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Abstract

The suprachiasmatic nucleus (SCN) is the master clock that orchestrates circadian
clocks across the body to synchronize with and anticipate the earth’s light/dark
cycles. Although post-transcriptional regulators called microRNAs have been
implicated in physiological SCN function, how the absence of the entire mature
miRNome impacts SCN output has not yet been explored. Here, we have generated
an SCN-specific Dicer knockout mouse model by crossing Syt10¢® mice with
Dicer™ mice to study behavioral consequences of miRNA depletion in the SCN. We
show that loss of all mature miRNAs in the SCN shortens the circadian period length
by ~40 minutes at the tissue level, and by ~50 minutes at the locomotor activity level.
Knockout animals also showed arrythmicity or ultradian locomotor activities with no
light masking under constant light, a condition which usually caused lengthening of
the circadian period length and reduced activities, i.e. light masking, in nocturnal
animals. Moreover, induction of Dicer knockout by Cre injection into the SCN of
adult Dicer™ mice eventually resulted in loss of behavioral rhythms. Finally, we
show suggestive evidence that SCN desynchronization might be one mechanism
underlying the behavioral phenotypes of SCN-specific Dicer knockout animals.

Introduction

Circadian rhythmicity relies on a hierarchical system of clocks coordinated by a
master clock residing in the brain region called the suprachiasmatic nucleus (SCN)'.
This small nucleus lies just above the optic chiasm, and receives direct photic
information from the ganglion cells of the retina2. The master clock then
orchestrates peripheral clocks throughout the organism to synchronize with the
environment>4. At the organismal levels, the circadian clocks exert their function on
vital behaviors such as sleep/wake cycles, and feeding/fasting rnythms*. At the
molecular level, the output of all autonomous clocks is rhythmic gene expression
with a period of about 24 hours®. Interestingly, a large proportion of the
transcriptome, ~43% in mouse®, 44% in human’, and 82% in primate?, is rhythmically
expressed somewhere in the body.

Circadian gene expression originates not only from circadian transcription, but also
from circadian post-transcriptional and post-translational mechanisms®'. A recent
meta-analysis and modeling approach estimated that 30% of circadian transcripts
are regulated post-transcriptionally in mouse liver''. Among the known post-
transcriptional mechanisms, the short (19-25 nucleotides) non-coding RNA
molecules coined microRNAs (miRNAs) play a crucial role in shaping the dynamics
of gene expression, by regulating both mRNA degradation and translation of a
multitude of target genes. There are more than 1000 miRNA genes in the human
genome that target up to 60% or protein coding genes'>'3, with one miRNA targeting
from a dozen to hundreds of MRNA targets'®. In the last two decades, miRNAs have
emerged as important players in regulating all kinds of biological processes,
including circadian rhythms, from the molecular to the behavioral level.
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The involvement of miRNAs in circadian oscillations has been reported in cell lines'®,
in peripheral tissues'®, as well as in the SCN'"-'8, However, most studies focus on
the role of an individual miRNA in a specific context. Informative as it may be, this
approach often cannot showcase the magnitude of miRNA influence on a biological
system. We previously demonstrated a comprehensive view of miRNA regulation of
the hepatic transcriptome employing a genetic mouse model in which miRNA
biosynthesis was inactivated (liver-specific Dicer knockout)'®. In our hands, miRNAs
played an essential role in adjusting the phase and amplitude of 30% of the circadian
transcriptome in mouse liver.

To study the roles of mMiRNA ensemble in shaping the function of the master clock,
we have now extended the use of tissue-specific Dicer knockout model from the liver
to the SCN. We report here that the SCN-specific Dicer knockout variably altered
both tissue and behavioral circadian period length in two different mouse models.
We also provide suggestive evidence that should be taken into consideration in
future investigations of the molecular mechanisms underlying the behavioral
phenotypes.

