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Abstract16

The region of northern Borneo in South East Asia sits within a post-subduction setting17

formed by the recent termination of two sequential but opposed subduction systems. In18

this study we use seismic data from a recent temporary array deployment to image the19

crustal velocity structure beneath northern Borneo using a two-stage Bayesian trans-dimensional20

tomography scheme, in which period dependent phase velocity maps are first generated,21

and then used to build a 3-D shear wave model through a series of 1-D inversions. In22

the second stage, we also apply an Artificial Neural Network to solve the 1D inverse prob-23

lem, which results in a smoother 3-D model compared to the TransD approach without24

sacrificing data fit. Our shear wave velocity model reveals a complex crustal structure.25

Under the Crocker Range, a heterogeneous velocity structure likely represents remnants26

of early Miocene subduction, including underthrust continental crust from subsequent27

continent-continent collision. In the east we observe high velocities that are interpreted28

to be igneous rocks in the crust generated by melting due to mid Miocene Celebes Sea29

subduction and later decompression melting as well as a low velocity zone that could rep-30

resent underthrust sediment or duplexes from Celebes Sea subduction. A low velocity31

zone in the lower crust is present in a region of apparent crustal thinning. Our preferred32

explanation for this anomaly is remnant thermal upwelling within a failed rift that rep-33

resents the on-shore continuation of the extension of the Sulu Sea, most likely caused by34

rollback of the Celebes Sea slab.35

Plain Language Summary36

The island of Borneo is located in South East Asia. Although some distance from37

active plate boundaries, its northern tip has a complex tectonic history over the last ∼3038

million years, with sequential subduction (one tectonic plate descending into the man-39

tle beneath an adjacent plate) from the north and south that that ceased ∼9 million years40

ago. In this study we use data recorded by seismometers to image the properties of the41

rocks in the crust underneath northern Borneo. Rather than use earthquake signals, we42

instead use ambient seismic noise, which is continuous low amplitude ground motion largely43

produced by ocean waves. This data can be used to produce a 3-D model of shear wave44

(transverse elastic waves) velocity structure. From this model we observe evidence of continent-45

continent collision following subduction of the proto-South China Sea. We see evidence46

of rock that melted during subduction of the Celebes Sea slab that has re-solidified fol-47

lowing subduction termination. We also see evidence of a high temperature anomaly at48

depth in the centre of our model, which supports the idea of crustal extension in cen-49

tral Borneo driven by opening of the Sulu Sea in response to retreat of the subducting50

Celebes Sea slab.51

1 Introduction52

Northern Borneo encompasses the Malaysian state of Sabah and is located in the53

intra-plate region of southeast Asia (Figure 1), with the nearest subduction zone lying54

beneath the Northern Sulawesi trench over 500 km to the south east. Despite its remote-55

ness from plate boundaries, northern Borneo is geologically very complex and exhibits56

signs of ongoing tectonic activity, likely related to the recent termination of two opposed57

subduction systems (Hall, 2013). Beneath north-west Borneo, subduction of the Proto-58

South China Sea terminated in the Early Miocene (∼21 Ma) with the onset of continent-59

continent collision involving the Dangerous Grounds block; this caused much of north-60

ern Borneo to uplift and deform as part of the Sabah Orogeny (Hall, 2013; Hutchison61

et al., 2000; Hall, 1996; Tongkul, 1994). This is believed to have been followed by north-62

west directed subduction of the Celebes Sea beneath the Sulu Arc to the southeast, which63

began at ∼21 Ma and was followed by rifting of the Sulu Sea due to subduction rollback64

(Hall, 2013). The subduction of the Celebes Sea is thought to have terminated at ∼965
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Figure 1. Location of seismic stations (coloured triangles) and networks (see key) used in this

study. Inset map shows the location of northern Borneo in the greater southeast Asia region.

Ma as recorded by the cessation of arc magmatism (Lai et al., 2021). Linang et al. (2022)66

propose that this sequence of events constitutes subduction polarity reversal or SPR in-67

volving continental lithosphere as opposed to oceanic arcs or oceanic plateau that are68

normally invoked to produce a polarity switch (Almeida et al., 2022; Wang et al., 2022).69

The complicated tectonic history of northern Borneo described above is expressed70

in a variety of different ways in the surface geology and landscape of the region (Figure71

1). Major surface features include the Crocker Range in the northwest, which formed72

during the Sabah Orogeny in the Miocene, as well as Mt Kinabalu, an exposed granitic73

intrusion within the Crocker Range that was emplaced ∼7 Ma and subsequently uplifted,74

which now sits at the surface with an elevation of 4095 m, much higher than the major-75

ity of the Crocker Range with ∼1500 m elevation (Cottam et al., 2010). There are also76

large sedimentary basins in the region including unusual elevated circular basins in the77

south, such as the Maliau Basin, which is believed to have formed from deltaic sediments78

in the mid to late-Miocene but was subsequently uplifted in the Pliocene (3-5 Ma) (Balaguru79

et al., 2003). The peak of the surrounding escarpment now sits at 1675 m above sea level80

and the underlying basin sediments are thought to be up to 6000 m thick (Balaguru et81

al., 2003). One of the challenges in trying to unravel the geology and tectonics of north-82

ern Borneo is that much of the surface is masked by thick tropical regolith and dense83

vegetation, which severely limits outcrop. This leaves many basic questions to be answered84

including the extent to which compressional (Morley et al., 2011; Morley & Back, 2008;85

Tongkul, 1997) or extensional (Pilia et al., 2023a, 2023b; Hall, 2013) tectonics control86

the evolution of the lithosphere.87
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There have been a number of previous geophysical studies that have included north-88

ern Borneo, many of which involve the generation of regional velocity models of south-89

east Asia from seismic imaging. Although limited in resolution, they consistently reveal90

a high velocity feature in the upper mantle at around ∼100-300 km depth, which is gen-91

erally attributed to remnant slabs (Laat et al., 2023; Wehner et al., 2022; Zenonos et al.,92

2020; Hall & Spakman, 2015; Tang & Zheng, 2013). More recently, targeted seismic stud-93

ies have been performed using data from the northern Borneo Orogeny Seismic Survey94

