References
1. R. Hansen, J. Pascale, T. De Benedictis and P. Rentzepis, Effect of
atomic oxygen on polymers, J. Polym. Sci., Part A: Gen. Pap. ,
1965, 3 , 2205-2214.
2. D. H. Parker, M. E. Bartram and B. E. Koel, Study of high coverages
of atomic oxygen on the Pt (111) surface, Surf. Sci. , 1989,217 , 489-510.
3. T. Engel, The interaction of molecular and atomic oxygen with Si
(100) and Si (111), Surf. Sci. Rep. , 1993, 18 , 93-144.
4. T. S. Kim, J. Gong, R. A. Ojifinni, J. White and C. B. Mullins, Water
activated by atomic oxygen on Au (111) to oxidize CO at low
temperatures, J. Am. Chem. Soc. , 2006, 128 , 6282-6283.
5. N. A. Vinogradov, K. Schulte, M. L. Ng, A. Mikkelsen, E. Lundgren, N.
Martensson and A. Preobrajenski, Impact of atomic oxygen on the
structure of graphene formed on Ir (111) and Pt (111), J. Phys.
Chem. C , 2011, 115 , 9568-9577.
6. H. Li, H. Shang, F. Jiang, X. Zhu, Q. Ruan, L. Zhang and J. Wang,
Plasmonic O2 dissociation and spillover expedite selective oxidation of
primary C–H bonds, Chem. Sci. , 2021, 12 , 15308-15317.
7. F. Le Formal, N. Tétreault, M. Cornuz, T. Moehl, M. Grätzel and K.
Sivula, Passivating surface states on water splitting hematite
photoanodes with alumina overlayers, Chem. Sci. , 2011,2 , 737-743.
8. R. J. Kamire, M. B. Majewski, W. L. Hoffeditz, B. T. Phelan, O. K.
Farha, J. T. Hupp and M. R. Wasielewski, Photodriven hydrogen evolution
by molecular catalysts using Al2O3-protected perylene-3,4-dicarboximide
on NiO electrodes, Chem. Sci. , 2017, 8 , 541-549.
9. S. Chandrasekaran, N. Kaeffer, L. Cagnon, D. Aldakov, J. Fize, G.
Nonglaton, F. Baleras, P. Mailley and V. Artero, A robust ALD-protected
silicon-based hybrid photoelectrode for hydrogen evolution under aqueous
conditions, Chem. Sci. , 2019, 10 , 4469-4475.
10. F. Rahman and J. C. Runyon, Atomic layer processes for material
growth and etching—a review, IEEE T.SEMICONDUCT. M. , 2021,34 , 500-512.
11. S. Das, A. Sebastian, E. Pop, C. J. McClellan, A. D. Franklin, T.
Grasser, T. Knobloch, Y. Illarionov, A. V. Penumatcha and J.
Appenzeller, Transistors based on two-dimensional materials for future
integrated circuits, Nat. Electron. , 2021, 4 , 786-799.
12. Q. Liu, M. Ranocchiari and J. A. van Bokhoven, Catalyst overcoating
engineering towards high-performance electrocatalysis, Chem. Soc.
Rev. , 2022, 51 , 188-236.
13. X. Xu, T. Guo, H. Kim, M. K. Hota, R. S. Alsaadi, M. Lanza, X. Zhang
and H. N. Alshareef, Growth of 2D materials at the wafer scale,Adv. Mater. , 2022, 34 , 2108258.
14. US Pat., 4649273, 1987.
15. US Pat., 5681535, 1997.
16. C. Lee, D. Graves, M. Lieberman and D. Hess, Global model of plasma
chemistry in a high density oxygen discharge, J. Electrochem.
Soc. , 1994, 141 , 1546.
17. M. Naddaf, V. Bhoraskar, A. Mandale, S. Sainkar and S. Bhoraskar,
Characterization of atomic oxygen from an ECR plasma source,Plasma Sources Sci. Technol. , 2002, 11 , 361.
