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Abstract—The sustainability of Machine Learning-Enabled
Systems (MLS), particularly with regard to energy efficiency, is
an important challenge in their development and deployment.
Self-adaptation techniques, recognized for their potential in
energy savings within software systems, have yet to be extensively
explored in Machine Learning-Enabled Systems (MLS), where
runtime uncertainties can significantly impact model perfor-
mance and energy consumption. This variability, alongside the
fluctuating energy demands of ML models during operation,
necessitates a dynamic approach. Addressing these challenges,
we introduce EcoMLS approach, which leverages the Machine
Learning Model Balancer concept to enhance the sustainability
of MLS through runtime ML model switching. By adapting
to monitored runtime conditions, EcoMLS optimally balances
energy consumption with model confidence, demonstrating a
significant advancement towards sustainable, energy-efficient ma-
chine learning solutions. Through an object detection exemplar,
we illustrate the application of EcoMLS, showcasing its ability
to reduce energy consumption while maintaining high model
accuracy throughout its use. This research underscores the
feasibility of enhancing MLS sustainability through intelligent
runtime adaptations, contributing a valuable perspective to the
ongoing discourse on energy-efficient machine learning.

Index Terms—Self-Adaptation, Machine Learning-Enabled
Systems, Sustainability, Green Software, Energy Efficiency, Ma-
chine Learning, Software Engineering

I. INTRODUCTION

The growth of Artificial Intelligence (AI) has led to sig-
nificant advancements as well as environmental concerns.
Machine Learning-Enabled Systems (MLS), important for
developing technologies such as autonomous vehicles and
smart cities, consume considerable energy and generate high
carbon emissions [1], [2]. Strubell et al. (2019) highlight the
substantial energy required to train ML models', equating the
carbon footprint of training one model to that of five average
cars [3]. The drive for more accurate models increases both
energy use and emissions [4]. Therefore, adopting sustainable
Al practices is vital to balance technological advancement with
environmental preservation [5]-[7].

Despite awareness of the environmental impact of train-
ing and deploying ML models, the energy efficiency of
model inference—particularly in terms of its significant en-
ergy consumption and its implications for Quality of Service
(QoS)—has been less addressed. Green Al initiatives have
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primarily focused on optimizing the training phase, with less
attention given to the energy demands of inference in practical
applications [8]-[11]. This gap highlights the need for strate-
gies that reduce energy consumption without compromising
performance and can adjust to varying operational demands.
The potential of self-adaptation techniques, which balance
energy efficiency with QoS, remains largely unexplored in
this context [12]. As the ICT sector’s energy consumption
is expected to increase, creating adaptive, energy-efficient
MLS is paramount [13]. Our work seeks to bridge this gap,
proposing a self-adaptive approach aiming to ensure MLS
sustainability amidst environmental uncertainties.

Initial studies [14] explored how ML systems adapt to
environmental shifts. Our further research [15] introduced
the Machine Learning Model Balancer, which dynamically
switches between ML models to ensure optimal QoS, yet
overlooked energy efficiency—a critical aspect given ML
deployments’ increasing energy demands and environmental
impact. To bridge this gap, we extend the Machine Learning
Model Balancer concept to include energy efficiency, aiming
to create a more sustainable, adaptive MLS and introduce
EcoMLS. This novel self-adaptive approach extends the Ma-
chine Learning Model Balancer concept, incorporating energy
efficiency to tackle unexplored runtime uncertainties and the
impact of dynamic environmental factors on model perfor-
mance. EcoMLS distinguishes itself by dynamically adjusting
energy consumption and model confidence through ML model
switching, responding in real-time to operational conditions
and request variability. Through the MAPE-K loop, it em-
phasizes energy efficiency alongside accuracy, involving: i)
monitoring model and system energy parameters; ii) analyzing
energy performance to pinpoint inefficiencies; iii) switching
models based on energy-accuracy evaluations; iv) implement-
ing strategies for sustainable MLS. EcoMLS emerges as a
novel solution in self-adaptive MLS, optimizing energy con-
sumption while aiming to maintain performance. Our case
study on object detection with EcoMLS uses the underlying
ML system of our SWITCH exemplar, designed for evaluating
self-adapting ML-enabled systems. This practical application
confirms EcoMLS’s ability to effectively manage the trade-
off between energy efficiency and accuracy, showcasing its
capability to be applied across a diverse set of ML models.
The flexibility of EcoMLS allows it to navigate the trade-offs