(nBOSS) experiment (Pilia et al., 2019). Imaging of the mantle using teleseismic P and95

S wave arrival time tomography has been performed by Pilia et al. (2023a), who found96

two distinct anomalies, one of which was attributed to a proto-South China Sea slab rem-97

nant and the other to a lithospheric drip that detached from beneath the Semporna Penin-98

sula. Imaging of the mantle by 2-plane wave surface wave tomography was performed99

by Greenfield et al. (2022), who found thin lithosphere beneath the Semporna Peninsula,100

further supporting the idea that mantle lithosphere has been removed from this region.101

Detachment of lithosphere in this way has been shown, via numerical modelling, to cause102

extension and thinning of the crust, subcrustal melting and exhumation (Pilia et al., 2023b).103

Linang et al. (2022) found evidence for Sulu Sea extension continuing on-shore in north-104

ern Borneo by imaging crustal thickness variations using virtual deep seismic sounding.105

Bacon et al. (2022) measured lithospheric anisotropy using XKS splitting and found that106

orientations of the fast axis of anisotropy were predominantly parallel to the Crocker Range107

in western northern Borneo, suggesting that anisotropy is dominated by recent continen-108

tal collision. Fast axis orientations orthogonal to the opening of the Sulu Sea in central109

northern Borneo further support the idea of Sulu Sea extension propagating on-shore.110

Receiver functions have also been produced for the nBOSS network stations by Gilligan111

et al. (2023) and subsequently inverted for S wave velocity structure, which revealed com-112

plex crustal structure in the western region of northern Borneo, which was interpreted113

to be underthrust Dangerous Grounds crust. Thinner crust likely related to the rollback114

of the Celebes Sea slab and lower velocities beneath the Semporna Peninsula that may115

be attributed to the previously mentioned lithospheric detachment were also delineated.116

In this study we apply two-step surface-wave Ambient Noise Tomography (ANT)117

to data from the recent temporary nBOSS deployment to produce a new crustal scale118

shear wave velocity model of the region. Our aim is to study how the complex tectonic119

history from the early Neogene has imprinted itself on the velocity structure of the crust,120

thereby enabling a better understanding of its origins and evolution. We aim to use the121

higher lateral resolution inherent in ANT to image new features not recovered in stud-122

ies such as Gilligan et al. (2023) and illuminate shallower structures than were imaged123

in Greenfield et al. (2022). We follow a method similar to Pilia et al. (2020), but also124

apply a new method for improving the two-step inversion process of ANT by using a Neu-125

ral Network in the 1D inversions, which reduces sensitivity to unphysical dispersion curves,126

and enhances the quality of the final model that is produced.127

2 Data and methods128

2.1 Deployment and data129

Data for this study were collected primarily during the northern Borneo Orogeny130

Seismic Survey (nBOSS), which was a temporary deployment of 46 broadband seismic131

stations throughout northern Borneo between 2018 and 2020 (Pilia et al., 2019). A mix-132

ture of sensors with frequency responses from 30 seconds to 100 Hz (Guralp 6TD) and133

60 seconds to 100 Hz (Guralp 3ESP) were used in the deployment. This was augmented134

by 24 MetMalaysia permanent stations with a frequency response between 120 seconds135

to 50 Hz (STS-2) as well as two stations deployed in northern Kalimantan (Guralp 6TD).136

In total, 72 broadband seismometers with between 20-24 months of continuous record-137

ings were available for surface wave ambient noise tomography. The location of the com-138

plete station network is shown in Figure 1. The data were generally of average to good139
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quality for surface wave ambient noise due in part to the proximity of the sea on three140

sides, which provided strong signal from oceanic microseisms. The cross correlations that141

were used in picking had a signal to noise ratio (SNR) of 92, as defined by taking the142

ratio of the average power of the cross correlation between 1.5 and 4.5 km/s moveout143

over the average power of the remaining wavetrain. However, the signals were not as clean144

as expected. Many of the stations, especially in the south-east, were deployed in palm145

oil plantations where anthropogenic noise may have overprinted at least parts of the fre-146

quency range of interest. More importantly, a number of deep sedimentary basins ex-147

ist in central Sabah, which may generate ringing effects that manifest as an inhomoge-148

neous noise source within our array. According to Hanasoge (2013) a noise source within149

the array would result in signal occurring at or around zero delay time, which we see very150

strongly in our cross correlations shown in Figure 2.151

2.2 Extracting dispersion curves152

In order to obtain phase velocity dispersion curves for each station pair we follow153

the Frequency Time Analysis (FTAN) method described in Yao et al. (2006). We first154

use the python package MSNOISE (Lecocq et al., 2014) to compute daily inter-station155

cross-correlations that were subsequently stacked with non-linear phase-weighted stack-156

ing to reduce amplitude sensitivity compared to linear stacking, thus diminishing the ef-157

fect of incoherent noise in the final set of cross-correlations (Pilia et al., 2020; Ventosa158

et al., 2017), which are shown in panel A in Figure 2. The cross-correlations were then159

converted into Empirical Green’s Functions (EGF) using the symmetric component of160

the cross correlations. The EGFs represent an estimate of the impulse response of the161

Earth to a surface wave traveling between two stations. The time domain EGFs were162

then converted into FTAN images that are made by narrow band filtering over a range163

of central periods and a width in each case equal to 0.4 times the central period (Volk164

et al., 2021; Volk, 2020). Each of the FTAN images were then converted pixel by pixel165

to have a value of one at local maxima along the velocity axis and a value of zero every-166

where else, highlighting the peaks representing different possible curves in the given FTAN167

image. These were then summed together for each station pair and smoothed, result-168

ing in the image shown in panel B in Figure 2. This shows a peak in the velocity-period169

domain that represents a regional dispersion curve that can be used to guide the pick-170

ing of each interstation dispersion curve. Panel C in Figure 2 shows an example FTAN171

image that includes the regional curve to help identify the correct peak. We limited the172

maximum period that could be picked by making sure the inter-station distance was greater173

than 2 wavelengths at that period (Luo et al., 2015). This approach was used to obtain174

fundamental mode Rayleigh wave dispersion curves in the period range 2-40 seconds by175

manually picking the correct dispersion curve from each FTAN image. After picking, the176

resultant dataset for use in tomography comprised 1172 dispersion curves.177

2.3 2D tomography178

Period-dependent phase velocity maps were obtained via inversion of the disper-179

sion data at each period using the 2D trans-dimensional trees tomography method of Hawkins180

and Sambridge (2015). This approach uses a reversible jump Markov Chain Monte Carlo181