Materials and Methods
Animals

All animal experiments were performed according to the cantonal guidelines of either
the Canton of Vaud, Switzerland, license 2376.1, or the Canton of Zurich,
Switzerland, license 060/2017. Animals were allowed to access food and water ad
libitum under a 12:12-hr light dark (LD) cycle, unless otherwise stated. Dicer™ mice
(IMSR_JAX:006366) were gift from Professor David Gatfield'®, Syt70¢ knock-in
mice (MGI:5286607) were gift from Dr. Henrik Oster?°, Period2::Luciferase
(Per2::Luc) knock-in mice (MGI:3040876) were gift from Dr. Joseph Takahashi?'.
Genotype of the animals were examined by PCR as described in the original
publication of each mouse strain. Due to the expression of Syt70 in the testis, males
homozygous for Syt10°" should not be used for mating. Male of genotype Dicer
flox/flox; Syt10¢™ +/+ were crossed with female Dicer flox/flox; Syt10¢" Kl/+ to create
knockout of genotype Dicer flox/flox; Syt10¢ Kl/+ and control of genotype Dicer
flox/flox; Syt10¢™ +/+. Animals aged between 2-6 months were used for the
experiments. Litter mates or animals of similar ages were used for the same
experimental conditions.

Genotyping

Polymerase chain reaction (PCR) was used for genomic DNA extracted from either
the tail, ear or olfactory bulb to genotype each tissue or animal. To genotype alleles
of Dicer, the following two primers were used: DicerR1,
AAACATGACTCTTCAACTCAAACTCAAACG, and DicerF1,
AATATTAATCCTGACAGTGACGGTCCAAAG. To confirm deletion of exon 23,
primer DicerF1 and DicerDel, GGGCAGCCCCATCTCAAAGGCCTACCTGAG were
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used. To genotype alleles of Syt10, the following three primers were used: Syt10 F,
AGACCTGGCAGCAGCGTCCGTTGG; Syt10 R,
AAGATAAGCTCCAGCCAGGAAGTC; Syt10 K,
GGCGAGGCAGGCCAGATCTCCTGTG. To genotype alleles of Per2::Luc, the
following three primers were used: P1, CTGTGTTTACTGCGAGAGT; P2,
GGGTCCATGTGATTAGAAAC; P3, TAAAACCGGGAGGTAGATGAGA.

Tissue explants and bioluminescence recording and analysis

Dicer™x; Syt10°® mice were crossed to Per2::Luc mice for bioluminescence
recording of tissue explants. To prepare tissue explants, animals were sacrificed,
and each tissue was collected into ice-cold HBSS (Cat# 14025, Life Technologies,
CA) with 10 mM Hepes (Cat# H0887, Sigma, MO). For SCN and pituitary, brains
were sliced at 300 um interval with a McILWAIN Tissue Chopper, and each area was
isolated separately in ice-cold HBSS buffer with Hepes. For kidney, liver, tail and
lung, pieces of tissues were sliced at 300 um interval. Each tissue explant was
cultured on either millicell (#PICMORG, Merckmillipore, MA) or a piece of hydrophilic
PTFE-membrane (#BGCM00010, Merckmillipore, MA) submerged with DMEM (Cat#
D2902, Sigma, MO) with 0.035 % Sodium bicarbonate (Cat# S8761, Sigma, MO), 10
mM Hepes (Cat# H0887, Sigma, MO), 4.5 g/L D-glucose (Cat# G8769, Sigma, MO),
1.0 % Penicillin-Streptomycin (Cat# 15070-063 , Life Technologies, CA), 2% B27
(Cat# 17504044, Gibco) and 0.1 mM D-Luciferin (Promega, WI). Circadian
bioluminescence was recorded with photomultiplier tubes (PMTs) every 48 mins at
34.5 °C with 5% COz2. To assess period length of the bioluminescence ex vivo, the
original data were subtracted with 24-hr running average and sinusoidal curve fitting
was applied using Lumicycle analysis software (Actimetrics).

Locomotor activity recordings and analysis

Mice were individually housed in cages containing running wheels, or with infrared
detectors as indicated, with ad libitum access to food and water. Data was collected
and analyzed using ClockLab software (Actimetrics). For jetlag experiment, onset
was extracted using ClockLab software, and the phase shift half time, defined as the
time at which half the phase shift was completed was extracted using drda R
package??.

