REFERENCES
Bempah, S. A., & Øyhus, A. O. (2017). The role of social perception in disaster risk reduction: Beliefs, perception, and attitudes regarding flood disasters in communities along the Volta River, Ghana.International Journal of Disaster Risk Reduction, 23, 104-108. https://doi.org/10.1016/j.ijdrr.2017.04.009
Bradford, R. A., O’Sullivan, J. J., Van der Craats, I. M., Krywkow, J., Rotko, P., Aaltonen, J., Bonaiuto, M., De Dominicis, S., Waylen. K., & Schelfaut, K. (2012). Risk perception–issues for flood management in Europe. Natural Hazards and Earth System Sciences, 12 (7), 2299–2309. https://doi.org/10.5194/nhess-12-2299-2012
Christensen, T., & Lægreid, P. (2005). Trust in government: The relative importance of service satisfaction, political factors, and demography. Public Performance & Management Review, 28 (4), 487–511. https://doi.org/10.1080/15309576.2018.1464478
De Dreu, C. K., & Beersma, B. (2010). Team confidence, motivated information processing, and dynamic group decision making. European Journal of Social Psychology40 (7), 1110–1119. https://doi.org/10.1002/ejsp.763 
Douglas, M., & Wildavsky, A. (1982). Risk and culture: An essay on the selection of technical and environmental dangers. University of California Press. https://doi.org/10.1017/s0021875800018545 
Eiser, J. R., Miles, S., & Frewer, L. J. (2002). Trust, perceived risk, and attitudes toward food technologies. Journal of Applied Social Psychology32 (11), 2423–2433. https://doi.org/10.1111/j.1559-1816.2002.tb01871.x 
Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41 (4), 1149–1160. https://doi.org/10.3758/brm.41.4.1149
Freudenburg, W. R. (1993). Risk and recreancy: Weber, the division of labor, and the rationality of risk perceptions. Social Forces, 71 (4), 909–932. https://doi.org/10.2307/2580124
Frewer, L. J., Howard, C., Hedderley, D., & Shepherd, R. (1996). What determines trust in information about food-related risks? Underlying psychological constructs. Risk Analysis, 16 (4), 473–486. https://doi.org/10.1111/j.1539-6924.1996.tb01094.x 
Frewer, L. J., Howard, C., Hedderley, D., & Shepherd, R. (1997). The elaboration likelihood model and communication about food risks. Risk Analysis17 (6), 759–770. https://doi.org/10.1111/j.1539-6924.1997.tb01281.x 
Grothmann, T., & Reusswig, F. (2006). People at risk of flooding: Why some residents take precautionary action while others do not. Natural Hazards38 (1), 101–120. https://doi.org/10.1007/s11069-005-8604-6 
Han, Z., Lu, X., Hörhager, E. I., & Yan, J. (2017). The effects of trust in government on earthquake survivors’ risk perception and preparedness in China. Natural Hazards, 86, 437­452. https://doi.org/10.1007/s11069-016-2699-9
Henrich, J., Heine, S. J., & Norenzayan, A. (2010). Most people are not WEIRD. Nature466 , 29–29. https://doi.org/10.1038/466029a 
Hung, H. C. (2009). The attitude toward flood insurance purchase when respondents’ preferences are uncertain: A fuzzy approach. Journal of Risk Research12 (2), 239–258. https://doi.org/10.1080/13669870802497702 
Kahan, D. M., Braman, D., Cohen, G. L., Gastil, J., & Slovic, P. (2010). Who fears the HPV vaccine, who doesn’t, and why? An experimental study of the mechanisms of cultural cognition. Law and Human Behavior34 (6), 501–516. https://doi.org/10.1007/s10979-009-9201-0 
Kellens, W., Terpstra, T., Schelfaut, K., & De Maeyer, P. (2013). Perception and communication of flood risks: A systematic review of empirical research. Risk Analysis, 33 (1), 24–49. https://doi.org/10.1111/j.1539-6924.2012.01844.x 
Kellens, W., Zaalberg, R., Neutens, T., Vanneuville, W., & De Maeyer, P. (2011). An analysis of the public perception of flood risk on the Belgian coast. Risk Analysis31 (7), 1055–1068. https://doi.org/10.1111/j.1539-6924.2010.01571.x 
Liang, Y. (2016). Trust in Chinese government and quality of life (QOL) of Sichuan earthquake survivors: Does trust in government help to promote QOL?. Social Indicators Research, 127, 541–564. https://doi.org/10.1007/s11205-015-0967-9 
Lindell, M. K., & Hwang, S. N. (2008). Households’ perceived personal risk and responses in a multihazard environment. Risk Analysis28 (2), 539–556. https://doi.org/10.1111/j.1539-6924.2008.01032.x 
Lin, S., Shaw, D., & Ho, M. C. (2008). Why are flood and landslide victims less willing to take mitigation measures than the public? Natural Hazards44 (2), 305–314. https://doi.org/10.1007/s11069-007-9136-z 
Liu, J., Wang, S-y., & Li, D-m. (2014). The analysis of the impact of land-use changes on flood exposure of Wuhan in Yangtze River Basin, China. Water Resources Management, 28, 2507–2522. https://doi.org/10.1007/s11269-014-0623-1
Lu, X., Xie, X., & Xiong, J. (2015). Social trust and risk perception of genetically modified food in urban areas of China: The role of salient value similarity. Journal of Risk Research18 (2), 199–214. https://doi.org/10.1080/13669877.2014.889195 
Ma, L., & Christensen, T. (2019). Government trust, social trust, and citizens’ risk concerns: Evidence from crisis management in China.Public Performance & Management Review, 42 (2), 383–404. https://doi.org/10.1080/15309576.2018.1464478 
