REFERENCES
Bempah, S. A., & Øyhus, A. O. (2017). The role of social perception in
disaster risk reduction: Beliefs, perception, and attitudes regarding
flood disasters in communities along the Volta River, Ghana.International Journal of Disaster Risk Reduction, 23, 104-108.
https://doi.org/10.1016/j.ijdrr.2017.04.009
Bradford, R. A., O’Sullivan, J. J., Van der Craats, I. M., Krywkow, J.,
Rotko, P., Aaltonen, J., Bonaiuto, M., De Dominicis, S., Waylen. K., &
Schelfaut, K. (2012). Risk perception–issues for flood management in
Europe. Natural Hazards and Earth System Sciences, 12 (7),
2299–2309. https://doi.org/10.5194/nhess-12-2299-2012
Christensen, T., & Lægreid, P. (2005). Trust in government: The
relative importance of service satisfaction, political factors, and
demography. Public Performance & Management Review, 28 (4),
487–511. https://doi.org/10.1080/15309576.2018.1464478
De Dreu, C. K., & Beersma, B. (2010). Team confidence, motivated
information processing, and dynamic group decision
making. European Journal of Social Psychology , 40 (7),
1110–1119.
https://doi.org/10.1002/ejsp.763
Douglas, M., & Wildavsky, A. (1982). Risk and culture: An essay
on the selection of technical and environmental dangers. University of
California Press.
https://doi.org/10.1017/s0021875800018545
Eiser, J. R., Miles, S., & Frewer, L. J. (2002). Trust, perceived risk,
and attitudes toward food technologies. Journal of Applied Social
Psychology , 32 (11), 2423–2433.
https://doi.org/10.1111/j.1559-1816.2002.tb01871.x
Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical
power analyses using G* Power 3.1: Tests for correlation and regression
analyses. Behavior Research Methods, 41 (4), 1149–1160.
https://doi.org/10.3758/brm.41.4.1149
Freudenburg, W. R. (1993). Risk and recreancy: Weber, the division of
labor, and the rationality of risk perceptions. Social Forces,
71 (4), 909–932. https://doi.org/10.2307/2580124
Frewer, L. J., Howard, C., Hedderley, D., & Shepherd, R. (1996). What
determines trust in information about food-related risks? Underlying
psychological constructs. Risk Analysis, 16 (4), 473–486.
https://doi.org/10.1111/j.1539-6924.1996.tb01094.x
Frewer, L. J., Howard, C., Hedderley, D., & Shepherd, R. (1997). The
elaboration likelihood model and communication about food
risks. Risk Analysis , 17 (6), 759–770.
https://doi.org/10.1111/j.1539-6924.1997.tb01281.x
Grothmann, T., & Reusswig, F. (2006). People at risk of flooding: Why
some residents take precautionary action while others do
not. Natural Hazards , 38 (1), 101–120.
https://doi.org/10.1007/s11069-005-8604-6
Han, Z., Lu, X., Hörhager, E. I., & Yan, J. (2017). The effects of
trust in government on earthquake survivors’ risk perception and
preparedness in China. Natural Hazards, 86, 437452.
https://doi.org/10.1007/s11069-016-2699-9
Henrich, J., Heine, S. J., & Norenzayan, A. (2010). Most people are not
WEIRD. Nature , 466 , 29–29.
https://doi.org/10.1038/466029a
Hung, H. C. (2009). The attitude toward flood insurance purchase when
respondents’ preferences are uncertain: A fuzzy approach. Journal
of Risk Research , 12 (2), 239–258.
https://doi.org/10.1080/13669870802497702
Kahan, D. M., Braman, D., Cohen, G. L., Gastil, J., & Slovic, P.
(2010). Who fears the HPV vaccine, who doesn’t, and why? An experimental
study of the mechanisms of cultural cognition. Law and Human
Behavior , 34 (6), 501–516.
https://doi.org/10.1007/s10979-009-9201-0
Kellens, W., Terpstra, T., Schelfaut, K., & De Maeyer, P. (2013).