between maximizing confidence scores with minimal energy
increases and significantly reducing energy consumption with
minimal impact on model confidence. The results show that
EcoMLS outperforms both naive strategies and individual
models in terms of energy consumption and confidence score
trade-off, demonstrating the practicality of embedding energy
efficiency within self-adaptive systems. This moves us towards
a future where MLS can easily meet different needs, making
them sustainable for various uses.

The remainder of the paper is structured as follows: Sec-
tion II provides running example. Section III introduces the
EcoMLS approach. Experimentation and results from its ap-
plication are in Section IV. Threats to validity and Related
work are discussed in Section V and VI respectively. Section
VII concludes and discusses future work.

II. RUNNING EXAMPLE

Our approach EcoMLS is exemplified through the adoption
of the SWITCH [16] exemplar’s managed system and envi-
ronment manager, an object detection web service. This ser-
vice integrates a streamlined architecture for handling image
processing requests: an Image Ingestion Service for emulating
real-world asynchronous requests; an Image Store acting as a
dynamic FIFO queue for incoming data; a Data Preprocessor
preparing images for detection; a Model Loader for dynamic
selection of machine learning models governed by underlying
approach; a Model Repository housing a variety of preloaded
models for quick deployment; an ML Model at the core of de-
tection processing; a Post Processor refining detection results;
and a Result Storage for temporary data retention before final
transfer. This setup as shown in Figure 1 mirrors services akin
to Google Cloud Vision or Amazon Rekognition, underscoring
the practical applicability and flexibility in managing object
detection tasks with efficiency and scalability.

In this system, we define a set of machine learning models
M, where each model m; in M represents a different configu-
ration of the YOLO algorithm [17], varying in size and compu-
tational efficiency. These models are evaluated on two critical
metrics: energy consumption, reflecting the electricity used
during inference, and the confidence score, which measures the
probability of accurate object identification and classification,
serving as a indicator for model accuracy. Here, M includes
the YOLOvS5 models: YOLOv5n (nano), YOLOVS5s (small),
YOLOv5Sm (Medium), and YOLOVS] (Large), provided by
Ultralytics [18], each pretrained on the COCO 2017 training
dataset [19]. The differentiation among these models primarily
lies in their number of parameters, influencing both their
energy consumption (E;) and detection confidence score (c;),
where j indexes the model within M.

The variants within M—ranging from YOLOvV5n to
YOLOv5l—exhibit a trade-off between ¢; and E;. This trade-
off highlights the balance required in practical applications be-
tween model accuracy, indicated by the confidence score, and
operational efficiency, as represented by energy consumption.
Specifically, YOLOv5n, optimized for efficiency, consumes 2
mJ of energy (£7) with a mAP of 45.7 (c1), while YOLOVSI,
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Fig. 1. Architecture of EcoMLS

aimed at higher accuracy, consumes 16 mJ (E,) achieving
a mAP of 68.9 (c,). This delineation showcases the balance
between computational demand and detection accuracy.

In operational terms, the system processes a stream of image
requests %, selecting a model m; for each 7, based on optimiz-
ing the balance between energy efficiency (£;) and detection
confidence (c¢;). Our approach, EcoMLS aims to dynamically
switch between the models to maintain an effective balance
between F; and c;, enhancing both the sustainability and the
performance of the object detection service.

III. APPROACH

Our EcoMLS approach focuses on improving machine
learning-enabled systems with an eye on sustainability and
performance. The first step is to explore the Learning Engine,
as shown in Figure 1.

