References
1. Seto, W.-K., Lo, Y.-R., Pawlotsky, J.-M. & Yuen, M.-F. Chronic
hepatitis B virus infection. Lancet (London, England)392 , 2313–2324 (2018).
2. Mendenhall, M. A., Hong, X. & Hu, J. Hepatitis B Virus Capsid: The
Core in Productive Entry and Covalently Closed Circular DNA Formation.Viruses 15 , 642 (2023).
3. Seeger, C. & Mason, W. S. Molecular biology of hepatitis B virus
infection. Virology 479 –480 , 672–686 (2015).
4. Boyd, A. et al. Decay of ccc-DNA marks persistence of
intrahepatic viral DNA synthesis under tenofovir in HIV-HBV co-infected
patients. J. Hepatol. 65 , 683–691 (2016).
5. Lai, C.-L. et al. Reduction of covalently closed circular DNA
with long-term nucleos (t) ide analogue treatment in chronic hepatitis
B. J. Hepatol. 66 , 275–281 (2017).
6. Kostyusheva, A., Kostyushev, D., Brezgin, S., Volchkova, E. &
Chulanov, V. Clinical Implications of Hepatitis B Virus RNA and
Covalently Closed Circular DNA in Monitoring Patients with Chronic
Hepatitis B Today with a Gaze into the Future: The Field Is Unprepared
for a Sterilizing Cure. Genes vol. 9 at
https://doi.org/10.3390/genes9100483 (2018).
7. Kostyushev, D. et al. Depleting hepatitis B virus relaxed
circular DNA is necessary for resolution of infection by CRISPR-Cas9.Mol. Ther. Acids 31 , 482–493 (2023).
8. Guo, F. et al. HBV core protein allosteric modulators
differentially alter cccDNA biosynthesis from de novo infection and
intracellular amplification pathways. PLoS Pathog. 13 ,
e1006658 (2017).
9. Tang, L., Sheraz, M., McGrane, M., Chang, J. & Guo, J.-T. DNA
Polymerase alpha is essential for intracellular amplification of
hepatitis B virus covalently closed circular DNA. PLoS Pathog.15 , e1007742 (2019).
10. Ko, C. et al. Hepatitis B virus (HBV) genome recycling and de
novo secondary infection events maintain stable cccDNA levels. J.
Hepatol. (2018).
11. Chulanov, V. P. et al. [Hepatitis C can be cured: will
hepatitis B become next?]. Ter. Arkh. 89 , 4–13
(2017).
12. Allweiss, L. et al. Therapeutic shutdown of HBV transcripts
promotes reappearance of the SMC5/6 complex and silencing of the viral
genome in vivo. Gut 71 , 372–381 (2022).
13. Martinez, M. G. et al. CRISPR-Cas9 Targeting of Hepatitis B
Virus Covalently Closed Circular DNA Generates Transcriptionally Active
Episomal Variants. MBio 13 , e0288821 (2022).
14. Kostyushev, D. et al. Orthologous CRISPR/Cas9 systems for
specific and efficient degradation of covalently closed circular DNA of
hepatitis B virus. Cell. Mol. Life Sci. (2019)
doi:10.1007/s00018-019-03021-8.
15. Kostyushev, D. et al. Suppressing the NHEJ pathway by
DNA-PKcs inhibitor NU7026 prevents degradation of HBV cccDNA cleaved by
CRISPR/Cas9. Sci. Rep. 9 , 1847 (2019).
16. Kostyusheva, A. P. et al. Small Molecular Inhibitors of DNA
Double Strand Break Repair Pathways Increase the ANTI-HBV Activity of
CRISPR/Cas9. Mol. Biol. 53 , 274–285 (2019).
17. Lucifora, J. et al. Specific and Nonhepatotoxic Degradation
of Nuclear Hepatitis B Virus cccDNA. Science (80-. ).343 , 1221–1228 (2014).
18. Brezgin, S. et al. Immunity and Viral Infections: Modulating
Antiviral Response via CRISPR–Cas Systems. Viruses 13 ,
1373 (2021).
19. Brezgin, S. et al. Clearing of Foreign Episomal DNA from
Human Cells by CRISPRa-Mediated Activation of Cytidine Deaminases.Int. J. Mol. Sci. 21 , 6865 (2020).
20. Alonso de la Vega, A. et al. Acute expression of human
APOBEC3B in mice results in RNA editing and lethality. Genome
Biol. 24 , 267 (2023).
21. Roberts, S. A. et al. An APOBEC cytidine deaminase
mutagenesis pattern is widespread in human cancers. Nat. Genet.45 , 970 (2013).
