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Multi-omics correlates of insulin resistance and circadian function
mapped directly from human serum
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Abstract

While it is generally known that metabolic disorders and circadian dysfunction
are intertwined, how the two systems affect each other is not well understood,
nor are the genetic factors that might exacerbate this pathological interaction.
Blood chemistry is profoundly changed in metabolic disorders, and we have
previously shown that serum factors change cellular clock properties. To
investigate if circulating factors altered in metabolic disorders have circadian
modifying effects, and whether these effects are of genetic origin, we
measured circadian rhythms in U20S cell in the presence of serum collected
from diabetic, obese, or control subjects. We observed that circadian period
lengthening in U20S cells was associated with serum chemistry that is
characteristic of insulin resistance. Characterizing the genetic variants that
altered circadian period length by genome-wide association analysis, we
found that one of the top variants mapped to the E3 ubiquitin ligase MARCH1
involved in insulin sensitivity. Confirming our data, the serum circadian
modifying variants were also enriched in type 2 diabetes and chronotype
variants identified in the UK Biobank cohort. Finally, to identify serum factors
that might be involved in period lengthening, we performed detailed
metabolomics, and found that the circadian modifying variants are particularly
associated with branched chain amino acids, whose levels are known to
correlate with diabetes and insulin resistance. Overall, our multi-omics data
showed comprehensively that systemic factors serve as a path through which
metabolic disorders influence circadian system, and these can be examined in
human populations directly by simple cellular assays in common cultured
cells.

Introduction

In virtually all light-sensitive organisms, circadian clocks govern most aspects
of physiology’, to synchronize them with the environment?. Rodent as well as
human studies suggest that there is bidirectional cross talk between clocks
and metabolism3. In mice, while circadian misalignment between meal time
and light-dark cycle leads to disruption of metabolic pathways*®, high fat diet
induces the alteration of circadian oscillations’. Combination of circadian
misalignment and high fat diet led to further worsening of metabolic
outcome®®. In humans, molecular circadian oscillations in islets are
dampened upon type 2 diabetes (T2D), concordant with disrupted insulin and
glucagon rhythms'%. In addition, physiological rhythms such as body
temperature and heart rate are also disrupted in diabetic patients’”.
Conversely, numerous studies show that circadian misalignment has direct
consequences on metabolic outcomes'?13,

T2D patients exhibit hyperglycemia, hyperinsulinemia, and dyslipidemia’°,
with the blood metabolome and proteome undergoing profound alterations®.
Among blood metabolites, branched-chain amino acids (BCAA) are the most
consistently associated with obesity and insulin resistance, two hallmarks of
T2D'"". Noteworthy, we have demonstrated that aging-associated serum
factors, whose identities are yet to be established, led to shortened circadian
period length and advanced phases in primary skin fibroblasts derived from
the same individuals'®. In addition, in a small cohort of T2D subjects,
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individual differences in serum glycated hemoglobin (HbAc1) were inversely
associated with the circadian period length of primary skin fibroblasts'
oscillations when the cellular clocks were measured in the presence of the
corresponding patient serum™®.

Therefore, we hypothesized that altered metabolic signatures in serum of
patients bearing metabolic diseases such as obesity and T2D might have
circadian rhythm modifying effects. In this study, we used a combinatorial
approach of genomic and metabolomic association to gain insights into
molecular factors in serum that modify circadian period length in metabolically
compromised patients.

Materials and Methods
Participant characteristics and study design

Three hundred fourteen participants were enrolled in this study, dubbed the
Diachron cohort, 274 of which met inclusion - exclusion criteria listed in Table
S1 and Table S2. Age- and sex- matched study participants belonged to four
categories: normoglycemic non-diabetic non-obese (referred to as control
subjects in this study), normoglycemic non-diabetic obese (referred to as
obese non-T2D subjects), obese with T2D (referred to as obese T2D
subjects), and non-obese with T2D (referred to as non-obese T2D subjects).
Obesity was defined by body mass index (BMI) > 30; T2D - by glycated
hemoglobin (HbA1c) > 6.5% (equivalent to 48 mmol/mol). A list of the
baseline characteristics of the participants in each group is presented in Table
1. All participants gave informed consent, and the study had ethics committee
approval (CER11-015), and was registered at ClinicalTrials.gov (registration
no. NCT02384148). All study participants filled out the Munich Chronotype
Questionnaire (MCTQ), allowing calculation of MSF_sc values that
characterize an individual's chronotype. The participants were asked to follow
a moderate diet without excess fat or alcohol intake, 24 hours prior to the
testing day.