Perception and communication of flood risks: A systematic review of
empirical research. Risk Analysis, 33 (1), 24–49.
https://doi.org/10.1111/j.1539-6924.2012.01844.x
Kellens, W., Zaalberg, R., Neutens, T., Vanneuville, W., & De Maeyer,
P. (2011). An analysis of the public perception of flood risk on the
Belgian coast. Risk Analysis , 31 (7), 1055–1068.
https://doi.org/10.1111/j.1539-6924.2010.01571.x
Liang, Y. (2016). Trust in Chinese government and quality of life (QOL)
of Sichuan earthquake survivors: Does trust in government help to
promote QOL?. Social Indicators Research, 127, 541–564.
https://doi.org/10.1007/s11205-015-0967-9
Lindell, M. K., & Hwang, S. N. (2008). Households’ perceived personal
risk and responses in a multihazard environment. Risk
Analysis , 28 (2), 539–556.
https://doi.org/10.1111/j.1539-6924.2008.01032.x
Lin, S., Shaw, D., & Ho, M. C. (2008). Why are flood and landslide
victims less willing to take mitigation measures than the
public? Natural Hazards , 44 (2), 305–314.
https://doi.org/10.1007/s11069-007-9136-z
Liu, J., Wang, S-y., & Li, D-m. (2014). The analysis of the impact of
land-use changes on flood exposure of Wuhan in Yangtze River Basin,
China. Water Resources Management, 28, 2507–2522.
https://doi.org/10.1007/s11269-014-0623-1
Lu, X., Xie, X., & Xiong, J. (2015). Social trust and risk perception
of genetically modified food in urban areas of China: The role of
salient value similarity. Journal of Risk Research , 18 (2),
199–214.
https://doi.org/10.1080/13669877.2014.889195
Ma, L., & Christensen, T. (2019). Government trust, social trust, and
citizens’ risk concerns: Evidence from crisis management in China.Public Performance & Management Review, 42 (2), 383–404.
https://doi.org/10.1080/15309576.2018.1464478
Nakayachi, K., & Cvetkovich, G. (2010). Public trust in government
concerning tobacco control in Japan. Risk Analysis, 30 (1),
143–152. https://doi.org/10.1111/j.1539-6924.2009.01306.x
O’Sullivan, J. J., Bradford, R. A., Bonaiuto, M., De Dominicis, S.,
Rotko, P., Aaltonen, J., Waylen, K., & Langan, S. J. (2012). Enhancing
flood resilience through improved risk communications. Natural
Hazards and Earth System Sciences, 12 (7), 2271–2282.
https://doi.org/10.5194/nhess-12-2271-2012
Petty, R. E., Priester, J. R., & Brinol, P. (2002). Mass media
attitude change: Implications of the elaboration likelihood model of
persuasion . Routledge
https://doi.org/10.4324/9781410602428-11
Rousseau, D. M., Sitkin, S. B., Burt, R. S., & Camerer, C. (1998). Not
so different after all: A cross-discipline view of trust. Academy
of Management Review , 23 (3), 393–404.
https://doi.org/10.5465/amr.1998.926617
Ryu, Y., & Kim, S. (2015). Testing the heuristic/systematic
information-processing model (HSM) on the perception of risk after the
Fukushima nuclear accidents. Journal of Risk Research, 18 (7),
840–859. https://doi.org/10.1080/13669877.2014.910694
Shi, J., Visschers, V. H. M., & Siegrist, M. (2015). Public perception
of climate change: The importance of knowledge and cultural worldviews.Risk Analysis, 35 (12), 2183–2201.
https://doi.org/10.1111/risa.12406
Slovic, P. (1987). Perception of risk. Science, 236 (4799),
280–285.
https://doi.org/10.1126/science.3563507
Siegrist, M. (2021). Trust and risk perception: A critical review of the
literature. Risk Analysis, 41 (3), 480–490.