22. Pecori, R., Di Giorgio, S., Paulo Lorenzo, J. & Nina Papavasiliou,
F. Functions and consequences of AID/APOBEC-mediated DNA and RNA
deamination. Nat. Rev. Genet. 23 , 505–518 (2022).
23. Brezgin, S. et al. Replenishment of Hepatitis B Virus cccDNA
Pool Is Restricted by Baseline Expression of Host Restriction Factors In
Vitro. Microorganisms 7 , 533 (2019).
24. Noguchi, C. et al. G to A hypermutation of hepatitis B virus.Hepatology 41 , 626–633 (2005).
25. Rösler, C. et al. APOBEC‐mediated interference with
hepadnavirus production. Hepatology 42 , 301–309 (2005).
26. Turelli, P., Mangeat, B., Jost, S., Vianin, S. & Trono, D.
Inhibition of hepatitis B virus replication by APOBEC3G. Science
(80-. ). 303 , 1829 (2004).
27. Nguyen, D. H., Gummuluru, S. & Hu, J. Deamination-independent
inhibition of hepatitis B virus reverse transcription by APOBEC3G.J. Virol. 81 , 4465–4472 (2007).
28. Chen, Z. et al. APOBEC3-induced mutation of the hepatitis
virus B DNA genome occurs during its viral RNA reverse transcription
into (−)-DNA. J. Biol. Chem. 297 , (2021).
29. Chowdhury, S., Kitamura, K., Simadu, M., Koura, M. & Muramatsu, M.
Concerted action of activation-induced cytidine deaminase and uracil-DNA
glycosylase reduces covalently closed circular DNA of duck hepatitis B
virus. FEBS Lett. 587 , 3148–3152 (2013).
30. Faure-Dupuy, S. et al. Control of APOBEC3B induction and
cccDNA decay by NF-κB and miR-138-5p. JHEP reports 3 ,
100354 (2021).
31. Kostyushev, D. et al. Transient and tunable CRISPRa
regulation of APOBEC/AID genes for targeting hepatitis B virus.Mol. Ther. Acids 32 , 478–493 (2023).
32. Xia, Y. et al. Interferon-gamma and Tumor Necrosis
Factor-alpha Produced by T Cells Reduce the HBV Persistence Form,
cccDNA, Without Cytolysis. Gastroenterology 150 ,
194–205 (2016).
33. Bockmann, J.-H. et al. Comparative Analysis of the Antiviral
Effects Mediated by Type I and III Interferons in Hepatitis B
Virus–Infected Hepatocytes. J. Infect. Dis. 220 ,
567–577 (2019).
34. Brezgin, S., Kostyusheva, A., Kostyushev, D. & Chulanov, V. Dead
Cas Systems: Types, Principles, and Applications. Int. J. Mol.
Sci. 20 , 6041 (2019).
35. Kostyushev, D., Kostyusheva, A., Ponomareva, N., Brezgin, S. &
Chulanov, V. CRISPR/Cas and Hepatitis B Therapy: Technological Advances
and Practical Barriers. Nucleic Acid Ther. 32 , 14–28
(2022).
36. Klann, T. S. et al. CRISPR-Cas9 epigenome editing enables
high-throughput screening for functional regulatory elements in the
human genome. Nat. Biotechnol. 35 , 561+ (2017).
37. Wang, K. et al. Systematic comparison of CRISPR-based
transcriptional activators uncovers gene-regulatory features of
enhancer-promoter interactions. Nucleic Acids Res. 50 ,
7842–7855 (2022).
38. Wieland, S. F. & Chisari, F. V. Stealth and cunning: hepatitis B
and hepatitis C viruses. J. Virol. 79 , 9369–9380
(2005).
39. Mutz, P. et al. HBV Bypasses the Innate Immune Response and
Does Not Protect HCV From Antiviral Activity of Interferon.Gastroenterology 154 , 1791-1804.e22 (2018).
40. Lang, T. et al. The hepatitis B e antigen (HBeAg) targets and
suppresses activation of the toll-like receptor signaling pathway.J. Hepatol. 55 , 762–769 (2011).
41. Christen, V. et al. Inhibition of alpha interferon signaling
by hepatitis B virus. J. Virol. 81 , 159–165 (2007).
42. Lucifora, J. et al. Specific and nonhepatotoxic degradation
of nuclear hepatitis B virus cccDNA. Science (80-. ).343 , 1221–1228 (2014).
43. Seeger, C. & Sohn, J. A. Complete Spectrum of CRISPR/Cas9-induced
Mutations on HBV cccDNA. Mol. Ther. 24 , 1258–1266
(2016).
44. Nair, S. & Zlotnick, A. Asymmetric Modification of Hepatitis B
Virus (HBV) Genomes by an Endogenous Cytidine Deaminase inside HBV Cores
Informs a Model of Reverse Transcription. J. Virol. 92 ,
(2018).