Harvesting of sera

Blood samples for all study participants were collected between 08:00 am and
10:00 am, following overnight fasting from 10 pm. Blood samples were
collected in clot-activator vacutainers and immediately analyzed by the
Geneva University Hospital laboratory for blood glucose, HbA1c, hormones,
lipids, liver and kidney functions (detailed list of the measured blood clinical
parameters is reported in Table S3). Serum was immediately prepared from
blood samples by centrifugation (10 min, 1650 x g, 4 °C) and stored at -80 °C
for further analyses.

Primary dermal fibroblast culture, in vitro synchronization and DNA extraction

Cutaneous biopsies were taken from each participant’s shoulder between
8:00 am and 10:00 am and processed as described previously?®. Cells in
culture were synchronized with a 30-minute 100 nM dexamethasone pulse,
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and collected 24 h later. DNA was extracted using QlAamp DNA Mini Kit
(Qiagen AG, Cat# 51304) and eluted in a final volume of 15 pL.

Lentivector production

Bmal1-luciferase lentiviral particles®' were produced at the Viral Vector
Facility of the University of Zurich. Transient transfection in 293T cells was
performed using the polyethylenimine method?°. Lentiviral particles were
harvested at 48 h post-transfection, PEG precipitated, titred, and used for the
transduction of the U20S cells with multiplicity of infection (MOI) of 3.

U20S cell culture, in vitro synchronization and real-time bioluminescence
recording

U20S cells (ATCC, Cat# HTB-96, RRID:CVCL_0042) were cultured in DMEM
low glucose (GIBCO) supplemented with 1% Penicillin/Streptomycin (GIBCO,
Cat# 15140122), 0.5% Amphotericine B (Sigma, Cat# A2942), 0.5%
Gentamycin (Sigma, Cat# G1397) and 10% FCS (GIBCO, Cat# A5256701).
Cells were transduced with lentivirus expressing Bmal1-luciferase, and
selected with Blasticidin S (Gibco, Cat# R21001) at 25 pg/ml final
concentration. The same batch of transduced U20S cells was used for all the
circadian measurements. After synchronization of the cells with a 30-min
pulse of 100 nmol/l dexamethasone, the circadian bioluminescence recording
was performed in DMEM low glucose without phenol red (GIBCO, Cat#
31053028) supplemented with 1% Penicillin/Streptomycin (GIBCO, Cat#
15140122), 0.5% Amphotericine B (Sigma, Cat# A2942), 0.5% Gentamycin
(Sigma, Cat# G1397), 1 mmol/l of luciferin and in the presence of 10% of the
individual's sera. Bioluminescence was monitored by a home-made robotic
device equipped with photomultiplier tube detector assemblies, allowing the
recording of technical triplicates in 24-well plates for 1 week. After removing
the first oscillation cycle, to avoid a potential bias stemming from the
immediate early response to synchronization, raw data were processed by
moving average with a window of 24 h, allowing to subtract the baseline and
analyze the time series without the variability of magnitudes.