Immunohistochemistry

Animals were deeply anaesthetized with Pentobarbital and intracardially perfused
with 10 ml of ice-cold saline, followed by 20 ml of ice-cold 4% paraformaldehyde /
0.1 M phosphate buffer (PB, pH 7.4). Brains were collected and post fixed in 4%
paraformaldehyde with 0.1 M PB for overnight at 4 °C followed by cryoprotection in
20% sucrose / 0.1 M PB for 48 hrs at 4 °C. The brains were sectioned by 30 um with
cryostat at -17 °C and washed in 0.1 M PB at room temperature. The sections were
treated with 5% goat serum, incubated either with or without 1:1000 primary antibody

4
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(a-Vip (Cat# T-4246, Peninsula laboratories, RRID: AB_518682) with 2% NGS in
PBS with 0.05% Triton (PBS-Triton), rinsed in PBS and PBS-Triton, incubated with
1:1000 secondary antibody (Goat a-Rabbit IgG labelled with Cy3, Cat# ab6939,
abcam, RRID: AB_955021) with 2% NGS in PBS-Triton, and then rinsed in PBS and
PBS-Triton. The sections were mounted onto gelatin-coated microscope slides, air-
dried, and dehydrated with Fluoromount™ Aqueous Mounting Medium (Cat# S3023,
Dako). Fluorescent images were obtained with a widefield microscope Apotome
(Zeiss, Germany).

Multi-electrode recordings and analysis

Mice were sacrificed and brains were quickly removed at ZT2 (ZTO0 is light on time,
ZT12 is light off time). Brains were sliced coronally with the vibratome (#7000smz-2,
Campden Instruments) by 300 um in ice cold artificial cerebro-spinal fluid (ACSF, in
mM: NaCl 95; KCI 1.8; KH2PO4 1.2; CaClz 0.5; MgSO4 7; NaHCOs3 26; glucose 15;
sucrose 50; oxygenated with 95% Oz2; 5% COz2; pH 7.4, measured osmolarity 310
mosmol kg-1). After 30 minutes incubation, a 300um slice containing the SCN was
placed on a 60pMEA100/30iR-Ti-gr perforated array (Multi Channel Systems).
Slices were positioned so that the entire SCN was in contact with the electrode
region of the array, and kept in place with a weight, with suction from underneath to
maximize contact between the slice and the electrodes. Oxygenated ACSF at 34°C
ran continuously through the MEA chamber for the duration of the experiment
(1.2ml/min inflow / 17ml/min outflow + gravity flow inflow/suction outflow at 65). Field
potential was detected by the MEA at 20,000 Hz using Multi-Channel Experimenter
(Multi Channel Systems). Data was recorded every 30 minutes. Because of the
large file size, recordings were limited to 10 minutes at the beginning of each 30
minutes for the duration of the experiment. Data were analyzed using Offline Sorter
(Plexon) as follows: files were run through a butterworth high pass filter at 300 Hz
and ‘spikes’ were detected using a threshold of + 4 Standard Deviations. For each
spike the waveform was analyzed and a unit assigned to each unique waveform
detected from an individual electrode using the Valley Seeking spike sorting
algorithm. Spikes were distinguished from noise by waveform. Data were analyzed
using NeuroExplorer v5. Only spikes with mean frequency > 0.5 Hz were used.

Injection of AAV constructs expressing hSyn-Cre in the SCN

Male Dicer™* mice (12-16 weeks old) were stereotactically (Kopf Instruments, CA,
USA) injected under isofluorane anesthesia, bilaterally at the SCN (ML= £ 0.18 mm;
AP=0.46 mm; DV= 5.8 mm; relative to bregma). The following viruses were injected
at a volume of 300 nl with a rate of 150 nl/min: For knockouts (n=6), ssAAV9/2-
hSyn1-chl-mCherry_2A_iCre-WPRE-SV40p(A) (UZH Vector Core, 7.9x10" viral
particles/ml; iCre: Addgene #24593) and for controls (n=7), ssAAV9/2-hSyn1-chl-
mCherry-WPRE-SV40p(A) (UZH Vector Core, 4.8x10'? viral particles/ml). Post-
surgery, mice were returned to the housing cage, and allowed to recover. After the
passage of three weeks to ensure recombination and adequate expression of the
AAV constructs, locomotor activity (using running wheel) was recorded under various
light-dark conditions. Following the completion of the experiment, mice were

5
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perfused with 4% paraformaldehyde (PFA), their brains extracted, and sites of
injection were confirmed through mCherry expression with confocal microscopy.
Mistargeted animals were excluded from further analyses.