(rj-MCMC, Green, 1995) method to sample models over a tree structure that allows for182

varying levels of complexity within the final ensemble. The tree structure works by hav-183

ing the model described by sets of wavelet parameters that can be thought of as nodes184

in the branches of a tree. At each layer up the tree the node splits into a set of finer wavelet185

parameters (with up to 7 hierarchical layers), thus allowing a model to be described as186

a combination of coarse parameters and fine parameters depending on the shape of the187

tree. At each iteration, one or more of the parameters in the tree can be perturbed, new188

nodes can be birthed and existing nodes can die, resulting in the total number of param-189

eters being allowed to change throughout the inversion. The number of parameters and190
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Figure 2. (A): All cross correlations from which dispersion curves were extracted plotted as

interstation distance vs delay time, filtered with a broadband filter between 8-40s. Red and blue

lines show the move-out of 2 km/s and 3 km/s surface waves respectively. (B): Regional refer-

ence dispersion curve formed by stacking the peaks of FTAN images and picking the prominent

dispersion curve along with the average of all picked dispersion curves from 2-40 seconds to show

their similarity to the reference. (C): Example FTAN image with picked phase velocity dispersion

curve in green and the regional reference curve in black.

–6–



manuscript submitted to JGR: Solid Earth

shape of the tree is controlled by the data and its associated uncertainty, with the scale191

of the uncertainty being controlled by a hierarchical scaling parameter that is also in-192

verted for; thus the inversion does not require explicit regularization. The maximum num-193

ber of parameters is therefore dictated by the highest level of the tree which, in this case194

is set to 7, a value that worked well in a comparable study by Pilia et al. (2020). For this195

region a maximum level of 7 would result in a minimum horizontal length scale of about196

2 km; however the acceptance rate for parameters at this level is zero, indicating that197

the minimum length scale required by the data is larger and is thus not limited by this198

parameter choice.199

The convergence of the Markov chain is aided by parallel tempering, where mul-200

tiple chains at higher “temperature” are run in parallel with a primary chain, and ex-201

changes permitted based on a probability calculated using the likelihood value of each202

model (Sambridge, 2014). The chains with higher temperatures will have an adjusted203

exchange probability that allows more variation in the model than the likelihood would204

typically allow, meaning that a wider set of models is sampled. This property, combined205

with exchanges with the primary chain, means that the final Markov Chain will be able206

to jump between local minima more easily and thus more efficiently search parameter207

space compared to a standard Markov Chain. Although this comes at the cost of extra208

computing resources required to run these chains in parallel, the time taken to run the209

same number of iterations remains similar. Using this method, we produced phase ve-210

locity maps for all periods of interest. For each period, we ran 8 parallel chains with 7211

temperatures per chain for 2 million iterations and removed 750,000 iterations that ac-212

commodated a burn-in period. Each map took roughly 2.5 hours to produce on 448 CPUs,213

using 8 CPUs for each chain for each temperature, which we found to be the most com-214

putationally efficient distribution of resources. Once the ensemble of models was calcu-215

lated, the final 2D phase velocity maps were generated from the average at every 20th216

iteration to avoid averaging correlated results. The advantage of using this method over217

other less computationally expensive methods (e.g. FMST, Rawlinson & Sambridge, 2004)218

include variable model resolution in the ensemble and posterior uncertainty estimates219

that can aid with the interpretation of results. Having variable resolution is particularly220

useful with this data set due to spatial variations in data coverage and quality (Figure221

3a). While dispersion curves were extracted across most of the model, there were many222

station pairs for which the quality of the cross-correlations was not sufficient to obtain223

phase dispersion; this was particularly true for stations in the south east of the array.224

The input parameters controlling the inversion were tuned by performing various test225

runs at different periods and monitoring the acceptance rate of models and convergence226

of key parameters (e.g. likelihood, prior, hierarchical scaling, and number of model pa-227

rameters). Monitoring the convergence of the number of model parameters was partic-228

ularly useful since a similar distribution of parameters across all chains was a strong in-229

dicator of stability. More information on convergence can be found in the Supplemen-230

tary Material.231

2.4 Synthetic 2D tomography232

In order to test the ability of our dataset to resolve lateral structure, we invert period-233

dependent inter-station path averaged velocity derived from a synthetic model for phase234

velocity structure. Here we choose the path coverage for 12 seconds period since it is rep-235

resentative across the full period range with an average number of ray paths. We pro-236

duced a simple synthetic model consisting of blocks of different shapes, sizes and orien-237

tations perturbed by 10% from a background velocity of 3 km/s, and computed travel238

times through it by using the fast marching method implemented in the pykonal python239

package (White et al., 2020). This forward calculation takes into account ray bending240

to give more accurate travel times; however, the forward method used in the inversion241

scheme is based on computing path averaged velocity over a great circle. This means that242

the inversion will not be able to fit the synthetic data exactly, thus providing a more re-243
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Figure 3. Results from the synthetic test using the 2D trans-dimensional trees tomographic

method. (A): The location of the stations and the associated ray path coverage. (B) The input

velocity model for the synthetic test. (C) The standard deviation of the ensemble produced by

the rj-MCMC. (D) The recovered mean velocity model with a transparent mask to highlight the

region of low uncertainty and hence robust recovery.
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alistic view of the features that can be resolved. We then used the trans-dimensional trees244

method to reconstruct the model from calculated travel times with Gaussian noise of 0.3245

s standard deviation added. The input model, ray paths and the mean and standard de-246

viation map of the ensemble produced by the inversion are shown in Figure 3. The method247

does a good job of recovering the structure within the array; however, on the margin of248

the array there are many artefacts that could cause problems with any subsequent in-249

terpretation if not appropriately masked. The standard deviation map is very useful since250

it clearly shows that the uncertainty beyond the border of the array is considerably higher251

than within the array, so it is relatively straightforward to identify anomalies that are252

not interpretable. The underlying cause of the artefacts can be attributed to the bisect-253

ing rectangular parameterisation of the trans-dimensional trees method, where a few ray254

paths on the edge of the array are affecting the entire velocity model outside the array.255