Metabolomics by UPLC-MS

Sample preparation and measurements

200 pL of serum were thawed on ice, 200 pL of 1 mg/mL "*Na-tryptophan
(Cambridge Isotope Laboratories, Inc., Tewksbury, USA) in water (LC-MS
grade, Fisher Scientific, Pittsburgh, USA) were added as internal standard,
and proteins were precipitated by the addition of 600 pL of methanol (LC-MS
grade, Fisher Scientific, Pittsburgh, USA). The samples were incubated on
ice for 10 minutes and centrifuged at 4 °C and 15800 g for 15 min. The
supernatant was filtered using a 0.2 ym reversed cellulose membrane filter.
Thus prepared metabolite extracts (10 pyL) were injected directly for
chromatographic separation on an ACQUITY UPLC BEH AMIDE column (1.7
um, 2.1 x 150 mm, Waters) with a corresponding precolumn filter. After that,
400 uL of the metabolite extract were aliquoted and solvents were removed in
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a vacuum dryer. The residual was resuspended in 75 mL of a mixture of
water and methanol (95/5, viv, both LC-MS grade, Fisher Scientific,
Pittsburgh, USA), sonicated (10 min) and centrifuged (15 min, 15800 g) and
transferred to LC vials with glass inserts for chromatographic separation on an
ACQUITY UPLC BEH C18 column (1.7 ym, 2.1 x 150 mm, Waters). Also
there, 10 uL were injected for analysis. One sample per person was
analyzed, analytical reproducibility was verified with quality control (QC)
samples (pool of all samples). The samples were measured in batches of 60,
with QC samples measured across each batch.

Chromatographic separation was performed on an ACQUITY UPLC system
(I-Class, Waters, MA, USA). With the RP column, the flow rate was set to 240
ML/min using a binary mixture of solvent A (water with 0.5 % methanol and 0.1
% formic acid) and solvent B (methanol with 0.1 % formic acid). The following
gradient was used: 5 % B (1 min), 5 to 95 % B (9 min), 100 % B (2 min), and
5 % B (2 min). The column temperature was set to 30 °C and the
autosampler was kept at 5 °C. For the AMIDE column a flow rate of 400
ML/min was used with a binary mixture of solvent A (water with 0.1% formic
acid) and solvent B (acetonitrile with 0.1% formic acid). The following
gradient was applied: 99-30% B (7 min), 99% B (3 min). The column was
kept at 45 °C and the autosampler at 5° C.

Mass spectra were recorded on a quadrupole-time-of-flight high resolution
mass spectrometer (TripleTOF 5600+, AB Sciex, Concord, ON, Canada) with
a heated electrospray ionization source in positive and negative ion mode.
Full-scan mass spectra (m/z range 50 to 650 Da) and data dependent MS-MS
acquisitions (m/z range 40 to 650 Da) were performed. Curtain gas flow was
set to 30 au, GS1 and GS2 were set to 60 au, a spray voltage of 5 kV (-4.5
kV) was applied and the ion source was heated to 500 °C. For the RP
measurements, the total cycle time was kept at 800 ms to obtain at least 12
points/peak (minimal LC peak width = 9 s) with 150 ms for full scan MS and
85.7 ms for seven data dependent product ion scans acquired with a collision
energy of 10/20/30 eV. For the AMIDE measurements, the total cycle time
was kept at 550 ms to obtain at least 12 points/peak (minimal LC peak width =
6 s) with 150 ms for full scan MS and 87.5 ms for four data dependent product
ion scans acquired with a collision energy of 10/20/30 eV.

Measurements of reference standards

In addition, reference standards were measured for a certain number of
metabolites. Four different mixtures of non-isobaric compounds at a
concentration of 10 ug/mL, 5 pg/mL and 1 pg/mL in 5% methanol for RP
measurements and 75% methanol for AMIDE measurements were produced
(compositions of the four mixtures are given in Table S4). Moreover, 10
Mg/mL solutions were produced separately for linoleic acid, arachidonic acid,
docosapenaenoic acid, myristic acid and ethanolamine. 10 pL of each
sample were injected for UPLC-MS measurements. Mass spectra were
recorded in full scan and product ion mode. For measurements on the RP
column, each acquisition cycle consisted of a full scan with an acquisition time
of 150 ms and six product ion scans with an acquisition time of 100 ms. For
measurements on the AMIDE column, each acquisition cycle consisted of a
full scan with an acquisition time of 100 ms and four product ion scans with an
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acquisition time of 100 ms. Collision energies are stated in Table S4, the
other instrument parameters were set as described above for the data
dependent acquisitions.