https://doi.org/10.1111/risa.13325
Siegrist, M., & Cvetkovich, G. (2000). Perception of hazards: The role
of social trust and knowledge. Risk Analysis , 20 (5),
713–720.
https://doi.org/10.1111/0272-4332.205064
Siegrist, M., Luchsinger, L., & Bearth, A. (2021). The impact of trust
and risk perception on the acceptance of measures to reduce COVID‐19
cases. Risk Analysis, 41 (5), 787–800.
https://doi.org/10.1111/risa.13675
Sjöberg, L. (2000). Factors in risk perception. Risk Analysis,
20 (1), 1–12.
https://doi.org/10.1111/0272-4332.00001
Sjöberg, L. (2001). Limits of knowledge and the limited importance of
trust. Risk Analysis, 21 (1), 189–198.
https://doi.org/10.1111/0272-4332.211101
Ter Huurne, E. F., & Gutteling, J. M. (2009). How to trust? The
importance of self‐efficacy and social trust in public responses to
industrial risks. Journal of Risk Research , 12 (6),
809–824.
https://doi.org/10.1080/13669870902726091
Terpstra, T. (2011). Emotions, trust, and perceived risk: Affective and
cognitive routes to flood preparedness behavior. Risk
Analysis , 31 (10), 1658–1675.
https://doi.org/10.1111/j.1539-6924.2011.01616.x
Tortosa-Edo, V., López-Navarro, M. A., Llorens-Monzonís, J., &
Rodríguez-Artola, R. M. (2014). The antecedent role of personal
environmental values in the relationships among trust in companies,
information processing and risk perception. Journal of Risk
Research , 17 (8), 1019–1035.
https://doi.org/10.1080/13669877.2013.841726
Trumbo, C. W. (2002). Information processing and risk perception: An
adaptation of the heuristic–systematic model. Journal of
Communication, 52 (2), 367–382.
https://doi.org/10.1111/j.1460-2466.2002.tb02550.x
Trumbo, C. W., & Mccomas, K. A. (2003). The function of credibility in
information processing for risk perception. Risk Analysis,
23 (2), 343–353.
https://doi.org/10.1111/1539-6924.00313
Trumbo, C. W., & McComas, K. A. (2008). Institutional trust,
information processing, and perception of environmental cancer
risk. International Journal of Global Environmental
Issues , 8 (1/2), 61–76.
https://doi.org/10.1504/ijgenvi.2008.017260
Tumlison, C., Moyer, R. M., & Song, G. (2017). The origin and role of
trust in local policy elites’ perceptions of high-voltage power line
installations in the state of Arkansas. Risk Analysis, 37 (5),
1018–1036.
https://doi.org/10.1111/risa.12662
Vainio, A., Paloniemi, R., & Varho, V. (2017). Weighing the risks of
nuclear energy and climate change: trust in different information
sources, perceived risks, and willingness to pay for alternatives to
nuclear power. Risk Analysis , 37 (3), 557–569.
https://doi.org/10.1111/risa.12640
Viklund, M. J. (2003). Trust and risk perception in Western Europe: A
cross-national study. Risk Analysis, 23 (4), 727–738.
https://doi.org/10.1111/1539-6924.00351
Welch, M. R., Rivera, R. E., Conway, B. P., Yonkoski, J., Lupton, P. M.,
& Giancola, R. (2005). Determinants and consequences of social
trust. Sociological Inquiry , 75 (4), 453–473.
https://doi.org/10.1111/j.1475-682x.2005.00132.x
White, M. P., & Johnson, B. B. (2010). The intuitive detection theorist
(IDT) model of trust in hazard managers. Risk
Analysis , 30 (8), 1196–1209.
https://doi.org/10.1111/j.1539-6924.2010.01407.x
Wildavsky, A., & Dake, K. (1990). Theories of risk perception: Who
fears what and why? Daedalus, 119 (4), 41–60.
https://www.jstor.org/stable/20025337
Table 1 Descriptive Statistics and Intercorrelations
Between Variables (n = 160)