In comparison, a trans-dimensional Voronoi cell parameterisation would tend to locate256

nodes within the array and hence the associated cells would be unlikely to span signif-257

icant regions beyond the array boundary (Bodin et al., 2012b).258

2.5 1D Inversion for S-wave velocity (Vs)259

Once the 2D phase velocity maps are generated, the next step is to convert them260

into a 3D shear wave velocity model. This is achieved by sampling the period-dependent261

phase velocity maps on a grid of points to produce a corresponding set of pseudo dis-262

persion curves, which can be separately inverted for 1D Vs structure. These models can263

then be combined into a single 3D Vs model. The method we use is described in Bodin264

et al. (2012a), although we did not exploit the capability of joint inversion with receiver265

functions and only inverted for 1D shear wave structure by using Rayleigh wave phase266

dispersion information. The 1D Vs inversion scheme also uses a rj-MCMC method that267

has hierarchical data error estimation in a data-driven approach for quantifying the ap-268

propriate data fit to the model. We ran this inversion on all 938 pseudo-dispersion curves269

that were sampled evenly in latitude and longitude with a grid spacing of 0.1 degree in270

the region of the mask shown in Figure 3, which was chosen on the basis of the standard271

deviation of the results from the 2D inversion. The grid spacing of 0.1 degree was cho-272

sen because it captured the smallest wavelength structure of the 2D models without adding273

unnecessary computation in the form of additional inversions. The output from this pro-274

cess was a depth dependent posterior distribution of Vs at each grid point from which275

the average and standard deviation was chosen as the final model and its associated un-276

certainty respectively. These 1D models were then used to construct a 3D shear wave277

velocity model by using 3D linear interpolation.278

2.6 1D Inversion using an Artificial Neural Network279

To help evaluate the robustness of our results, we tested an alternative method for280

inverting the pseudo-dispersion curves by using an Artificial Neural Network (ANN) that281

was applied in Yablokov and Serdyukov (2020) and adapted to suit this data set. To do282

so we created an ANN in the form of a simple vector to vector mapping that inputs a283

vector of phase velocity from a pseudo-dispersion curve and outputs a vector of shear284

wave velocity (Figure 4).285

The network was first trained on a synthetic data set of 1D models produced by286

sampling 3D shear wave velocity models built from random perturbations to a 1D ref-287

erence model based on the average interstation dispersion curve in our dataset. These288

random perturbations were drawn from a Gaussian distribution with 1 km/s standard289

deviation. The models were then smoothed both laterally by a Gaussian filter of 30 km290

width and in depth by a Gaussian filter of 5 km width to give more realistic models to291

train the network on. Phase velocity dispersion curves were calculated using the Com-292

puter Programs in Seismology (CPS) software (Herrmann, 2013) for each of the 1D mod-293

els in the ensemble. This gave us a set of 5.4 million synthetic 1D shear wave velocity294

–9–



manuscript submitted to JGR: Solid Earth

Layer Activation

Hidden Layer:       Output Layer:

ReLu         Linear

Artificial Neural Network Key

Input/output 

vector

Fully 

Connected 

Hidden 

Layer

Batch 

Normalisation

2
0

 L
o

n
g
 I
n

p
u

t 
V

e
c
to

r

5
0

 L
o

n
g
 O

u
tp

u
t 
V

e
c
to

r

6
4

6
4

3
2

3
2

1
6

Figure 4. The architecture of the Artificial Neural Network used to perform the 1D inver-

sions. The size of each fully connected layer and the input and output vector is written in each

box along with the location of batch normalisation layers. The activation on all the hidden layers

is a rectified linear unit (ReLu) and the activation on the output layer is linear.
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models and associated Rayleigh phase velocity dispersion curves. The network was then295

trained on this output with 80% of the curves used to train the network and the remain-296

ing 20% to validate the network and ensure that we were not overfitting the data. The297

training was done with the ADAM optimiser with the learning rate set to the default298

value of 0.001 (Kingma & Ba, 2014) for 2000 epochs. The network was found to converge299

after 950 epochs when the minimum validation loss was found. This is the baseline net-300

work that approximates the inversion of phase velocity dispersion curves based on the301

synthetic data set. We then took the 1D models produced by the trans-dimensional method302

and performed transfer learning on our baseline network in order to update the model303

to include information about our region and the noise characteristics of the pseudo-dispersion304

curves. We again used an 80/20% train and validation split but this time the ADAM305

optimiser had the learning rate set to 5×10−5 and was trained for 1200 epochs. By us-306

ing a learning rate 20 times smaller we try to ensure that the information learned by the307

network in the previous step is not forgotten and that any patterns in the noise on the308

real data are not learned by the model. The data set was much smaller for the trans-309

fer learning stage and therefore was very fast to compute making it feasible to run the310

training for 3000 epochs to ensure that even with the low learning rate it could converge311

on a reasonable solution. The test and training losses started to diverge at 2000 epochs312

so the final re-trained model was assumed to be optimum at that point.313

The result of the above workflow is a network that provides a regionally localised314

approximate solution for the inverse problem as an application of the theorem that neu-315

ral networks are universal approximators (Hornik et al., 1989). The reasoning for this316

is based on Yablokov and Serdyukov (2020), where they found that the neural network317

trained on synthetic data was much less sensitive to noise when performing inversions318

after training. This is a particularly useful feature of the method since many of the pseudo-319

dispersion curves contain unrealistic spikes or troughs in phase velocity due to the 2D320

inversions being performed separately; this means that there is no control on the lateral321

correlation of velocity anomalies between adjacent periods. When the neural network322

is re-trained on the pseudo-dispersion curves from the real data set after training by a323

synthetic data set, it will learn an approximate mapping for that region. When re-doing324

the inversion from pseudo-dispersion curve to 1D shear wave velocity with the re-trained325

