
New Gamma Function to solve n fold integrals faster

FARHAN A F

farhan952628@gmail.com

Python code on github

Abstract

We can calculate n fold integrals and derivative exponentially faster using fractional calculus. Integral of some

functions are NP problem meaning it will take long time (Non polynomial time). By calculating n fold integrals faster

we can achieve real time simulations.we can also solve hyper dimensional problems and to achieve hyper dimensional

computing.we can reduce space and time complexity of an algorithm using this method.we also compare results with

normal n fold integrals.we got 100 % accurate result.

Keywords: fractional calculus;New gamma function;Negative integer factorials;Gamma function for variables;N

fold integrals;N fold chain rule;fractional permutations and combinations;fractional differential equations;P VS NP

Problem;natural logarithm

1 Introduction

Fractional Calculus is extension of calculus to complex number order or quaternions (4D number) order. we are going to

extend gamma function to find negative integer factorial.we will prove that it is not ∞ using the result we can find n fold

integrals of some functions faster.

2 Laplace Transform and Inconsistency of gamma function

dnf(x)

dxn
=


n fold integral if n < 0

f(x) if n = 0

nth order derivative if n > 0

2.1 Euler form

dmxn

dxm
=

n!

(n−m)!
x(n−m) =n Pm · x(n−m) (1)

[1] from (1) take n=m=-1

d−1x−1

dx−1
=

(−1)!

(0)!
x(0) (2)

=

∫
x−1dx (3)

= lnx+ c = (−1)! = Γ(0) (4)

1

mailto:farhan952628@gmail.com
https://github.com/farhan9526/N-fold-integral-of-natural-log


But we know Γ(0) = ∞ which is not accurate

Γ(z + 1) = zΓ(z) = z!

2.2 Recursive formula

Assuming all factorial have this property

n! = (n− 1)!n

at n =0

0! = (0− 1)!0

= (−1)!0 0! = 1

By solving

(−1)! =
1

0
(5)

Taking limits on both sides on (5)

lim
x→0+

(−1)! = lim
x→0+

1

x
= ∞ (6)

lim
x→0−

(−1)! = lim
x→0−

1

x
= −∞ (7)

lim
x→0+

1

x
̸= lim

x→0−

1

x

limit doesn’t exist so (-1)! has 2 functions depending on right or left limit

(−1)! =

lnx+ C1 if x < 0

− lnx+ C2 if x > 0
(8)

we will prove (8) is piecewise natural logarithm

Take (4) we have to find constant c if

(−1)! = lnx+ c

dmxn

dxm
=

n!

(n−m)!
x(n−m) =n Pm · x(n−m)

fix n=-1 and gives values of m=-2,-3,-4

at m=-2

d−2x−1

dx−2
=

(−1)!

(−1 + 2)!
x =(−1) P−2 · x (9)

=

∫ ∫
x−1dx = x(lnx− 1) (10)

= x(lnx+ c) (11)

we are using (-1)!=lnx + c (12)

2



at m=-1 we see that c=-1

by applying machine learning program we will see that c increases by 1
x each time when we integrate

d−3x−1

dx−3
=

(−1)!

(−1 + 3)!
x−1+3 =(−1) P−3 · x2 (13)

=

∫ ∫ ∫
x−1dx =

x2

2
(lnx− 1.5) (14)

=
x2

2
(lnx+ c) (15)

at m=-2 we see that c = −1− 1
2 = − 3

2

This process continues next c or c at m=-3

c = 1− 1

2
− 1

3
= −11

6

constant c is -Hn(x)

Hn(x) =

n∑
k=0

1

k

2.3 lnx

nth derivative ln(x) is found using derivative

dn

dxn
lnx = (−1)n−1(n− 1)!x−n

put n=0 we get

d0

dx0
lnx = (−1)0−1(0− 1)!x−0 (16)

= lnx+ c = (−1)(−1)! (17)

Therefore,

(−1)! = − lnx+ C2

from integral

d−n+1

dx−n+1
lnx =

(−1)!

(n− 1)!
xn−1 (18)

= (lnx+ c)
xn−1

(n− 1)!
(19)

This is due to (−1)! = 1
0 so we have to choose right or limit depending on problem

−∞ 0 ∞

∫
ln(x) dx

ln(x) + c

d(ln(x))
dx

−lnx+ C2

3



dn

dxn
lnx =


(lnx+ c)x

n

n! if n < 0 (integral)

lnx if n = 0

(−1)n−1(n− 1)!x−n if n > 0 (derivative)

(20)

3 Laplace transform

3.1 Derivative of Transforms

L{tnf(t)} = (eiπ)n
dn

dsn
F (s) (21)

[3]

(21) using this we can make sure whether (-1)! is positive or not

proof

L{tnf(t)} = (−1)n
dn

dsn
F (s) (22)

let f(t)=1 then F (s) = 1
s

n=-1

L{t−1} = (−1)−1 d−1

ds−1
(
1

s
) (23)