A. Learning Engine

The Learning Engine (LE) within EcoMLS as shown in
Figure 1 is structured to evaluate and adapt a diverse set of
machine learning models M, to enhance both sustainability
and performance within the MLS framework. This engine is
built to work with a variety of models and datasets, offering
a robust foundation for dynamic adaptation across different
scenarios. Within the LE, the Data Store (DS) serves as the
repository for both the evaluation dataset and the models
M = {m;}. These models are assessed using the evaluation
dataset to determine their performance. The ML Model Execu-
tor (MLE) deploys the models against the evaluation dataset.
For each model m; € M, it records key performance metrics
across all evaluated requests in the dataset. These metrics
include energy consumption (F;), confidence score (c;), and



processing time (¢,,,p, ;). Logging these metrics is essential for
evaluating each model’s operational efficiency and prediction/
detection accuracy.

For performance analysis, the Performance Evaluator (PE)
constructs a performance matrix P; for each model m;.
Suppose the evaluation dataset contains r requests. In that
case, P; will have r rows, with each row corresponding to
a request in the dataset and columns representing the key
metrics: energy consumption (), confidence score (c;), and
processing time (%, ;). This component enables a thorough
comparison of model performance.

Building on the insights gained from each P;, the Adap-
tation Rule Generator synthesizes a set of base adaptation
rules. It does so by averaging the metrics in P; for each
model m;, resulting in aggregated values of minimum energy
(Emin,;), maximum energy (F,,q; ;), and average confidence
score (Cqyg,;) across all requests. These aggregated values are
then represented in a matrix A:

Emin,l Emax,l

Cav ,1
g
A= :
Ca’ug,n

In the matrix A, each row corresponds to a distinct model m;
within the set M, where j ranges from 1 to n, indicating the
sequence of models considered in the evaluation. The columns
Enin,j» Emax,j» and Cguyg j represent, respectively, the min-
imum energy consumption, maximum energy consumption,
and average confidence score calculated for each model m;
across all requests in the evaluation dataset. The matrix A
gives a clear performance comparison of each model, guiding
the selection based on efficiency and accuracy. In the context
of our running example II, m; refers to YOLOVS variants [18]
-YOLOV5n, YOLOvVSs, YOLOv5m, and YOLOVS5I, evaluated
against the COCO Test 2017 [19] to benchmark performance.
The requests here are images, illustrating how the LE applies
to object detection use case.

B. MAPE-K Loop

1) Knowledge: In the EcoMLS’s MAPE-K (Monitor, An-
alyze, Plan, Execute - Knowledge) framework as depicted in
Figure 1, the Knowledge component (K) integrates three key
repositories essential for the system’s adaptive behavior: the
Log Repository, the Base Rules Repository, and the Runtime
Rules Repository. These repositories collectively maintain the
data necessary for informed decision-making and dynamic
adaptation of the system. The Log Repository stores real-time
logs of each processed request, including energy consumption
(E;), confidence score (c;), request processing time (£,ys), and
detection outcomes such as the number of detected bounding
boxes (b) for running example explanied in Section II. This
repository is continuously updated, ensuring a comprehensive
record of system performance metrics. The Base Rules Repos-
itory is directly derived from the Learning Engine’s output,
specifically referencing the matrix A previously discussed.
This matrix, generated for the initial evaluation of models
against the evaluation dataset, establishes a baseline for energy

Emin,n Emax,n

efficiency (Erin,; and Eyqs,5) and confidence score (Coug, ;)
for each model m;. It serves as the foundation for model
selection and system adaptation during the initial operational
phase. Post the initial model evaluations, the Runtime Rules
Repository (B) updates real-time performance metrics for each
model m; as new requests are processed. The structure of this
repository is formalized as a matrix that dynamically reflects
changes in model performance and energy usage:

Emin,l Emam,l Elatest,l Cavg,l

Emin,2 Emaa:,2 Elatest,Q Cavg,2
B= : . :

Emin,n Emax,n Elatest,n Cavg,n

In the matrix B, each row corresponds to a model m;
in the set M, with columns for minimum and maximum
energy consumption (E,,;,; and E,,q; ), observed from
initial evaluations. Fjq.s: ; represents the most recent energy
consumption for model m;. Cgyg,; is the running average
of confidence score for model m;, calculated over the lat-
est k processed requests. This repository’s dynamic nature
allows for continuous refinement of adaptation rules based
on the most current data, facilitating an adaptive and re-
sponsive system capable of optimizing model selection in
real-time for enhanced performance and energy efficiency. It
allows the Knowledge component to provide real-time insights
into model efficacy, facilitating adaptive system responses to
changing operational conditions.