ANN the result will be less sensitive to noise and unphysical changes in the dispersion326

curves. Using this method, all pseudo-dispersion curves were run on the final trained net-327

work to produce a new set of 1D velocity models that are used to construct a second 3D328

shear wave velocity model. This model is generally smoother and easier to interpret, al-329

though it is also helpful to consider the rj-McMC model in the interpretation, since many330

of the features are similar.331

2.7 Synthetic 1D inversion results332

We performed several synthetic tests for the 1D inversion scheme to determine how333

effective both of our methods are at resolving shear velocity from phase velocity disper-334

sion curves. We used a model that extends in depth to 40 km with 1 km thick velocity335

layers that vary smoothly as a function of depth. The top 8 km features a gentle increase336

in velocity gradient with a homogeneous section between 8 and 18 km depth and a sharper337

velocity gradient between 18 and 25 km depth before changing back into a milder ve-338

locity gradient that extends to the base of our model. Although not identical to any model339

used for training the ANN, it is similar enough to expect that a good reconstruction is340

possible. We calculated the dispersion curve from the input model using CPS (Herrmann,341

2013) and then added Gaussian noise with a 0.01 km/s standard deviation, which is a342

similar noise level to that of a good quality pseudo dispersion curve. We then ran it through343

both the TransD 1D inversion method and the ANN inversion method using the re-trained344

model as described above. Both results are shown in Figure 5.345
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Figure 5. Results from a synthetic inversion for 1D structure. (A): 1D Vs models from the

synthetic tests; the true model is in red, the average of the ensemble produced by the TransD

method is in black with its associated standard deviation in gray and the result from the ANN

method is in green. (B): The posterior PDF produced by the TransD method overlain by the

TransD average in black and the true model in red.
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The result from the synthetic TransD inversion include measurements of uncertainty346

and an output probability density map, shown in Figure 5B, representing the posterior347

distribution sampled by the Markov chain, which is used to produce the mean and stan-348

dard deviation which we take to be the final 1D Vs model and its uncertainty. The TransD349

and ANN methods gives a very similar 1D profile to the true model, however, there are350

a few differences. Between 10 and 20 km depth in the model the TransD scheme has a351

tendency to overestimate the changes in velocity; this is most notable in Figure 5A at352

12 and 18 km depth where the recovered TransD model has a positive and negative ve-353

locity anomaly respectively. This is not observed in the ANN model, which better matches354

the true velocity model in this region. For the sharper velocity gradient between 18 and355

25 km depth, both the TransD and the ANN slightly underestimate the gradient but ex-356

tends the feature over a greater depth range, which is typical of surface wave dispersion357

inversion. At 35-40 km the TransD model recovers the velocity quite well but the ANN358

model overestimates the velocity by up to 0.2 km/s. We expect this is likely due to the359

ANN not having seen a model quite like this since we do not see an overshoot at depth360

when comparing the final TransD and ANN models of the region. With the exception361

of the base of the model, the two different methods produce very similar results, which362

is to be expected since the ANN is designed as a preconditioned emulator of the TransD363

method.364

3 Results365

3.1 Phase velocity maps366

Figure 6 shows the period-dependent phase velocity maps and standard deviations367

computed for 6, 16, 26 and 36 seconds. The velocity models adopt the mask that we used368

in the synthetics (Figure 3) due to the presence of similar edge effect issues. The stan-369

dard deviation maps for these models show a consistent story with higher uncertainties370

in the east of the model, especially underneath the Dent peninsula, where ther is poorer371

ray path coverage and apparently noisier data. The region of the models under the Crocker372

Range has lower standard deviation that is consistently under 0.1 km/s and as such can373

be more reliably interpreted. There are also higher standard deviations located in the374

neighbourhood of strong lateral velocity contrasts even in regions that have good path375

coverage, such as the low velocity anomaly in the 6 second map in Figure 6A and B where376

the standard deviation rises to 0.3 km/s. This is due to the uncertainty around where377

to place such a contrast since there is a trade-off between the location, size and magni-378

tude of the velocity change (Hawkins & Sambridge, 2015; Pilia et al., 2020), an effect379

perhaps more pronounced when using Voronoi cells (Pilia et al., 2015b).380

3.2 Comparison of models produced by the two methods381

To illustrate the difference between the two 1D inversion methods, we show a hor-382

izontal slice through the two final 3D models in Figure 7 with no smoothing applied. For383

long wavelength features, the two models look virtually identical, with low and high ve-384

locity anomalies found in the same place laterally and with depth. This is reassuring since385

it demonstrates that both methods agree that certain key features are required to fit the386

phase velocity maps. The models are more different at shorter scale lengths, with the387

ANN model showing a generally much smoother result both laterally and in depth com-388

pared to the TransD model. This is to be expected given the initial training of the ANN389

model on an ensemble of synthetic models, prior to transfer learning with the TransD390

inversion results. As a consequence, the 1D ANN inversion effectively features a higher391

degree of implicit smoothing regularisation yet is still capable of satisfying the data to392

the same extent. When compared to the picked phase velocity dispersion curves the model393

produced by the ANN has a residual mean of –0.057 km/s and residual standard devi-394

ation of 0.19 km/s whereas the model from the TransD method has a residual mean of395
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Figure 6. Example phase velocity maps and standard deviations produced by the trans-

dimensional trees method. The velocity models are partially masked to show regions of lower

standard deviation and improved recovery. Panels (A) and (B) show results for 6 s period, (C)

and (D) for 16 s, (E) and (F) for 26 s and (G) and (H) for 36 s.
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Figure 7. Horizontal slice at 10 km depth and cross-section from A to B for the final 3D

shear wave velocity model produced by using the ANN method (left) and the TransD method

(right).