= (−1)! = (−1)[ln s+ C2] (24)

So in laplace transform Γ(0) = (−1)[ln s+ C2]

(21) let f(t)=1 then F (s) = 1
s

n =
1

2

L{t 1
2 } = (eiπ)

1
2
d

1
2

ds
1
2

(
1

s
) (25)

= i
d

1
2

ds
1
2

(
1

s
) (26)

L{D−mtn} =
Γ(n+ 1)

sm+n+1
(27)

[2]

(27) let m=1,n=-1

L{D−1t−1} =
Γ(0)

s
(28)

L{D−1t−1} = L{ln t} (29)

(30)

4



(8) and (24)

Γ(0) = (−1)[ln s+ C2]

L{ln t} =
−1

s
(ln s+ C2) (31)

By using definition of laplace to find L{ln t} we will get same result C2 is found to be euler mascheroni constant γ

4 Fractional Differential Equation

solve

D− 1
2 lnx = 2 (32)

we can solve this equation using (20)

D−n lnx =
xn

n!
(lnx+ c)

x
1
2

1
2 !

(lnx+ c) = 2

x
1
2 (lnx+ c) =

4√
π

Assuming Γ
(
3
2

)
= 1

2 ! =
√
π
2 .

5 Gamma Function for variables

y = xx+n (33)

ln y = (x+ n) lnx (34)

1

y

dy

dx
=

(x+ n)

x
+ lnx (35)

dy

dx
= xx+n(lnx+

x+ n

x
) (36)

from (1)

dy

dx
=(x+n) P1 · x(x+n−1) (37)

=
(x+ n)!

(x+ n− 1)!
x(x+n−1) (38)

from (36)

(x+ n)!

(x+ n− 1)!
= x(lnx+

(x+ n)

x
) (39)

from (39) Let n=0
(x)!

(x− 1)!
= x(lnx+ 1)

i.e. x!
(x−1)! ̸= x This evidence suggests we need to reevaluate the current theory about gamma function

5



6 Results and discussion

6.1 Comparison

Here we are integrating 1
x we can also find integral of lnx using this As iteration increases Our code will become more faster

Table 1: Code Efficiency Comparison

Code Iterations Execution Time (s) Memory Usage (MB)

Existing Code 100 4.5 62.92

Existing Code 200 11.73 70.27

Existing Code 300 21.56 76.09

Our Python Code 100 0.00022 15.07

Our Python Code 200 0.00042 15.25

Our Python Code 300 0.00065 14.98

Now divide execution time of existing code and our code

Table 2: Execution Time Ratio Comparison

Iterations Existing Code (s) Our Python Code (s) Execution Time Ratio

100 4.5 0.00022 20454.5

200 11.73 0.00042 27928.57

300 21.56 0.00065 33169.23

6.2 Unit

we are using SI units in theses Example if we are using Degree instead of radians.

For Radians

lim
x→0

sin(x)

x
= 1

For Degree

lim
x→00

sin(x)

x
=

π

180

we can use calculator to prove this statement.Type A = 10−9 means save value of 10−9 to A. Calculate sinA
A . Type

B = −10−9 Calculate sinB
B

if limit exist then
sinA

A
=

sinB

B

. Left Limit = Right Limit

6



6.3 Reverse of limit

for radians

lim
sin(x)

x →1

x = 0

7 Conclusion

we can use this along with CUDA of nvidia GPU to accelerate machine learning task.we need machine learning project to

optimize algorithms by developing new mathematical tools. In short we can use Machine learning to find better mathematical

tools. It is also possible to extend permutations. This extension of permutation is called fractional permutations. Its

domain is also quaternions (4D numbers).we need to find high complexity mathematics to solve many problems in science

including quantum mechanics. since mathematics is language of science.if we have right mathematical tools we can make

hyper dimensional computer that computes in higher dimensions.using these tools we can boost simulations,video game

graphics etc. Use ai to find efficient algorithms. we don’t have math for highly complex systems like biology,sociology etc.

High complexity mathematics can solve high complexity problems like many body schrodinger equation,P VS NP problems.

in this paper we didn’t try to develop fractional permutations to solve problems in graph theory etc . we can develop

fractional permutations by using their properties to extend the domain. our method works eventhough Riemann-liouville

definition fails for other functions we can use this definition.

References

[1] Mehdi Dalir and Majid Bashour. Applications of fractional calculus. Applied Mathematical Sciences, 4(21):1021–1032,

2010.

[2] Joseph M Kimeu. Fractional calculus: Definitions and applications. 2009.

[3] Dennis G. Zill. Advanced Engineering Mathematics 6th Edition. 2017.

7


	Introduction
	Laplace Transform and Inconsistency of gamma function
	Euler form
	Recursive formula
	x

	Laplace transform
	Derivative of Transforms

	Fractional Differential Equation
	Gamma Function for variables
	Results and discussion
	Comparison
	Unit
	Reverse of limit

	Conclusion