Nakayachi, K., & Cvetkovich, G. (2010). Public trust in government concerning tobacco control in Japan. Risk Analysis, 30 (1), 143–152. https://doi.org/10.1111/j.1539-6924.2009.01306.x
O’Sullivan, J. J., Bradford, R. A., Bonaiuto, M., De Dominicis, S., Rotko, P., Aaltonen, J., Waylen, K., & Langan, S. J. (2012). Enhancing flood resilience through improved risk communications. Natural Hazards and Earth System Sciences, 12 (7), 2271–2282. https://doi.org/10.5194/nhess-12-2271-2012
Petty, R. E., Priester, J. R., & Brinol, P. (2002). Mass media attitude change: Implications of the elaboration likelihood model of persuasion . Routledge https://doi.org/10.4324/9781410602428-11 
Rousseau, D. M., Sitkin, S. B., Burt, R. S., & Camerer, C. (1998). Not so different after all: A cross-discipline view of trust. Academy of Management Review23 (3), 393–404. https://doi.org/10.5465/amr.1998.926617 
Ryu, Y., & Kim, S. (2015). Testing the heuristic/systematic information-processing model (HSM) on the perception of risk after the Fukushima nuclear accidents. Journal of Risk Research, 18 (7), 840–859. https://doi.org/10.1080/13669877.2014.910694
Shi, J., Visschers, V. H. M., & Siegrist, M. (2015). Public perception of climate change: The importance of knowledge and cultural worldviews.Risk Analysis, 35 (12), 2183–2201. https://doi.org/10.1111/risa.12406
Slovic, P. (1987). Perception of risk. Science, 236 (4799), 280–285. https://doi.org/10.1126/science.3563507 
Siegrist, M. (2021). Trust and risk perception: A critical review of the literature. Risk Analysis, 41 (3), 480–490. https://doi.org/10.1111/risa.13325
Siegrist, M., & Cvetkovich, G. (2000). Perception of hazards: The role of social trust and knowledge. Risk Analysis , 20 (5), 713–720. https://doi.org/10.1111/0272-4332.205064 
Siegrist, M., Luchsinger, L., & Bearth, A. (2021). The impact of trust and risk perception on the acceptance of measures to reduce COVID‐19 cases. Risk Analysis, 41 (5), 787–800. https://doi.org/10.1111/risa.13675
Sjöberg, L. (2000). Factors in risk perception. Risk Analysis, 20 (1), 1–12. https://doi.org/10.1111/0272-4332.00001 
Sjöberg, L. (2001). Limits of knowledge and the limited importance of trust. Risk Analysis, 21 (1), 189–198. https://doi.org/10.1111/0272-4332.211101
Ter Huurne, E. F., & Gutteling, J. M. (2009). How to trust? The importance of self‐efficacy and social trust in public responses to industrial risks. Journal of Risk Research12 (6), 809–824. https://doi.org/10.1080/13669870902726091 
Terpstra, T. (2011). Emotions, trust, and perceived risk: Affective and cognitive routes to flood preparedness behavior. Risk Analysis31 (10), 1658–1675. https://doi.org/10.1111/j.1539-6924.2011.01616.x 
Tortosa-Edo, V., López-Navarro, M. A., Llorens-Monzonís, J., & Rodríguez-Artola, R. M. (2014). The antecedent role of personal environmental values in the relationships among trust in companies, information processing and risk perception. Journal of Risk Research17 (8), 1019–1035. https://doi.org/10.1080/13669877.2013.841726 
Trumbo, C. W. (2002). Information processing and risk perception: An adaptation of the heuristic–systematic model. Journal of Communication, 52 (2), 367–382. https://doi.org/10.1111/j.1460-2466.2002.tb02550.x 
Trumbo, C. W., & Mccomas, K. A. (2003). The function of credibility in information processing for risk perception. Risk Analysis, 23 (2), 343–353. https://doi.org/10.1111/1539-6924.00313 
Trumbo, C. W., & McComas, K. A. (2008). Institutional trust, information processing, and perception of environmental cancer risk. International Journal of Global Environmental Issues8 (1/2), 61–76. https://doi.org/10.1504/ijgenvi.2008.017260 
Tumlison, C., Moyer, R. M., & Song, G. (2017). The origin and role of trust in local policy elites’ perceptions of high-voltage power line installations in the state of Arkansas. Risk Analysis, 37 (5), 1018–1036. https://doi.org/10.1111/risa.12662 
Vainio, A., Paloniemi, R., & Varho, V. (2017). Weighing the risks of nuclear energy and climate change: trust in different information sources, perceived risks, and willingness to pay for alternatives to nuclear power. Risk Analysis37 (3), 557–569. https://doi.org/10.1111/risa.12640 
Viklund, M. J. (2003). Trust and risk perception in Western Europe: A cross-national study. Risk Analysis, 23 (4), 727–738. https://doi.org/10.1111/1539-6924.00351 
Welch, M. R., Rivera, R. E., Conway, B. P., Yonkoski, J., Lupton, P. M., & Giancola, R. (2005). Determinants and consequences of social trust. Sociological Inquiry75 (4), 453–473. https://doi.org/10.1111/j.1475-682x.2005.00132.x 
White, M. P., & Johnson, B. B. (2010). The intuitive detection theorist (IDT) model of trust in hazard managers. Risk Analysis30 (8), 1196–1209. https://doi.org/10.1111/j.1539-6924.2010.01407.x 
Wildavsky, A., & Dake, K. (1990). Theories of risk perception: Who fears what and why? Daedalus, 119 (4), 41–60. https://www.jstor.org/stable/20025337
Table 1 Descriptive Statistics and Intercorrelations Between Variables (n = 160)