–0.050 km/s and a residual standard deviation of 0.19 km/s. For this study we decided396

that the ANN model is more useful for interpretation since many of the short wavelength397

features are not resolvable by our level of data coverage and hence should not be con-398

sidered.399

3.3 Shear wave velocity model400

The final composite 3D shear wave velocity model produced by the re-trained ANN401

1D inversions is presented as a series of horizontal slices in the range 5-40 km depth (Fig-402

ure 8) and cross sections through key sections of the model (Figure 9). Based on the syn-403

thetic inversions and the phase velocity maps, lateral features larger than 50 km are re-404

solvable except in regions on the edge of the model where artefacts of the low coverage405

and trans-dimensional trees parameterisation appear. In some regions lateral resolution406

will be better, particularly in the region of the Crocker range where we have the most407

crossing rays. The lateral resolution will also reduce with increasing depth, since the ray408

path coverage at longer periods reduces, though there are fewer short wavelength struc-409

tures visible below 20 km depth due to the trans-dimensional parameterisation reduc-410

ing the length scale of features in the longer period phase velocity models. From the 1D411

synthetics, uncertainty generally increases with depth, but broadscale anomalies can still412

be reliably interpreted. The synthetics show that we do not resolve vertical contrasts very413

well and so we are unlikely to be able to accurately determine the dimensions of verti-414

cal anomalies. To ease interpretation, the model has been laterally smoothed using a Gaus-415

sian kernel with 10 km standard deviation. The text labels superimposed on Figures 8416

and 9 highlight features that we will interpret in the discussion section.417

In the upper 20 km of the crust, one of the more obvious features is the large Shal-418

low Low Velocity (SLV) anomaly in the central southern region of the model (SLV1 on419

Figures 8 and 9). Here, velocities are as low as 2.5 km/s and the anomaly extends to ∼25420

km depth. This feature underlies the Maliau Basin and other circular basins of Sabah,421
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Figure 8. Horizontal slices from 5 to 40 km depth (Panels A-F) through the final shear wave

velocity model produced by the re-trained ANN inversion. The three lines A-B, C-D and E-F are

the locations of cross sections that are plotted in Figure 9. The velocity anomalies interpreted

in the discussion section are also marked as SHV1, SHV2 and SLV1 for the shallow anomalies

and DLV1 and DLV2 for the deep anomalies. The region of thinner crust found by Linang et al.

(2022) is plotted on the 40 km depth slice as a single contour at 34 km depth.
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so is likely a signature of low velocity sediments, although they are unlikely to extend422

that deep, suggesting that vertical smearing – an expected biproduct of surface wave in-423

version – is at play here. Previous estimates from structural geology, which themselves424

are not well constrained, have put the thickness of the Neogene sediments in this region425

at 6-7 km (Balaguru et al., 2003) so we may be seeing the effects of a very low velocity426

layer being smeared out by the bulk sampling of the surface waves measured in the am-427

bient noise recordings. The upper mid-crust reveals a Shallow High Velocity (SHV) anomaly428

beneath the Crocker Range (SHV1 on Figures 8 and 9) of about 3.5-3.7 km/s extend-429

ing from about 10 to 25 km depth. It is approximately 80 km long with a NW-SE strike430

that aligns with cross section C-D and is also visible in cross section E-F (Figure 9). This431

anomaly also seems to mark a difference in the topography between the northern and432

southern parts of the Crocker Range, which is an interesting correlation that will be dis-433

cussed later. A second smaller high velocity anomaly exists under the Crocker Range be-434

neath Mt Kinabalu (SHV2 on Figures 8 and 9); it is roughly cylindrical with a diam-435

eter of ∼40 km between depths of 15-25 km and has a maximum velocity of about 3.7436

km/s, which is similar to SHV1. Finally a third high velocity anomaly labelled SHV3437

is located in the north of the region; it extends from around 15 to 30 km depth and has438

velocities up to 3.8 km/s. SHV3 is the largest of these three shallow high velocity anoma-439

lies but is near the edge of the model so is not as well resolved when compared to SHV1440

and SHV2.441

Deeper in the model between 30-40 km depth, there is an intriguing pattern of NE-442

SW oriented high velocity anomalies in the southeast, low velocities in the centre and443

higher velocities in the northwest. This trend is primarily expressed in the long wave-444

length features of the model and also matches the central region of thin crust found by445

Linang et al. (2022), which is shown on Figure 8 as a 34 km depth contour from their446

crustal thickness model. The Deep Low Velocity (DLV) band featuring velocities of 3.2-447

3.4 km/s in the centre of Sabah and striking NE-SW extends southwest from the north-448

east coast and is about 200 km long and 40 to 80 km wide. It is most clearly seen in the449

40 km depth slice in Figure 8F and cross section AB in Figure 9A where it is marked450

as DLV1. There is also a Deep High Velocity (DHV) anomaly with values ranging be-451

tween 4.1-4.2 km/s that covers much of eastern Sabah marked as DHV1 in Figures 8E/F452

and 9A. The peak velocities of this anomaly are mostly concentrated around Darvel Bay453

between the Dent and Semporna peninsulas, but it covers most of the eastern part of454

our region at depth. It is worth noting that the uncertainty in this region is higher than455

elsewhere, especially on the Dent peninsula (Figure 6), but it is likely that we can still456

resolve larger scale high velocity anomalies at this depth, especially under the Semporna457

peninsula where the values of uncertainty are generally lower.458

4 Discussion459

4.1 Complex crustal structure in western Sabah460

The crust beneath the Crocker Range lies in the most well constrained region of461

our model according to the standard deviation maps and synthetic inversion results (Fig-462

ure 3). It also contains several unexpected complexities in a region that has relatively463

simple mapped surface geology as shown in Hall (2013), with much of the area being cov-464

ered by Cretaceous-Lower Miocene sediments and more recent Pleistocene sediments.465

The complexity we see in the 10 to 20 km depth range of the shear-wave velocity model466

is manifest in the presence of SHV1, SHV2 and SHV3 along with SLV1 located further467

southeast beneath the Maliau Basin. Figure 10 shows a 10 km depth slice through this468

section of the model alongside a map of topography with the locations of SHV1, SHV2,469

SHV3 and SLV1 highlighted. The subduction of the Proto-South China Sea (PSCS) is470

believed to have occurred in this region (Hall, 2013), as supported by recent evidence471

of a relict slab that traverses the NW coast in the mid-lower upper mantle from teleseis-472

mic travel time tomography (Pilia et al., 2023a, 2023b). The subsequent collision and473
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Figure 9. Cross sections through the final shear wave velocity model produced by the re-

trained ANN inversion and the elevation (Elv) of the topography along the section. The locations

of the cross sections are shown in Figure 8. Cross section A-B in panel A transects Mt Kinabalu,

which can be seen in the elevation, as well as the interpreted anomalies SHV2, DLV1 and DHV1.