Data Preprocessing

Raw data files were converted into .mzXML files and centroided using
MSConvert (ProteoWizard)??. Further preprocessing was conducted with
XCMS?324in R (v3.6.1). For each measurement batch, peak picking, peak
alignment, integration and annotation was performed. The applied parameter
settings are given in Table S5.

Subsequently, data obtained from the QC samples was used to correct for
instrumental drift using statTarget?® in R. We applied the QCRLSC method
(parameter settings: Frule = 0.8, QCspan = 0.5, degree = 2, imputeM = KNN)
and removed all features that were detected in less than half of the QC
samples as well as features, which had a relative standard deviation above
50% in the QCs after drift correction. Features identified as isotopes have
also been removed. To confirm whether the drift correction did also remove
inter-batch effects successfully, we compared the results of a principle
component analysis before and after correction (Figure S8).

Finally, the features obtained from the different measurement batches were
combined automatically (m/z tolerance: 0.001 Da, retention time tolerance: 15
s). This automatic merging failed for isomers with small differences in
retention time, when large shifts in retention time occurred between batches.
We therefore reviewed the merging by visual inspection of all extracted ion
chromatograms and corrected manually for wrong assignments.

In addition to this untargeted peak extraction, we performed targeted analysis
for metabolites, of which we measured reference standards. We used the
peakPantheR R package?® with the target list given in Table S6. Retention
time windows for isoleucine, pipecolinic acid, citric acid, 4-methyl-2-oxovaleric
acid, phenyllactic acid, tetradecanedioic acid and docosapentaenoic acid
were adapted for each batch, due to the presence of isomers at similar
retention times. We applied drift correction with QC samples as described
above.

Data from untargeted and targeted peak extraction were combined and only
features detected in all samples were further considered. We removed
features from the untargeted peak extraction approach, which were already
covered by the targeted approach, in order to avoid duplicates. This resulted
in 371 remaining features. Peak areas were log-transformed and autoscaled.

Metabolic pathway analysis and compound annotation

We made use of two different tools for automated compound annotation in
order to annotate the peaks from our untargeted metabolic approach. We
used MSDial?” for MS/MS library matching with the spectra we obtained from
data dependent MS/MS acquisition. Moreover, we applied the mummichog
algorithm?® in MetaboAnalyst for R?°, which infers metabolic pathway
information and biological activity. We employed the homo sapiens Kegg
database, set the mass tolerance to 10 ppm and the p-value threshold to 0.2.
We subsequently reviewed the annotations for biologically relevant features
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manually and confirmed metabolite identities with reference standards, if
available.

Statistical analysis

All data analyses were conducted in R (v3.6.1). In order to assess the
correlation between the circadian period length measured in U20S cells
cultured in the presence of patient’s serum and clinical parameters or
metabolite levels in serum, we performed Kolmogorow-Smirnow (KS) tests
between the first and the fourth data quartile. These comparisons were
performed within the different patient groups (non-obese T2D, obese T2D,
obese non-T2D, or control, or grouped as stated). Enrichment analysis of
genome wide association study (GWAS) p-values against those of other traits
was performed using gset package in R. Locuscompare package in R was
used to compare GWAS and eQTL signal at the March1 locus. Coloc
package in R was used to visualize GWAS and eQTL signals at the March1
locus.

Genotyping

Fibroblasts were genotyped using the Illlumina CoreExome 24 v1.3 array.
Only samples with variant calling rate > 98 % were considered. Population
stratification was done by principal component analysis using the phase 3
1000 genome variants to select for European subjects, resulting in 269
subjects qualified for genome wide association analyses (GWAS). Variants
were then filtered to only choose those from the European panel. Next,
variants were filtered using vcftools with the following parameters: --mac 2, --
max-missing 0.95, --hwe 0.000001, yielding 290’867 genotyped variants.
Genotyped variants were imputed using the Michigan Imputation Server with
the phase 3 1000 genome genotypes as reference. Imputed variants were
filtered out according to these criteria: imputation quality > 0.5, MAF > 0.05,
Hardy-Weinberg probability < 1e-6. A total of 5'630°’127 variants were left
after filtering these steps.