2) Monitor: The Monitor in the MAPE-K framework is
divided into two specialized components: the Energy Monitor
and the ML Metric Monitor, each focusing on distinct as-
pects of system performance monitoring. The Energy Monitor
specifically tracks the energy consumption metrics (F,,) of
the system, including the average energy consumption for
the last k processed requests (E},), providing a near-real-time
insight into the system’s power efficiency. Also, the ML Metric
Monitor focuses on the detection performance metrics of the
currently active model (m¢yrrent), including the average con-
fidence score (Cy) across the last k images processed by the
model, where k represents a variable number of recent requests
considered for generating a moving average. This component
not only monitors confidence score but also logs additional
detection outcomes like the count of bounding boxes into
the Log Repository in Knowledge, facilitating a thorough
performance review. Together, these components compile a
continuous log of energy and ML metrics. The averaged data
from the latest k& observations is continuously sent to the
Analyzer for further examination and to assess the need for
adaptation. This steady stream of up-to-date information is
essential for the adaptive functions of the EcoMLS approach.

3) Analyzer: The Analyzer component evaluates the real-
time data from the Monitor and decides system adapta-
tions. Its functionality is segmented into three components:
System Evaluator, Score Generator, and Planner Initiator,
each contributing to the adaptive decision-making process.
System Evaluator analyses the performance metrics provided



by the Monitor, specifically focusing on the averaged energy
consumption (E}) and confidence score (C}) for the last k
processed requests. It ensures the Runtime Rule Repository
(B) is up-to-date with the latest performance data before
any adaptation decisions are made. Following the evaluation,
the Score Generator calculates a performance score (Score,,)
for the currently active model (Mcyrrent), Using the formula
E; x (1 — ¢;j). The aim is to minimize this score, where a
lower score indicates a more efficient balance between energy
consumption and confidence score. Before any updates are
made to the Runtime Rules Repository (B), the Analyzer
provides the Planner with the current state of B, allowing
it to devise a strategic adaptation plan based on the most
recent data. This step ensures that the Planner’s decisions
are informed by the latest model performance insights. The
Planner Initiator then triggers the Planner to evaluate whether
a model switch or any other adaptation action is necessary. If
the performance score (Score,,,) for the currently active model
(Meurrent) €xceeds the threshold defined by its corresponding
metrics in the Runtime Rule Repository (B), using F,,4, where
Eqvg is the average of Ep;, and Epy, and Cgyyg from
B, it indicates inefficiency or ineffectiveness of the current
model in use. This discrepancy triggers the system to initiate
an adaptation, leveraging the latest data from B to optimize
the system’s performance. This approach ensures the Analyzer
updates the Knowledge with the latest metrics and works with
the Planner for prompt adaptations. This collaboration enables
dynamic, informed decision-making, improving the EcoMLS
system’s adaptability and optimization.

4) Planner: The Planner component strategizes adaptations
based on insights from the Analyzer, specifically address-
ing energy efficiency and confidence score through model
selection under two scenarios as explained in Algorithm 1.
The algorithm navigates decision-making under two primary
scenarios—high energy and low confidence—leveraging a
unified score metric for model selection (lines 11-16). The
score (score_mli]), calculated for each model, combines en-
ergy efficiency and confidence inversely (line 10), guiding
the selection process. In high energy scenarios (E,,.,....., >
Eovg,meurren: )» models less energy-intensive than the average
are considered, selecting the one with the lowest score to
ensure energy efficiency (lines 11-13). Conversely, for low
confidence (Cp,ypren: < Cavgmewrrens)> Models that promise
confidence improvement without excessive energy use are pre-
ferred, again choosing the lowest score to balance confidence
and efficiency (lines 14-16). The algorithm initiates with an e-
greedy approach (line 6), randomly selecting an action if below
a certain threshold e, otherwise it evaluates each model’s score
based on their energy and confidence metrics (lines 7-16). The
executor performs model switching action (line 17), aiming to
optimize the system for either energy efficiency or confidence
enhancement as per the current operational requirement.