Results
Generation of SCN-specific miRNA depletion mouse model

To study the function of miRNAs in the SCN, we generated a mouse model in which
miRNA biogenesis is inactivated in the majority of the SCN cells. We bred mice
carrying conditional knockout alleles for the Dicer1 gene (referred to as Dicer™ in
the following), and mice carrying Cre recombinase cDNA inserted into the
Synaptotagmin 10 locus (referred to as Syt10°®), a gene strongly expressed in the
SCN?°, and obtained Dicerx; Syt10° mice, called here SCN-specific Dicer
knockout (KO) mice. Due to the small size of the SCN and potential contamination
from surrounding tissues that limits its use in PCR analysis, the olfactory bulb, which
also expresses Syt10, was used for PCR analysis to confirm successful
recombination at the Dicer™* locus (Figure S1). PCR analysis of the ear showed no
detection of the recombined allele as expected.

SCN-specific Dicer knockout showed shorter free-running period with variable onsets

We found that knockout animals had shorter free-running period than control animals
(Figure 1, knockout mean = 22.93 h, control mean = 23.78 h, tweich(9.23) = 5.33, p =
4.35e-04). Knockout animals also reentrained almost immediately to a new light-
dark cycle after 6 h phase advance (Figure 2A, C). Analysis of the phase shift half
time, i.e. time required to reach half of the phase shift, showed that knockout animals
required only 0.63 £+ 0.60 days while controls required 2.37 £ 0.25 days to reach 3h
phase shift. There was a tendency of faster re-entrainment to 6 h phase delay in
knockout animals vs controls (Figure 2B, D). The delay phase shift half time was
0.31 £ 0.57 days and 0.76 £ 0.08 days for knockouts and controls, respectively. The
high variation for knockouts in the phase delay experiments was due to low mouse
number. It is noticeable that the standard deviation of phase shift half time was
higher in knockout than that in controls, due to apparently variable activity onsets, for
which we quantified further below.

We found that knockouts showed activity onsets that were different to light-off time
by 31.9 + 12.1 minutes, while controls showed only 7.3 £ 5.2 minutes activity onset
differences (Figure 3A, ttest p = 8.2e-05). For the knockout animals, the differences
were mostly due to earlier wake-up while there were also occasions where the
animals showed activity onset after the light-off time. In addition to the less precise
activity onset time, knockout animals showed larger variation in their activity onsets
compared to control animals. Under LD = 12:12, the standard deviation of onset
time was 44.1 + 20.3 minutes for knockouts and 6.1 + 3.1 minutes for controls
(Figure 3B, ttest p = 4.4e-05). Since running wheel might change the animals’
behaviors, we measured onset in another cohort of animals using infrared detector
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(Figure 3C, Figure S2). In spite of the difference in the devices, we found again that
knockout animals showed larger standard deviation of 43.6 £ 7.0 minutes in their
activity onsets, compared to 16.0 + 8.4 minutes for controls (Figure 3C, ttestp =
1.4e-04). The large standard deviation in activity onsets of knockouts was consistent
with all tested 24-hour period light-dark conditions with different day length (Figure
4). Reasoning that shorter period length of knockout animals might enable easier
entrainment to shorter environmental cycles, we measured activity onset under LD =
11:11. Indeed, knockout animals showed smaller onset variation than controls
(Figure 3D, knockout = 0.97 + 0.34 h, control = 2.35 + 1.12 h, ttest p = 0.038).

These results suggest that, due to the shorter internal period length, it was more
challenging for knockout animals to get entrained to the light/dark cycles of 24 hours.
However, we cannot rule out that larger onset variation is due to defects in SCN
synchrony. Therefore, we next investigated knockout behaviors under conditions
that challenge SCN synchrony.

Lack of miRNAs in the SCN caused arrhythmicity and lack of light masking under
constant light condition

Since constant light condition (LL) has long been used to disrupt circadian rhythms?3,
mice lacking Dicer in their SCN were recorded under LL condition (Figure 5). We
observed that control animals under LL exhibited longer period length for the
duration tested (Figure 5B), whereas knockout animals showed arrhythmicity or
ultradian rhythms (Figure 5A). Unlike control animals, knockout animals did not
show light masking, i.e. reduced activities under constant light condition observed in
nocturnal animals. Increasing light intensity during the LL condition did not affect the
lack of the masking effect in knockout animals (data not shown). Interestingly,
knockout animals did show masking response at the beginning of the LD = 3:3
condition (Figure 6), an ultradian light condition that has been shown to disrupt
circadian rhythmicity?*. This suggests that knockout animals did not show light
masking response under constant light condition, despite remaining responsive to
light.

