary scales, and
genetic levels, including loci and chromosomal rearrangements. Importantly, relatively few
genomic loci contribute to repeatability which could support the idea that only major genes
contribute to adaptation due to constraints of genetic architecture. Third, the methodologies to
quantify gene reuse are many and a more standardized framework could be useful for making
more meaningful comparisons about degree of gene reuse across several scales and levels.
Currently, non-parametric tests still dominate quantification of gene reuse. However, these
approaches can be problematic and can identify false positives due to linkage disequilibrium or
overlooked features of genomic data. Permutation-based approaches can overcome these
limitations and can address the need for additional cross-validation in genotype-environment
association studies (Yeaman et al. 2018; Chaturvedi et al. 2022).

Conclusion

In the 18th century, Laplace’s demon symbolized the idea of perfect knowledge, capable of
predicting the universe's every detail across time. Similarly, in evolution, understanding
predictability is key to uncovering whether the challenges faced by diverse species can be
resolved by a limited set of reliable, reusable solutions. While we may never achieve complete
knowledge, patterns of predictable evolutionary change offer hope. Our review highlights the
high variability in the degree of gene reuse during adaptation and shows that this variability is
context dependent. We emphasize the need for broader taxonomic and trait representation,
suggest relevant indices, as well as standardized frameworks for quantifying gene reuse.
Though we may not yet fully understand gene reuse, the groundwork is firmly in place to refine
analyses and advance our understanding of its role in evolution.
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FIGURES

Figure 1 [BOX 1]: A standardized framework to design studies focused on quantifying gene reuse during
repeated adaptation using reverse genetics approaches. Researchers can follow the following three step
procedure to design studies which can aim to quantify degree of gene reuse during repeated adaptation.

This protocol is based on using reverse-genetics approach to study natural populations but can be

extended to experimental evolution studies. Here we define lineages genetically distinguishable unit that

can encompass populations, species, or even different kingdoms, representing a branch in the tree of
life. In step 2, each point represents a genomic locus (see categories in Supplementary Table 1).
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Figure 2: A circular representation showing genetic variants found in different species. The bars are
arranged in three rings, where the inner ring shows shared variants (dark bars), middle ring shows
trait-associated variants (medium opacity bars), and outer ring shows total variants (light bars) for
each species. Different colors represent different types of variants: SNPs or SNVs (blue), QTLs
(green), genes (orange), transcripts (red), mutations (purple), and structural variants (brown).
Species names are colored based on their phylum grouping. Black symbols at the bottom of each
bar depicts the trait type studied: physiology (circle), morphology (square), behavior (triangle), and
life history (diamond). All values are shown in log10 scale with original values written on the bars.
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Figure 3: Analysis of trait categories, genetic architecture, study type, phylum distribution, and genetic
variants patterns. (a) Bar plots showing distribution of studies across trait categories (behavior, life
history, morphology, and physiology), genetic architecture (oligogenic vs polygenic), study approach
(single-locus vs multi-locus), and phylum distribution across the surveyed literature. Numbers at the end
of each bar indicate total count of studies. (b) Scatter plot showing the relationship between genome size
(Mb, log10) and repeatability (log10). Different shapes represent variant types (SNP, QTL, gene, transcript,
mutation, and SV) and colors indicate different phyla. A linear regression line is shown (R? = 0.016). Both
axes are in log10 scale. Each point represents data from an individual study.
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SUPPLEMENTARY METHODS

Selection of papers

We conducted an objective survey of the published literature for studies that tested genomic
basis of repeated adaptation. To obtain a set of representative articles, we searched the online
Semantic Scholar database for all studies in the subject area of evolutionary biology (spanning
2010-2024) that included the topic repeated evolution* parallel adaptation* genome* (a **’ at
the end of a search term includes all words beginning with the preceding letters). We reasoned
that these search terms would detect many studies that had tested and quantified the genomic
basis of parallel or convergent evolution regardless of outcome. In total, the search yielded 159
publications, of which 83 met further criteria for inclusion in the study. To be included, we
required that a study addressed the genomic basis of repeated evolution between two different
lineages generating data that includes at least one of the genomic entities mentioned earlier in
the text. We included only studies with original data, rather than reviews. It was also
necessary that the studies included to quantify the shared loci using proper tests since we are
trying to design a framework to examine repeated adaptation. However, we did notice that the
search missed several papers which had explicit quantification of degree of parallel genetic
changes. We conducted an additional search on Google Scholar by using the keywords
“quantifying genomic basis of parallel adaptation” and shortlisted 40 additional papers which
met our criteria and had explicitly quantified degree of parallelism in their methods. While
parsing data for our analysis, we excluded papers that lacked sufficient information about
genetic variants or reported only phenotypic data without corresponding genomic evidence,
resulting in a final dataset of 107 papers. We acknowledge that perhaps we missed some
papers in our search, but our final set of papers provided a good representation across taxa
and traits, something which was crucial for our review.

Final table

We summarized the specific information from the final set of papers which we expected to
influence the degree of genomic parallelism. We created broad categories for some
information. These categories align with the column names in our final spreadsheet
(Supplementary Table 1). We describe these below:

1. Title — The title of the published paper.

Author — First author information of the paper.

Journal — Journal in which the paper was published.

Year of publication

Species - Focal study species was identified from each paper. We ended up with
approximately 120 unique species from the final set of papers.

Phylum — Phylum classification of the focal species of study.

7. Kingdom — Kingdom classification of the focal species of study.

abkownN

o
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8. Genome size — Estimated genome size of the focal study species. We identified the
genome size of the reference genome used in the study. Some studies provided this
information in their paper. For others, we searched the genome size on NCBI Sequence
Archive. We report genome sizes in Megabases (Mb).

9. Divergence_level — We classify the divergence level between the focal lineages used to
compare gene reuse in the study. We classify them in three categories: (i) population;
meaning populations belonging to same species were compared (ii) species; meaning
multiple species of the same genus were compared, and (iii) genus; multiple genus
including different species were compared.

10.Num_Lineages - We follow Bohutinska & Peichel 2024 and define lineages as a
genetically distinguishable unit that can encompass populations, species, or even
different kingdoms, representing a branch in the tree of life. We identified the total
number of lineages used to test for genomic parallelism.

11. Trait — Specific trait studied in the paper which has repeated evolved in the test
lineages.

12. Trait_category — Traits were broadly classified into four categories: (i) morphological (ii)
physiological (iii) life-history (iv) behavior.

13.Data — Test genomic data was classified into six categories based on the genomic
entities used to test for repeated gene reuse: (i) Single nucleotide variants (SNVs) (ii)
Quantitative trait loci (QTLs) (iii) Genes or orthologues (iv) Transcripts (v) Mutations (vi)
Structural variants (SVs).

14.Total_loci — Total number of genetic loci included in the study.

15. Trait_loci — Subset of the total genetic loci which were found associated with the trait
being studied.

16.Shared_loci — Final number of genetic loci associated with gene reuse or shared
between given set of lineages.

17.Percent_trait — Percentage of loci associated with trait out of the total loci used in the
study.

18.Percent_shared — Percentage of loci shared between lineages out of the trait
associated loci identified using outlier analysis.

19.Notes_on_data — Notes on categories of data used to identify shared loci.

20. Trait_type — Focal study trait was multilocus or single-locus.

21.Genetic architecture — The genetic architecture of the studied trait could be (i)
oligogenic or (ii) polygenic.

22.Indices — Indices used to validate that the observed loci underlying repeated adaptation
and more than expected under a null hypothesis. Not standardized, not available for all
studies.
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