References
1. R. Hansen, J. Pascale, T. De Benedictis and P. Rentzepis, Effect of atomic oxygen on polymers, J. Polym. Sci., Part A: Gen. Pap. , 1965, 3 , 2205-2214.
2. D. H. Parker, M. E. Bartram and B. E. Koel, Study of high coverages of atomic oxygen on the Pt (111) surface, Surf. Sci. , 1989,217 , 489-510.
3. T. Engel, The interaction of molecular and atomic oxygen with Si (100) and Si (111), Surf. Sci. Rep. , 1993, 18 , 93-144.
4. T. S. Kim, J. Gong, R. A. Ojifinni, J. White and C. B. Mullins, Water activated by atomic oxygen on Au (111) to oxidize CO at low temperatures, J. Am. Chem. Soc. , 2006, 128 , 6282-6283.
5. N. A. Vinogradov, K. Schulte, M. L. Ng, A. Mikkelsen, E. Lundgren, N. Martensson and A. Preobrajenski, Impact of atomic oxygen on the structure of graphene formed on Ir (111) and Pt (111), J. Phys. Chem. C , 2011, 115 , 9568-9577.
6. H. Li, H. Shang, F. Jiang, X. Zhu, Q. Ruan, L. Zhang and J. Wang, Plasmonic O2 dissociation and spillover expedite selective oxidation of primary C–H bonds, Chem. Sci. , 2021, 12 , 15308-15317.
7. F. Le Formal, N. Tétreault, M. Cornuz, T. Moehl, M. Grätzel and K. Sivula, Passivating surface states on water splitting hematite photoanodes with alumina overlayers, Chem. Sci. , 2011,2 , 737-743.
8. R. J. Kamire, M. B. Majewski, W. L. Hoffeditz, B. T. Phelan, O. K. Farha, J. T. Hupp and M. R. Wasielewski, Photodriven hydrogen evolution by molecular catalysts using Al2O3-protected perylene-3,4-dicarboximide on NiO electrodes, Chem. Sci. , 2017, 8 , 541-549.
9. S. Chandrasekaran, N. Kaeffer, L. Cagnon, D. Aldakov, J. Fize, G. Nonglaton, F. Baleras, P. Mailley and V. Artero, A robust ALD-protected silicon-based hybrid photoelectrode for hydrogen evolution under aqueous conditions, Chem. Sci. , 2019, 10 , 4469-4475.
10. F. Rahman and J. C. Runyon, Atomic layer processes for material growth and etching—a review, IEEE T.SEMICONDUCT. M. , 2021,34 , 500-512.
11. S. Das, A. Sebastian, E. Pop, C. J. McClellan, A. D. Franklin, T. Grasser, T. Knobloch, Y. Illarionov, A. V. Penumatcha and J. Appenzeller, Transistors based on two-dimensional materials for future integrated circuits, Nat. Electron. , 2021, 4 , 786-799.
12. Q. Liu, M. Ranocchiari and J. A. van Bokhoven, Catalyst overcoating engineering towards high-performance electrocatalysis, Chem. Soc. Rev. , 2022, 51 , 188-236.
13. X. Xu, T. Guo, H. Kim, M. K. Hota, R. S. Alsaadi, M. Lanza, X. Zhang and H. N. Alshareef, Growth of 2D materials at the wafer scale,Adv. Mater. , 2022, 34 , 2108258.
14. US Pat., 4649273, 1987.
15. US Pat., 5681535, 1997.
16. C. Lee, D. Graves, M. Lieberman and D. Hess, Global model of plasma chemistry in a high density oxygen discharge, J. Electrochem. Soc. , 1994, 141 , 1546.
17. M. Naddaf, V. Bhoraskar, A. Mandale, S. Sainkar and S. Bhoraskar, Characterization of atomic oxygen from an ECR plasma source,Plasma Sources Sci. Technol. , 2002, 11 , 361.
18. I. Korolov, D. Steuer, L. Bischoff, G. Hübner, Y. Liu, V. Schulz-Von der Gathen, M. Böke, T. Mussenbrock and J. Schulze, Atomic oxygen generation in atmospheric pressure RF plasma jets driven by tailored voltage waveforms in mixtures of He and O2, J. Phys. D: Appl. Phys. , 2021, 54 , 125203.
19. D. Katsube, S. Ohno, S. Takayanagi, S. Ojima, M. Maeda, N. Origuchi, A. Ogawa, N. Ikeda, Y. Aoyagi and Y. Kabutoya, Oxidation of Anatase TiO2 (001) Surface Using Supersonic Seeded Oxygen Molecular Beam,Langmuir , 2021, 37 , 12313-12317.
20. E. Grossman, I. Gouzman, V. Viel-Inguimbert and M. Dinguirard, Modification of a 5-eV atomic-oxygen laser detonation source, J. Spacecr. Rockets , 2003, 40 , 110-113.
21. M. Tagawa, R. Okura, W. Ide, S. Horimoto, K. Ezaki, A. Fujita, K. Shoda and K. Yokota, Laser-detonation hyperthermal beam source applicable to VLEO environmental simulations, CEAS Space Journal , 2021, DOI: 10.1007/s12567-021-00399-9, 1-9.
22. S. Duo, M. Li, Y. Zhang and Y. Zhou, A simulator for producing of high flux atomic oxygen beam by using ECR plasma source, J. Mater. Sci. Technol. , 2004, 20 , 759-762.
23. K. L. Wray, Shock‐Tube Study of the Coupling of the O2–Ar Rates of Dissociation and Vibrational Relaxation, J. Chem. Phys. , 1962,37 , 1254-1263.
24. K. Koura, A set of model cross sections for the Monte Carlo simulation of rarefied real gases: Atom–diatom collisions, Phys. Fluids , 1994, 6 , 3473-3486.
25. W. Wagner, A convergence proof for Bird’s direct simulation Monte Carlo method for the Boltzmann equation, J. Stat. Phys. , 1992,66 , 1011-1044.
26. B. L. Haas, D. B. Hash, G. A. Bird, F. E. Lumpkin III and H. A. Hassan, Rates of thermal relaxation in direct simulation Monte Carlo methods, Phys. Fluids , 1994, 6 , 2191-2201.
27. M. Gad-el-Hak, The fluid mechanics of microdevices—the Freeman scholar lecture, J. Fluids Eng. , 1999, 121 , 29.
28. A. A. Alexeenko, S. F. Gimelshein and D. A. Levin, Reconsideration of low Reynolds number flow-through constriction microchannels using the DSMC method, J. Microelectromech. Syst. , 2005, 14 , 847-856.
29. A. J. Lofthouse, L. C. Scalabrin and I. D. Boyd, Velocity slip and temperature jump in hypersonic aerothermodynamics, J. Thermophys. Heat Transfer , 2008, 22 , 38-49.
30. G. Bird, Comment on “Direct simulation Monte Carlo method for an arbitrary intermolecular potential”[Phys. Fluids 24, 011703 (2012)], Phys. Fluids , 2013, 25 .
31. R. LMNO Engineering, and Software, Ltd, Gas Viscosity Calculator,https://www.lmnoeng.com/Flow/GasViscosity.php).
Table 1. The threshold kinetic energy required for O2 dissociation in different collision-impact trajectories. The symbol ”⊥” denotes that the direction of the “bullet” is perpendicular to the O2 molecular axis and hitting the middle of the O2 bond. The symbols “∥”and “+” special cases denote an O2 “bullet” flying towards a target O2 with their center-of-mass aligned and respectively with their molecular axes parallel and perpendicular to each other. The unit is eV.