5) Executor: The Executor is responsible for actualizing
the adaptation strategy decided by the Planner. Upon receiv-
ing a directive for a model switch from the Planner, the
Adaptation Executor activates the selected model (mpest).

Algorithm 1 Planner: Algorithm for Model Selection

1: procedure FORMULATOR(Mcurrents Emyrrent s Criowrrent)
> Input: Current model M cyrrent, its €nergy consumption

Ern.rens» and confidence score C,., o000,
2: A+ {NA:—1,mqy:1,mo:2,mg:3,my:4}
3: p < random(0, 1)
4 if p < e then
5: > Perform exploration
6: action < randint(1,4)
7: else
8: > Perform exploitation based on the runtime context
9: for 7 in 1 to 4 do
10: scorep[i] = min(Eavg m, ; Elatest,m;) % (1 —
Clve.m,)
11: if Eyvrens > Eavgmewrmen, then
12: > Aim for energy efficiency improvement
13: model = ar gmin;e(1 4 s, Bug m, <En SCOT€m [i]
14: else
15: > Aim to improve confidence
16: model = argmin;e(1 4] 51, Cog p,>Cyy SCOTm [7]
17: action < A[model]
18: return action

In the absence of such an instruction, it continues with the
currently active model (1m¢yrrent)- This adaptability is crucial
for sustaining the system’s efficiency and accuracy in real-
time environments. In this discussion, 'requests’ and ’metrics’
are generalized, but for our running example as explained in
section II, they refer to images and detection boxes in object
detection. This illustrates the approach’s versatility, applicable
to wide range of ML tasks, with further details and results
explored in the following section.

IV. EXPERIMENTATION AND RESULTS

The objective of our evaluation is to assess the effectiveness
and efficiency of the approach by answering:

RQ1. How does the EcoMLS perform in comparison to other
naive baselines and non-adaptive solutions in MLS?

RQ2. What is the effectiveness of EcoMLS in balancing
objectives trade-offs within ML-Enabled Systems (MLS)?
RQ3. How effective is EcoMLS in managing energy and time
efficiency in MLS environments, including the specific energy
and time impacts of the EcoMLS adaptation process?

In the remainder of this section, we first describe our
experimental setup used for the evaluation of the approach,
followed by a discussion of the evaluation questions informed
by our results.

A. Experimental Setup

To evaluate the EcoMLS approach, our experimental setup
is adopted from the SWITCH [16] exemplar. It employs an
object detection system, as detailed in Section II, utilizing
YOLOVS models and FastAPI simulating requests using the
FIFA98 World Cup log dataset, processing 25,000 image
requests. For evaluation, as detailed in our approach, the
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COCO 2017 test dataset is utilized. For the testing phase,
which includes performance results, the COCO 2017 unla-
belled dataset is employed. The YOLOvV5 models (YOLOVS5n,
YOLOvS5s, YOLOvSm, YOLOVSI) used are pre-trained by Ul-
tralytics on the COCO 2017 training dataset. The experiments
were conducted on a system equipped with an Intel Core
i7-11370H processor, NVIDIA GeForce RTX 3050 Ti 4GB
Graphics, 16GB DDR4 3200MHz SDRAM, and developed
using Python 3.11. To measure energy consumption, we uti-
lized pyRAPL?, a Python package specifically designed for
assessing the energy consumption and power usage of soft-
ware applications running on Intel processors. The EcoMLS

Zhttps://pypi.org/project/pyRAPL/. Latest version released on Dec 19, 2019

framework’s evaluation included varying the € value to analyze
its impact on balancing exploration and exploitation. We
compared EcoMLS’s adaptive model selection with individual
YOLOvVS model performances and three naive strategies: (1)
using fixed knowledge for model switching (naive 1), (2)
updating knowledge based on average confidence (naive 2),
and (3) incorporating dynamic updates of both confidence
and energy metrics in knowledge (naive 3). Our approach
builds on naive 3 by adding an e-greedy mechanism, enhancing
exploration through probability. The complete specifics of our
implementation, parameters and results can be found here?.