SCN tissue explants from SCN-specific Dicer knockout also showed shorter period
length

To confirm if the short circadian period in the behavior of knockout animals was due
to the disrupted SCN, we bred Dicer™; Syt10°® mice with Period2::Luciferase
(Per2::Luc) knock-in mice and cultured their tissue explants from different tissues
(Figure 7). Knockout tissue indeed showed shorter period length in an SCN-
dependent manner (Figure 7A, knockout SCN mean = 24.21 h, control SCN mean =
24.83 h). We also observed that pituitary from knockout animals showed shorter
period length (knockout pituitary mean = 23.76 h, control pituitary mean = 24.74 h),
as expected from the expression of Syt10 in the pituitary?S. It is worth noting that
during SCN explant preparation, SCN from knockout animals detached more easily
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from the optic chiasm, and the amplitude of PER2::LUC oscillations in the SCN
knockouts often damped faster than control slides (Figure 7B).

Inducible SCN-specific Dicer knockout showed shorter period length that eventually
led to arrhythmicity

To rule out the effect of extra-SCN expression of Syt10, as well as the effect of
possible developmental process, on the period length phenotype observed in our
knockout model, we induced Dicer knockout in the SCN by injecting AAV expressing
hSyn-Cre to the SCN. Two weeks after injection, behavioral phenotypes were
assessed by recording wheel running activities (Figure 8). We found that induced
knockout animals exhibited either directly arrhythmicity or a shorter period length that
eventually led to arrhythmicity under any of the light conditions tested.

Indication that desynchronization might be one mechanism explaining the behavioral
phenotype of Dicer knockout animals

We next sought the possible mechanisms underlying the behavioral phenotypes
observed in knockout animals. It has been previously demonstrated that the
vasoactive intestinal peptide (VIP), expressed in the SCN by a neuronal population
receiving first the photic stimulus from the retinal ganglion cells, is the main
synchronizer of the SCN neuronal networks?®. Therefore, investigating the
expression of VIP in the SCN of genetically Dicer knockout animals was the first
reasonable step. We found suggestive evidence that VIP expression was reduced in
the SCN upon depletion of miRNAs (Figure S3). Subsequently, we measured SCN
network synchronization by recording neuronal activity of brain slices on multi
electrode array (MEA). We found that only a portion of SCN from knockout retained
its firing ability, conversely to slices from control animals in which the whole SCN
fired in synchrony (Figure 9). Although these observations need to be recapitulated
in a larger number of animals, taken together they suggest that SCN
desynchronization may be one of the mechanisms underlying the behavioral
phenotypes observed in knockout animals.

Gender differences observed in Dicer knockout animals

We observed that knockout females reached extreme weight (Figure S4A at 13-
month-old, knockout females weighed 59.9 g, while control females weighed 32.7 g,
both n = 2). Knockout females were also less fertile. Over a period of one year,
from 10 breeding pairs between control males and knockout females, one pair
produced 4 litters, four pairs produced 2 litters, and five pairs produced only one litter
before pausing pregnancy. Regarding the circadian period, SCN tissue explants
from KO females showed shorter period compared to controls as in males (Figure
S4B, knockout SCN mean = 24.50 h, control SCN mean = 25.36 h). Surprisingly, we
found that tissue explants from pituitary gland of control females showed shorter
period compared to their SCN counterparts (control pituitary mean = 23.07 h), while

8
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the two tissues from control males showed similar period (male pituitary mean =
24.74 h, male SCN mean = 24.83 h). In contrast, in knockout females, tissue
explants from pituitary gland exhibited similar period length (knockout female
pituitary mean = 24.33 h) compared to their SCN counterparts, as in males.