18. I. Korolov, D. Steuer, L. Bischoff, G. Hübner, Y. Liu, V. Schulz-Von
der Gathen, M. Böke, T. Mussenbrock and J. Schulze, Atomic oxygen
generation in atmospheric pressure RF plasma jets driven by tailored
voltage waveforms in mixtures of He and O2, J. Phys. D: Appl.
Phys. , 2021, 54 , 125203.
19. D. Katsube, S. Ohno, S. Takayanagi, S. Ojima, M. Maeda, N. Origuchi,
A. Ogawa, N. Ikeda, Y. Aoyagi and Y. Kabutoya, Oxidation of Anatase TiO2
(001) Surface Using Supersonic Seeded Oxygen Molecular Beam,Langmuir , 2021, 37 , 12313-12317.
20. E. Grossman, I. Gouzman, V. Viel-Inguimbert and M. Dinguirard,
Modification of a 5-eV atomic-oxygen laser detonation source, J.
Spacecr. Rockets , 2003, 40 , 110-113.
21. M. Tagawa, R. Okura, W. Ide, S. Horimoto, K. Ezaki, A. Fujita, K.
Shoda and K. Yokota, Laser-detonation hyperthermal beam source
applicable to VLEO environmental simulations, CEAS Space Journal ,
2021, DOI: 10.1007/s12567-021-00399-9, 1-9.
22. S. Duo, M. Li, Y. Zhang and Y. Zhou, A simulator for producing of
high flux atomic oxygen beam by using ECR plasma source, J. Mater.
Sci. Technol. , 2004, 20 , 759-762.
23. K. L. Wray, Shock‐Tube Study of the Coupling of the O2–Ar Rates of
Dissociation and Vibrational Relaxation, J. Chem. Phys. , 1962,37 , 1254-1263.
24. K. Koura, A set of model cross sections for the Monte Carlo
simulation of rarefied real gases: Atom–diatom collisions, Phys.
Fluids , 1994, 6 , 3473-3486.
25. W. Wagner, A convergence proof for Bird’s direct simulation Monte
Carlo method for the Boltzmann equation, J. Stat. Phys. , 1992,66 , 1011-1044.
26. B. L. Haas, D. B. Hash, G. A. Bird, F. E. Lumpkin III and H. A.
Hassan, Rates of thermal relaxation in direct simulation Monte Carlo
methods, Phys. Fluids , 1994, 6 , 2191-2201.
27. M. Gad-el-Hak, The fluid mechanics of microdevices—the Freeman
scholar lecture, J. Fluids Eng. , 1999, 121 , 29.
28. A. A. Alexeenko, S. F. Gimelshein and D. A. Levin, Reconsideration
of low Reynolds number flow-through constriction microchannels using the
DSMC method, J. Microelectromech. Syst. , 2005, 14 ,
847-856.
29. A. J. Lofthouse, L. C. Scalabrin and I. D. Boyd, Velocity slip and
temperature jump in hypersonic aerothermodynamics, J. Thermophys.
Heat Transfer , 2008, 22 , 38-49.
30. G. Bird, Comment on “Direct simulation Monte Carlo method for an
arbitrary intermolecular potential”[Phys. Fluids 24, 011703
(2012)], Phys. Fluids , 2013, 25 .
31. R. LMNO Engineering, and Software, Ltd, Gas Viscosity Calculator,https://www.lmnoeng.com/Flow/GasViscosity.php).
Table 1. The threshold kinetic energy required for
O2 dissociation in different collision-impact
trajectories. The symbol ”⊥” denotes that the direction of the
“bullet” is perpendicular to the O2 molecular axis and
hitting the middle of the O2 bond. The symbols “∥”and
“+” special cases denote an O2 “bullet” flying
towards a target O2 with their center-of-mass aligned
and respectively with their molecular axes parallel and perpendicular to
each other. The unit is eV.