45. Riedl, T. et al. Hypoxia-Inducible Factor 1 Alpha-Mediated
RelB/APOBEC3B Down-regulation Allows Hepatitis B Virus Persistence.Hepatology 74 , 1766–1781 (2021).
46. Brezgin, S. A. et al. HBx Protein Potentiates Hepatitis B
Virus Reactivation. Mol. Biol. 56 , 713–722 (2022).
47. Chen, J. & MacCarthy, T. The preferred nucleotide contexts of the
AID/APOBEC cytidine deaminases have differential effects when mutating
retrotransposon and virus sequences compared to host genes. PLoS
Comput. Biol. 13 , e1005471 (2017).
48. Fu, Y. et al. DNA cytosine and methylcytosine deamination by
APOBEC3B: enhancing methylcytosine deamination by engineering APOBEC3B.Biochem. J. 471 , 25–35 (2015).
49. Larijani, M. et al. Methylation protects cytidines from
AID-mediated deamination. Mol. Immunol. 42 , 599–604
(2005).
50. Schutsky, E. K., Nabel, C. S., Davis, A. K. F., DeNizio, J. E. &
Kohli, R. M. APOBEC3A efficiently deaminates methylated, but not
TET-oxidized, cytosine bases in DNA. Nucleic Acids Res.45 , 7655–7665 (2017).
51. Lai, C.-L. et al. A one-year trial of lamivudine for chronic
hepatitis B. N. Engl. J. Med. 339 , 61–68 (1998).
52. Yuen, M.-F. et al. Efficacy and safety of the siRNA
JNJ-73763989 and the capsid assembly modulator JNJ-56136379
(bersacapavir) with nucleos (t) ide analogues for the treatment of
chronic hepatitis B virus infection (REEF-1): a multicentre,
double-blind, active-controlled, r. Lancet Gastroenterol.
Hepatol. 8 , 790–802 (2023).
53. Lai, C. L. & Yuen, M. F. Profound suppression of hepatitis B virus
replication with lamivudine. J. Med. Virol. 61 , 367–373
(2000).
54. Hui, R. W.-H., Mak, L.-Y., Seto, W.-K. & Yuen, M.-F. RNA
interference as a novel treatment strategy for chronic hepatitis B
infection. Clin. Mol. Hepatol. 28 , 408–424 (2022).
55. Qiao, Y. et al. TGF-beta triggers HBV cccDNA degradation
through AID-dependent deamination. FEBS Lett. 590 ,
419–427 (2016).
56. Roberts, S. A. et al. An APOBEC cytidine deaminase
mutagenesis pattern is widespread in human cancers. Nat. Genet.45 , 970 (2013).
57. Ferrari, C. HBV and the immune response. Liver Int.35 , 121–128 (2015).
58. Kuipery, A., Gehring, A. J. & Isogawa, M. Mechanisms of HBV immune
evasion. Antiviral Res. 179 , 104816 (2020).
59. Jalili, P. et al. Quantification of ongoing APOBEC3A activity
in tumor cells by monitoring RNA editing at hotspots. Nat.
Commun. 11 , 2971 (2020).
60. Yang, Y.-C. et al. Permanent inactivation of HBV genomes by
CRISPR/Cas9-mediated non-cleavage base editing. Mol. Ther. Acids(2020).
61. Eid, A., Alshareef, S. base editors: G. editing without
double-stranded breaks & Mahfouz, M. M. CRISPR base editors: Genome
editing without double-stranded breaks. Biochem. J. 475 ,
1955–1964 (2018).
62. Zhang, Y. et al. CRISPR-mediated activation of endogenous
BST-2/tetherin expression inhibits wild-type HIV-1 production.Sci. Rep. 9 , (2019).
63. Bogerd, H. P., Kornepati, A. V. R., Marshall, J. B., Kennedy, E. M.
& Cullen, B. R. Specific induction of endogenous viral restriction
factors using CRISPR/Cas-derived transcriptional activators. Proc.
Natl. Acad. Sci. U. S. A. 112 , E7249–E7256 (2015).
64. Wooddell, C. I. et al. Hepatocyte-targeted RNAi therapeutics
for the treatment of chronic hepatitis B virus infection. Mol.
Ther. 21 , 973–985 (2013).
65. Labun, K. et al. CHOPCHOP v3: expanding the CRISPR web
toolbox beyond genome editing. Nucleic Acids Res. 47 ,
W171–W174 (2019).
66. Cai, D. et al. A southern blot assay for detection of
hepatitis B virus covalently closed circular DNA from cell cultures.Methods Mol. Biol. 1030 , 151–161 (2013).