Discussion

In the current study, we explored the circadian consequences of depleting miRNAs
in the master clock of the mouse brain. We report here a shorter period length in
genetic knockout animals; and an initially variable, but finally arrhythmic, circadian
behavior in inducible adult knockouts. One variable aspect between the two
knockout models that might account for the difference in the observed phenotypes is
the potentially incomplete deletion of Dicer in the SCN of the genetic knockouts.
Indeed, it was previously shown that when using a Syt70°¢ mouse model to obtain
SCN-specific Bmal1 knockouts, BMAL1 expression was deleted in the SCN in a Cre
dose-dependent manner?°. However, due to the expression of Syt70 in the testis
and that whole body Dicer knockout is embryonic lethal?”?8, it is not possible to
obtain tissue specific Dicer knockout mice that are homozygous for Syt10¢®. We
suggest that the incomplete deletion of Dicer in the SCN can be confirmed by
performing in situ hybridization of Dicer in the SCN. Complete Dicer deletion might
then lead to cell apoptosis in the SCN as has been seen in excitatory forebrain
neuron-specific Dicer knockout model?®. Since SCN lesion animals are arrhythmic,
we cannot exclude that SCN cell death could explain the arrhythmic phenotype in the
inducible knockout model. Another possible mechanism explaining the difference
between genetic and induced knockouts is compensation by neuronal plasticity
during development. This can be confirmed, for example, by knocking out Dicer in
neonatal SCN slices by infection with AAV expressing hSyn-Cre.

Surprisingly, the genetic Dicer knockout also exhibited a female specific phenotype,
namely obesity and compromised fertility. As reported in the original paper?® and
elsewhere, Syt10 is highly expressed in the SCN, although it can be found also in
the olfactory bulb and in the pituitary?®?® . Therefore, we cannot rule out that the
expression of Syt10 outside of the SCN contributed to the above female Dicer
knockout phenotypes. Furthermore, we found that wild-type female mice’s tissue
explants from pituitary showed shorter period length compared to the SCN tissue
explants from the same animals, a phenotype that was not observed in wild-type
males. In fact, gender differences in circadian phenotypes has been described
previously. For example, females re-entrain to new light-dark cycle rapidly at
proestrus than at metestrus®°. The fast re-entrainment of locomotor activity is
accompanied with fast clock phase shifts in peripheral tissues but not the SCN. The
observed phenotypes could be conveyed also via pro-opiomelanocortin (POMC)
neurons, which receive direct input from the SCN, and have been previously
implicated both in hyperphagia and obesity®!, as well as sexually dimorphic functions
in the context of energy homeostasis®?. Future studies should explore the
relationship between SCN and extra-SCN regions when using Syt710°® mouse
model, in both males and females.
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Dicer knockout animals exhibited faster entrainment to a new light/dark cycle, which
is a phenotype observed also in mice lacking two vasopressin receptors V1a and
V1b*3 or LIM homeobox transcription factor Lhx13*. In both vasopressin receptors
and Lhx1 deficient model, reduced interneuron coupling is the molecular mechanism
underlying the lack of resistance to a new light/dark cycle. These are aligned to our
suggestive evidence that SCN desynchronization is the cause for the behavioral
phenotypes. However, experiments with more animals need to be done to confirm
the reduced VIP expression as well as reduced firing rate in the SCN of knockout
animals. In the cortex, VIP is a predicted target of miR-28-3p>°. While miR-28-3p is
expressed in olfactory bulb, hippocampus, striatum, and the spinal cord, it is not
expressed in the cortex, where VIP is highly expressed. The reduction of VIP
expression in the Dicer knockout SCN therefore, could be an indirect consequence
of miRNA depletion. Further investigation of the underlying mechanism(s) should
examine the role of neuropeptide communication in the observed phenotypes. For
example, grafting control SCN onto knockout SCN might be able to rescue the
period length phenotypes.

Finally, determining the responsible miRNA(s) is crucial to understand miRNA-
dependent regulation of the SCN network. Recently, whole body deficiency in miR-
183/96/182 cluster was shown to affect locomotor activity as well as circadian
oscillations at tissue levels¢. However, in this mouse model, even though the mice
are behaviorally arrhythmic under constant darkness, SCN tissue explants are
rhythmic with the same period length as controls. Taking into consideration that
miR183/96/182 cluster was inactivated throughout the whole body, it is therefore
highly unlikely that they are driving the behavioral alterations observed in our Dicer
deficient models. Nevertheless, several miRNAs, such as miR-219%", miR-132%,
and miR-17%8, have recently been reported to be expressed rhythmically in the SCN.
miR-7a, whose predicted targets include GABA B receptor 1, and Cry2, is reported
to be enriched in the SCN*. It might be that a combination of several SCN-specific
miRNAs regulates the master clock’s activities. miRNAs and transcriptomic profiling
upon miRNA depletion in the SCN will help to answer the open questions.
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Figure legends

Figure 1: SCN-specific Dicer KO had shorter period length. (A) Summary of free-
running period length under constant darkness (DD) measured by wheel running
activities. (B) Examples of two KO mice. (C) Examples of two control mice.