3https://github.com/sa4s-serc/EcoMLS



Approach name Cavg Eavg Emoni Eanalyzer | Epi Eexecut Emapek | Eavg + Emape.k | No. of Switches
nano 0.536 1.61 - - - - - 1.61 0

small 0.611 4.327 - - - - - 4.327 0
medium 0.652 8.918 - - - - - 8.918 0

large 0.675 17.705 - - - - - 17.705 0
EcoMLS (e = 0.1) 0.61 2.762 1.284 0.001 0.001 0.0 1.285 4.047 160
EcoMLS (e =0.2) | 0.612 3.044 1.166 0.001 0.001 0.0 1.168 4.212 324
EcoMLS (e =0.3) | 0.613 2912 1.035 0.001 0.001 0.0 1.037 3.949 313
EcoMLS (e =0.4) | 0.616 3.564 0.959 0.001 0.001 0.001 0.961 4.525 676
NAIVE1 0.609 247 1.226 0.001 0.001 0.0 1.228 3.697 20
NAIVE2 0.609 2.399 1.21 0.001 0.001 0.0 1.213 3.612 5
NAIVE3 0.609 3.319 1.658 0.001 0.002 0.0 1.661 4.98 106

TABLE 1
COMPARISON OF ENERGY METRICS AND CONFIDENCE SCORES ACROSS DIFFERENT APPROACHES
B. Results deliver high-quality outcomes while using resources optimally.

RQI: How does the EcoMLS perform in comparison to
other naive baselines and non-adaptive solutions in MLS?

We examine EcoMLS’s effectiveness by comparing its perfor-
mance to state-of-the-art baselines and non-adaptive models,
focusing on energy consumption and confidence scores bal-
ance. Table II showcases that within the score range of 0-1,
EcoMLS (e = 0.1) processes 13,040 images, showcasing its
capability to frequently achieve lower scores, indicative of a
balanced trade-off between energy and accuracy. In contrast,
the nano model processes 20,265 images within the same
score range, suggesting a tendency towards lower energy
consumption but at a compromise of average confidence
(Cavg = 0.536), as highlighted in Table 1.

The large model, which is the most accurate but also
the most energy-consuming, achieves an average confidence
(Cavg) = 0.675 with a high energy consumption of 17.705.
EcoMLS, with ¢ = 0.1, strikes a balance with average
confidence (Cuyvg) = 0.61 and significantly lower average
energy consumption of 2.762, showcasing an efficient
trade-off with a 14% improvement in confidence over the
nano model and an 84% reduction in energy consumption
compared to the large model as observed from Figure 4.
EcoMLS’s adaptive strategy aims to select the most energy-
efficient models without compromising confidence. Unlike no
switching, EcoMLS consistently ensures detections fall below
a reference trade-off line, avoiding low-confidence results
and effectively using the e-greedy mechanism for adaptation.
EcoMLS’s adaptability is further highlighted by its frequency
of model switching, contrasting with the minimal switching in
baseline models due to their static nature. ECOMLS engages in
more frequent model changes as shown in Figure 3, evidenced
by 160 switches with € = 0.1, indicating an understanding of
runtime conditions. EcoMLS outperforms traditional models
by smartly balancing energy use and accuracy, using adaptive
strategies like model switching and e-greedy exploration.
It slightly exceeds the nano model in energy consumption,
depicted in Figure 4, but compensates with higher confidence
levels. Compared to all other models and approaches,
EcoMLS achieves better performance scores, effectively
managing the trade-offs between energy and accuracy. This
underscores EcoMLS’s superior efficiency and its ability to

RQ2. What is the effectiveness of EcoMLS in balancing
objective trade-offs within ML-Enabled Systems (MLS)?