Cross section C-D in panel B runs through the Maliau Basin, which shows up as the shallow low

velocity anomaly SLV1 and also converges on anomalies SHV1 and DLV1. Cross section E-F in

panel C runs along strike of the Crocker Range and through the anomalies SHV1, SHV2 and

SHV3.
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Figure 10. Surface topography and a 10 km depth slice from our final shear wave velocity

model showing the shallow anomalies in relation to surface features. SHV1 is located under a

region of low topography in the Kampung Kebulu area, SHV2 is located underneath Mount Kin-

abalu and SLV1 is located underneath Maliau Basin. The depth slice is plotted with a different

colour scale than Figure 8 and 9 and is centred on the mean shear wave velocity at 10 km depth

to better highlight the anomalies we see in this section of the model.

underthrusting of the Dangerous Grounds block is believed to be the reason for the ter-474

mination of the subduction of PSCS (Hall, 2013). The three high velocity anomalies and475

the lower velocities that underlay them are, therefore, possible evidence of the under-476

thrusting of heterogeneous continental crust from the collision of the Dangerous Grounds477

block producing along strike variations in velocity structure. This variation was also ob-478

served by Gilligan et al. (2023) who sees similar regions of high and low velocity anoma-479

lies in the crust along the Crocker Range from inversion of receiver functions for shear480

wave velocity structure. If these anomalies are associated with underthrusting, it is likely481

that the high velocity structures represent the lower portion of what was the overriding482

crust, and the low velocities beneath represent the upper part of the underthrust Dan-483

gerous Grounds crust.484

The velocity anomaly at the southern edge of the Crocker Range, SHV1, also co-485

incides with a region of flat topography that marks a clear difference in relief between486

the mountainous regions to the north and south (Figure 10). This topographic low could487

be caused by heavy erosion followed by infill of younger Pliocene/Pleistocene sediment488

(<5 Ma) (Hall, 2013). This would explain the apparent thinning of the low velocity layer489

in the upper crust as seen in Figure 9B. However, another option, supported by the pres-490

ence of SHV1, is the existance of rigid material under this section of the Crocker Range491

that resisted deformation or limited it to the narrow band near the coast as seen in the492

topography. A similar structure is seen in the Iberian Peninsula in the form of the Ebro493

block, which is a continental block within the compressional margin of the Pyrenees that494

shows a region of thin crust and lower relief surrounded to the north and south by thicker495

crust and higher relief (King et al., 2023). This is in a comparable tectonic setting with496
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similar topography to what we see on this segment of the Crocker Range, though the scale497

of the Pyrenees is larger.498

The second high velocity anomaly in western Sabah is located under Mt Kinabalu499

(SHV2). This is a much smaller anomaly than SHV1 in both depth and lateral extent500

and lies beneath a region of anomalously high topography. This high velocity anomaly501

is most clearly seen in cross section A-B (9) and in Figure 10, which show it extending502

down to 20 km depth and underlain by a lower velocity zone. Mt Kinabalu is a large gran-503

ite pluton that was intruded into Mesozoic igneous and metamorphic rocks and Ceno-504

zoic sediments (Cottam et al., 2010) and then extension caused exhumation of a sub-continental505

peridotite suite (Tsikouras et al., 2021). It is therefore likely that SHV2 and the smaller506

high velocity zone beneath Telupid represents this ultramafic material that is also found507

at the surface in this area (Hall, 2013). The third high velocity anomaly in the very north508

of our model, SHV3, is much larger and has a higher amplitude than SHV1 and SHV2.509

It is in a region of our model that has relatively poor coverage and therefore has the po-510

tential to suffer from edge effects. However, a very similar structure has been imaged by511

Gilligan et al. (2023), suggesting that it is real, though its exact dimensions are likely512

to be poorly constrained. The position of the SHV3 anomaly coincides with a clear shift513

in the fabric of the region, with southwest-northeast striking features to the south in the514

Crocker Range to more east-west fabric on the northern tip of Borneo, as seen in the to-515

pography map in Figure 10A. This change in fabric is interpreted to be the result of col-516

lision with the Reed Bank in the north (Tongkul, 1994). The Reed Bank is another con-517

tinental block within the South China sea that collided with Palawan to the north. Tongkul518

(1994) suggests that this region has undergone uplift as a result of this collision, so the519

shallow high velocities could be evidence of uplifted ultramafic material near the surface.520

4.2 Evidence for extensive melting and subduction in Sabah521

In eastern Sabah between 20-40 km depth, the velocities are higher than anywhere522

else in the model region – see anomaly DHV1 in Figures 8 and 9. The Dent and Sem-523

porna peninsulas are characterised by Miocene island arc magmatism, with samples dated524

between 16-9 Ma (Lai et al., 2021; Bergman et al., 2000), which is thought to be the re-525

sult of Celebes Sea subduction that occurred immediately to the southeast. Subsequently,526

the Semporna peninsula experienced magmatic episodes from 4-2 Ma that exhibit an ocean527

island basalt type signature (Macpherson et al., 2010), which has since been related to528

possible lithospheric delamination directly beneath (Pilia et al., 2023b; Greenfield et al.,529

2022). It is therefore possible that the high velocities beneath eastern Sabah represent530

plutonic mid-lower crust that may have formed due to melting, as first suggested by Hall531

(2013). The shallowest point of the DHV1 anomaly is also co-located with the exposed532

ultramafic material of the Darvel Bay ophiolite (Hall, 2013). If the higher velocities do533

represent a plutonic crustal layer, then it appears to shallow between the Semporna and534

Dent peninsulas, though this is hard to quantify given the uncertainty limiting our res-535

olution in the east, particularly under the Dent peninsula.536

A notable feature adjacent to DHV1, which is most visible in cross section AB in537