Genome wide association analysis (GWAS)

GWAS was performed on circadian period length (inverse transformed using
the following command line in R: period length = gnorm((rank(x)-
0.5)/length(x)) using PLINK 1.90. Sex, age, disease (control, obese non T2D,
non-obese T2D, and obese T2D), date of circadian measurement,
experimenter, and the first 10 MDS dimensions of the genotypes were
included as covariates.

External database

GWAS summary statistics for chronotypes or diabetes-related traits were
downloaded from http://www.nealelab.is/uk-biobank, GWAS round 2. GWAS
summary statistics for metabolites were taken from 3'.
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Results
Study design and patient cohort characteristics

Patients were recruited in the framework of the project dubbed Diachron that
included non-obese T2D, obese T2D, obese non-T2D, and non-obese non-
diabetic control subjects (see Materials and Methods for the study details).
Patient characteristics and clinical parameters are summarized in Tables 1,
S1-S3. Patients were genotyped to investigate genetic origin of individual
differences in cellular oscillations. To study the effects of circulating factors
on circadian traits in obesity and T2D, circadian rhythms of U20S cells were
continuously recorded in the presence of 10% serum from morning blood
samples from the above-mentioned patients in the recording medium. For
deep metabolic phenotyping, patients' sera were subjected to metabolomics
analysis by liquid chromatography coupled to mass spectrometry (LC-MS)
(see Figure 1A for the study design overview).

Circadian period length of U20S cells assessed in the presence of obese
patients’ serum increases concomitant with severity of obesity

We observed huge inter-individual effects of sera on circadian period length
measured in U20S cells that varied between 20.69 h to 25.62 h across the
entire cohort, with mean and standard deviation were 22.9 h and 0.8 h
respectively (Figure 1B). The mean period length and standard deviation for
each patient group were as following: control, 23.2 £ 0.7 h; obese non-T2D,
22.8 £ 0.8 h; non-obese T2D, 22.9 £ 0.7 h; and obese 12D, 23.0+ 0.8 h. A
one-way ANOVA revealed that there was a statistically significant difference
in period length by patient group (F(3)=4.308 , p < 0.01). A Tukey post-hoc
test found that the mean value of period length was significantly different
between obese non-T2D and control (p < 0.01, 95% C.I. = [-0.68, -0.1]), but
not for any other pair-wise comparisons. Although statistical significance was
observed, the huge inter-individual differences within each patient group and
across the entire cohort suggests that such significance is of low biological
relevance. It is more likely that inter-individual differences represent the main
driver of the variation in circadian modifying effects of subjects’ sera.

We next investigated the sources of inter-individual differences in serum
factors that could explain the observed effects on circadian period length
within each patient group. To this end, subjects were divided into quartiles
based on various clinical parameters listed in Table 1, with the distribution of
cellular period length from the first and the fourth quartile group compared to
each other. For serum from T2D patients (non-obese T2D and obese T2D
combined), such comparison yielded no statistically significant differences in
the distribution of period length, except for triglycerides and ASAT (Figure
S1A, p < 0.05 for triglycerides and ASAT, Kolmogorow-Smirnow test, not
corrected for multiple testing). However, in the presence of sera from obese
subjects (obese non-T2D and obese T2D combined), a period lengthening in
U20S cells was observed between quartiles separated based on increased
HOMA-IR, insulin, HbA1c, fasting blood glucose, triglycerides, and decreased
HDL (Figure 2, all p < 0.05, Kolmogorow-Smirnow test, not corrected for
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multiple testing). Overall, deteriorated metabolic health in obese patients
correlated with cellular period lengthening. For parameters that reflect liver
and kidney function (ASAT and creatinine), a similar relationship was
observed: worse liver and kidney function correlate with longer period length.
Importantly, the same observation was not present for non-obese subjects
(control and non-obese T2D combined) for these parameters (Figure S1B, all
p > 0.05, Kolmogorow-Smirnow test, not corrected for multiple testing), nor for
control subjects (Table S7, all p > 0.05, Kolmogorow-Smirnow test, not
corrected for multiple testing). Overall, these observations suggest that
severity of obeisty is the most important aspect that correlates with differential
effects of patients' sera on circadian period length.