We assess the balance EcoMLS achieves between energy
consumption and model confidence in MLS, using the per-
formance score Score,, = E; x (1 — Cj), with a lower
score indicating a more favorable balance. According to Table
I, EcoMLS*, particularly with ¢ = 0.1, optimally balances
energy and confidence, exhibiting an average energy consump-
tion (Egyg) of 2.762 and an average confidence score (Coyg)
of 0.61 (Table I). Incremental analysis from ¢ = 0.1 to 0.4
reveals a 29% rise in E,,4 for a mere 1% improvement in
Cavg, justifying € = 0.1 as the optimal setting due to the
diminishing returns of higher exploration.

The effectiveness of EcoMLS in managing trade-offs is
further evidenced by plotting energy versus confidence scores
as shown in Figure 2, with a reference line connecting the
lowest and highest energy and confidence values across all
models. EcoMLS’s results predominantly fall below this line,
especially at e = 0.1, affirming its efficiency in maintaining
a balance between energy use and accuracy, despite the
tendency for more detections to cross the line as e increases,
indicating more exploratory actions. EcoMLS demonstrates
effective trade-off management between energy efficiency
and model confidence, with ¢ = 0.1 proving to be the
most effective. This conclusion is underpinned by detailed
quantitative analysis, illustrating EcoMLS’s capability to
optimize the exploration-exploitation trade-off while ensuring
sustainable MLS operation.

RQ3: How effective is EcoMLS in managing energy and
time efficiency in MLS environments, including the specific
energy and time impacts of the EcoMLS adaptation process?

In RQ3, we evaluate the energy efficiency of our adaptive
approach, focusing on the MAPE-K technique. The analysis
shows that the MAPE-K loop’s additional energy consumption
is minimal compared to traditional models. Specifically, inte-
grating the MAPE-K loop, EcoMLS consumes 77.14% less
energy than the ’large’ model, 54.62% less than ’medium’,

“unless specified otherwise by EcoMLS we imply EcoMLS with € = 0.1
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and 6.46% less than ’small’ as shown in Table I. The MAPE-
K loop itself only adds a negligible time overhead of 0.007
seconds for each adaptation. EcoOMLS continuously monitors
system performance, with the analyzer evaluating the need for
adaptation every second. This process triggers the planner and
executor as needed, ensuring optimal system operation with
minimal delay. For instance, with ¢ = 0.1, EcoMLS’s energy
consumption for model operations is 2.762 Joules, with the
MAPE-K loop contributing an additional 1.285 Joules, for a
total of 4.047 Joules. This efficiency persists across various
€ settings, demonstrating that while the adaptive mechanism
introduces a slight energy cost for adaptations, it significantly
lowers overall energy usage compared to static models, with-
out compromising performance. With 160 switches at € = 0.1,
EcoMLS showcases effective adaptability and operational ef-
ficiency, adeptly balancing energy use and accuracy. These
values, measured in Joules by PyRAPL, indicate the precise
energy impact of the MAPE-K loop, continuous monitoring
and adaptation process. This evaluation shows EcoMLS’s ca-
pability to maintain high performance with energy efficiency.

V. THREATS TO VALIDITY

Threats to external validity concerns the focus on a single
type of task and a select group of machine learning models,
and by limiting our examination to the inference phase. To
address the first challenge, we chose a range of YOLOVS
models, varying in complexity (from YOLOv5n to YOLOVS5I),
and used diverse datasets, including COCO 2017. This strategy
aimed to cover different visual data types and model sizes.
However, our decision to focus only on the inference phase,

Name score
0-1 1-2 2-3 3-4 4-5 5-6 6-7
nano 20265 4480 237 16 1 0 0
small 5301 11870 | 6139 | 1258 290 102 31
medium 2394 4447 6018 | 5319 | 3670 | 1870 706
large 645 2398 2304 | 2691 | 3204 | 3148 | 2693
EcoMLS | 13040 | 10740 841 180 61 37 31
NAIVEI1 14301 9996 562 96 27 9 4
NAIVE2 | 14860 9560 491 62 12 4 3
NAIVE3 9188 12408 | 2698 492 156 43 9
TABLE II

MODEL SCORE FREQUENCY TABLE

without considering the full lifecycle of machine learning
models like training and tuning, was intentional. This choice
was made to study energy consumption during inference
specifically, acknowledging its narrow scope in reflecting the
entire machine learning process.