Figure 9A, is a low velocity anomaly (SLV2) that extends down to ∼35 km depth and538

has a slight dip to the northwest. This anomaly is located on the edge of our region of539

low standard deviation that ranges from around 0.1 km/s beneath the Semporna penin-540

sula to 0.4 km/s beneath the Dent peninsula, thus requiring any interpretation to be made541

with a certain degree of caution. However, given its moderate dip and location, it may542

be a signature of underthrust sediment or duplexes at the former subduction front of the543

Celebes Sea Slab, consistent with what is observed in the study of Zhang and Miller (2021)544

in a similar setting. If so, it would represent the first geophysical evidence of Celebes Sea545

subduction, though further work is required to support this interpretation, particularly546

in light of the limited data coverage in this region of the model.547
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4.3 Sabah failed rift from Celebes Sea subduction rollback548

Near the base of our model at 40 km depth, the anomaly DLV1 in Figures 8 and549

9 shows a band of low velocity stretching from the Sulu Sea to the Maliau Basin. This550

low velocity anomaly coincides with a region of thin crust found by applying Virtual Deep551

Seismic Sounding (VDSS) on the same data set as this study (Linang et al., 2022). VDSS552

resolves the Moho discontinuity (as shallow as ∼20 km in this part of northern Borneo),553

whereas ANT using surface waves can only recover smooth velocity variations as a func-554

tion of depth. As a consequence, the two sets of results are not directly comparable, but555

one could be expected to see low velocities in rifted crust due to a thermal anomaly (Accardo556

et al., 2020).557

In Linang et al. (2022), this region of crustal thinning is explained as a continu-558

ation of the extension of the opening of the Sulu Sea caused by the rollback of the Celebes559

Sea Slab, which at the time subducted NW beneath northern Borneo. When the sub-560

duction ceased at 9 Ma, the extension stopped leaving a region of thinned crust. The561

idea of continued extension of the Sulu Sea on land in northern Borneo was first suggested562

by Hall (2013) and was corroborated by Tsikouras et al. (2021), who found Miocene zir-563

cons in the mafic rocks at Telupid and Ranau. In Tsikouras et al. (2021) these were used564

to suggest that extension led to the exhumation of a sub-continental peridotite suite near565

Ranau and a rift-related magmatic episode near Telupid. Whether these zircons were566

magmatic or metasomatic due to their presence in mafic/ultra-mafic rocks was questioned567

by Cullen and Burton-Johnson (2021). We suggest that the DLV1 anomaly and its very568

strong correlation with the region of thin crust seen in Linang et al. (2022) supports the569

idea that late Miocene extension occurred under northern Borneo, thus producing an up-570

welling of warmer material into the region left by the thinned crust. The anomaly DLV1571

is also mildly asymmetrical and dipping towards the southwest, which matches up with572

numerical simulations of continental rift initiation where asymmetrical features of this573

type have been observed (Brune et al., 2014). Pilia et al. (2015a) invoked a similar ex-574

planation when they discovered a low velocity anomaly beneath the failed rift in Bass575

Strait, Southeast Australia. This was interpreted as a residual thermal upwelling initi-576

ated by thinning during extension. Invoking a similar mechanism here supports the model577

of late Miocene extension due to rollback of the Celebes Sea slab and is consistent with578

other evidence of a failed rifting episode (Tsikouras et al., 2021; Linang et al., 2022). As579

a simple check of the validity of this interpretation, we calculated the characteristic ther-580

mal relaxation time of a thermal anomaly at 40 km depth in the Earth’s crust using the581

following calculation (Michaut et al., 2007).582

τ =
L
2

κ
(1)

where τ is the characteristic thermal relaxation time, L is the length scale and κ is the583

thermal diffusivity of the crust. By taking the length scale to be 40 km, which is the depth584

to the velocity anomaly, and a range of realistic thermal diffusivities, we can calculate585

a range of characteristic thermal relaxation times. We use thermal diffusivities that span586

7.0 × 10−3 - 15.0 × 10−3
cm

2
s
−1 to represent extreme differences in crustal composi-587

tion found in Seipold and Gutzeit (1982). This gives us a range of relaxation times from588

33-72 million years, which means that if extension ceased at approximately 9 Ma, then589

insufficient time has passed to significantly dissipate the resultant thermal anomaly pro-590

duced by the extension (Chenin et al., 2020). While compositional variations cannot be591

ruled out to explain our observations, higher temperatures associated with relatively re-592

cent failed rifting appears to be the most likely explanation.593

5 Conclusions594

We have imaged the shear wave velocity structure of the crust beneath northern595

Borneo to a depth of 40 km using ambient noise tomography applied to data from the596
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nBOSS array collected between 2018 and 2020. We apply a two step inversion method597

using Trans-dimensional Trees for the 2D step and a combination of Trans-dimensional598

inversion and a new artificial neural network based inversion for the 1D inversion step.599

The new ANN inversion was shown to be effective at recovering heterogeneous structure600

and produced a smoother model than the transD method while still satisfying the data.601

From this new crustal shear wave velocity model, complex subsurface structure beneath602

the Crocker Range is discovered containing various high velocity anomalies that are in-603

terpreted to be evidence of underthrusting of Dangerous Grounds continental crust that604

feature significant along-strike variations. High velocities in east Sabah reveal evidence605

of significant melting due to the subduction of the Celebes Sea slab and subsequent de-606

compression melting. In the east a low velocity anomaly may indicate the presence of607

underthrust sediments or duplexes that support Celebes Sea subduction, though reso-608

lution is limited. We find evidence of Sulu Sea extension – likely caused by Celebes Sea609

subduction – propagating southwest into northern Borneo to ultimately produce a failed610

continental rift. This is in the form of a low velocity anomaly that may be the signature611

of elevated temperatures that persist following the cessation of failed rifting. Further-612

more, we illuminate the subsurface structure of the Maliau Basin and reveal a thick low613

velocity anomaly that likely represents a thick sedimentary sequence that formed prior614

to the emergence of the eastern part of northern Borneo following Celebes Sea slab break-615

off. Further work on this region could include the extraction and inversion of Love wave616

dispersion data, the joint inversion of receiver functions and surface wave dispersion, and617

the inclusion of longer period dispersion data extracted from teleseismic events.618
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