Figure 2: SCN-specific Dicer KO reentrained faster to jetlag. (A) Onset of locomotor
activities upon 6h-advanced jetlag at day 6 (control n = 10, KO n = 5, data is mean %
sem). (B) Onset of locomotor activities upon 6h-delayed jetlag at day 6 (control n =
5, KO n = 3, data is mean + sem). (C) Examples of advanced jetlag for KO mice.
(D) Examples of advanced jetlag for control mice.

Figure 3: KO mice had larger onset variation than controls. (A) Standard deviation of
onset time in minutes (measured from wheel running activities under LD = 12:12, KO
n =5, ctrl n = 10, data = mean + sd). (B) Absolute difference to light off time in
minutes (measured from wheel running activities under LD = 12:12, KO n =5, ctrin =
10, data = mean = sd). (C) Standard deviation of onset time in minutes (measured
from infrared detector under LD = 12:12, KO n = 4, ctrl n = 9, data = mean £ sd). (D)
Standard deviation of onset time in hours (measured from wheel running activities
under LD = 11:11, KO n =4, ctrl n = 10, data = mean = sd).

Figure 4: KO mice adapted worse to different day length. (A) Examples of wheel
running activities from KO mice. (B) Examples of wheel running activities from
control mice.

Figure 5: KO mice had arrhythmic/ultradian rhythms in LL with no light masking. (A)
Examples of wheel running activities from KO mice. (B) Examples of wheel running
activities from control mice.

Figure 6: KO mice were masked by light to some extent under LD = 3:3 condition,
showing that the animals were not irresponsive to light. Animals were kept under DD
for 20 days before light conditions were changed as indicated in the figures.
Examples of wheel running activities from KO mice (A) and control (B).

Figure 7: SCN from KO mice also had shorter period length. (A) period length of ex
vivo culture of tissue slices from different tissues. (B) Examples of rhythms from
SCN and lung. SCN rhythms from KO mice were more difficult to obtain than those
from controls. Tissue explants from the same animals share the same colors.

Figure 8: When KO is induced by injection of Dicer™ mice with AVV expressing
hSyn-Cre, KO mice had variable phenotypes, but eventually got arrhythmic. (A)
Control injection. (B) hSyn-Cre injection. Yellow part denotes when light was on.
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Figure 9: Suggestive evidence of SCN firing being less synchronized in KO mice
than in control (n=1 each). SCN slides on MEA, annotation of electrodes that
overlapped with SCN region (purple circles), and SCN firing frequencies across time
points for KO (A) and control (B). Electrodes (6x10) are annotated as following: SCN
TRUE if the SCN is located above that electrode, SCN FASLE if not; MEA TRUE if
the electrode is technically functional, MEA FALSE if not. For the time series plots,
only electrodes that were located below the SCN and technically functional were
color-coded based on the firing frequencies.

Figure S1: Confirmation of recombination by PCR analysis. (A) Schematic of
genomic locus. Primers DicerF1 and DicerDel produce a fragment of 601 nt length.
(B) Gel picture of the recombined Dicer fragment detected in the olfactory bulb of the
knockout (KO) animal but not in the ear.

Figure S2: Examples of onset detection in KO and control mice. Activities were
recorded using infrared detectors.

Figure S3: Example of VIP expression reduction in KO mice (ZT7, n=1). One should
note that the optical chiasm in the knockout SCN was not present in the slide,
indicating that one part of the SCN might have been ripped off.

Figure S4: Gender differences in phenotypes of knockout animals. (A) Female KO
were extremely overweighted. Left: control, right: KO female. (B) Period length of
tissue explants from control and KO females. Tissue explants from the same
animals share the same colors.
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Figure S1

A schematic of genomic locus
Dicert1 P = loxP site
[N exon 24 I
e e
|80l le@/d21g
(recombined, KO) A
B

Ear Olfactory

Ctrl KO Ctrl KO

601 nt

500 bp * unspecific




Figure S2
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Figure S3

No 1st antibody (NC) Anti-Vip (1:1000)
Scale: 0-500 Scale: 300-1300

KO

Control




Figure S4
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	Multi-electrode recordings and analysis