A threat to the internal validity could be the impact of
varying hardware conditions like temperature changes on the
results of the evaluations. To tackle this, we implemented a
24-hour sleep period before each test to stabilize hardware
conditions and performed a warm-up run to maintain con-
sistency throughout our experiments. The threats construct
validity could be constituted by the accuracy of our energy
consumption measurements. To mitigate this, we utilized the
pyYRAPL library in Python (pyRAPL makes use of the RAPL
library provided by Intel) which is a well-known library for
measuring energy consumption. Concerning conclusion valid-
ity, the main threat is the potential low statistical power of our
tests, which we addressed by conducting multiple experiments
across different settings and conditions. Additionally, we took
precautions to minimize the impact of extraneous variables,
such as background tasks, on our energy consumption mea-
surements by ensuring a clean experimental environment.

VI. RELATED WORK

The field of Green AI has attracted substantial research
interest, focusing on energy efficiency in Machine Learning
(ML) systems. Verdecchia et al. [13] reviewed 98 studies,
highlighting a dominant emphasis on energy efficiency mecha-
nisms. Despite this, the practical application of these findings,
particularly in making ML-enabled systems sustainable, has
been limited. Studies like those by Jarvenpaa et al. [10]
propose tactics for sustainability, mainly at the design stage,
covering data-centric methods [20] and optimization of algo-
rithms and models. However, the aspect of runtime energy
efficiency has been relatively underexplored. The concept of
self-adaptation in software, originating from IBM’s autonomic
computing [21], has evolved to include Machine Learning Sys-
tems (MLS). Research in this area [14], [22], [23] categorizes
self-adaptation into software design approaches (SDA) and
system engineering approaches (SEA), focusing on design-
time solutions. Recent studies [15], [24] explore enhancing
adaptability at runtime, including unsupervised learning and
model switching. Yet, these approaches often limit systems to
pre-set configurations, as noted by Tundo et al. [25].

Our approach diverges by offering a dynamic, self-adaptive
framework that addresses runtime uncertainties in ML-enabled
systems. It employs a learning algorithm to monitor and
adapt based on historical data, allowing for real-time model
switching. This adaptive planning considers incoming request
contexts and model performance indicators, optimizing for
accuracy, service quality and minimal energy consumption.
Our work fills the gap in runtime energy efficiency and
contributes to the development of self-adaptive, sustainable
ML-enabled systems.



VII. CONCLUSIONS AND FUTURE WORK

This paper introduces EcoMLS, an innovative strategy de-
signed to improve the sustainability of Machine Learning-
Enabled Systems (MLS) by employing dynamic runtime
model switching to enhance energy efficiency while ensuring
model confidence is not compromised. Our evaluations reveal
that EcoMLS significantly boosts energy efficiency in MLS by
adapting model selection in response to real-time conditions,
thereby maintaining high model accuracy and substantially
lowering energy consumption. Through the EcoMLS ap-
proach, which utilizes the Machine Learning Model Balancer
concept within a MAPE-K loop, we address environmental
uncertainties linked to MLS deployment, focusing on reducing
energy consumption in runtime operations. Currently demon-
strated within the computer vision domain through object
detection, future works will extend EcoMLS’s applicability
to Natural Language Processing (NLP), autonomous systems,
and beyond, exploring its potential across a broader spectrum
of ML applications. Looking ahead, we intend to investigate
EcoMLS’s applicability in sustainable computing, particu-
larly its integration with edge computing and lightweight Al
models. This exploration will encompass the application of
software engineering methodologies attuned to the sustain-
ability dimensions of software systems, covering economic,
social, environmental, and technical aspects. Our objective is
to evolve EcoMLS into a tool that facilitates sustainability-
aware decision-making, enabling architects, developers and
businesses to create greener, more sustainable ML-Enabled
systems. In summary, EcoMLS marks a advancement to-
wards achieving energy-efficient and sustainable ML-Enabled
systems. By effectively balancing energy consumption with
model confidence, EcoMLS seeks to set a new standard
towards greener Al. Future efforts will focus on extending
its impact, with EcoMLS continuing to lead innovation in an
environmentally conscious way.
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