Genome wide association analysis identified March1 as the gene most
associated with period lengthening effects

Reasoning that individual differences in period lengthening by serum have
genetic origin, we sought for genetic variants associated with period length
measured in the presence of patient serum. Genome wide association
analysis (GWAS) identified 613 variants that belong to 128 loci (Table S8, S9)
associated with period length across the entire cohort. Interestingly, while the
three top identified variants were intergenic, the fourth most associated
variant (rs7654787) mapped to an intron of March1 gene, known for its
functions in antigen-presenting cells®? (Figure 3A, Figure S2). Noteworthy,
March1 knockout animals exacerbate obesity-induced insulin resistance
stemming from its effects on CD8 T cell fate®3. In addition, March1 knockout
animals also exhibit enhanced insulin sensitivity and knockdown experiments
shows that MARCH1 degrades surface insulin receptor in the basal state34.
The involvement of March1 in insulin regulation prompted us to investigate the
relationship between the identified March1 variant and insulin resistance in
our cohort. We observed that obese subjects carrying the homozygous AA
allele had similar insulin and HOMA-IR compared to non-obese subjects
(Figure 3B, 3C), in contrast to the expected higher insulin and HOMA-IR when
being obese with other genotypes. This is also in line with allele A being
associated with shorter period length (Figure 3A). The observed differences
in insulin and HOMA-IR by AA genotype vs other genotypes of this MARCH1
variant were not observed when patients were stratified by T2D status (Figure
S3). This is consistent with our former observation regarding the correlation
of the metabolic status in obese patients with the period length in U20S cells.

We next sought for evidence of activity at rs7654787 in publicly available
data. We found that this variant is located within 2kb of cis regulatory
elements (CRE, H3K4me3, H3K4me1, and H3K27Ac signatures) active in 7
cell lines in the ENCODE dataset (Figure S4A). In addition, expression
guantitative trait loci (eQTL) analysis shows the correlation between
genotypes and gene expression. We sought for published eQTLs in the
pancreas>® at rs7654787 and found suggestive evidence that rs6536810,
which is in linkage disequilibrium with rs7654787 (R?=0.9956), is associated
with lower expression of March1 (p = 4e-07, slope = -0.21, T statistic = -5.15,
Figure S4B). In other words, combined with our data, allele A of March1
variant is associated with lower expression of the gene, shorter period length,
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and lower insulin and lower HOMA-IR. This observation is in line with the
reported finding that MARCH1 expression increased in insulin-resistant vs
insulin-sensitive subjects34. This is also consistent with the results that
March1 knockdown and knockout mice showed improved glucose tolerance
without an increase in insulin levels, suggesting enhanced insulin sensitivity in
mice34.

Identified GWAS variants are enriched in previously reported variants
associated with extreme chronotype and T2D diabetes.

Since the here detected phenotype links circadian properties to diabetic
status, we reason that there would be overlaps of our GWAS variants with
those for chronotypes and diabetes-related traits. Indeed, our GWAS
identified variants were enriched in those associated with Self-reported
Chronotype and related traits, for instance variants linked to Sleep duration
and Nap during the day in the UK Biobank database (Figure 4A). There was
also enrichment for Diagnosed type 2 diabetes variants, but interestingly not
for Self-reported type 2 diabetes variants. In addition, GWAS identified
variants were enriched in Job involving night shift variants, as well as
Depression, two traits that are often associated with T2D363’. Moreover, the
beta coefficient of the association, which denote the directions of association,
e.g. if a variant is associated with longer or shorter period length, called
shortly here beta coefficient directions, were largely consistent between
GWAS variants and trait variants (Figure 4B, 4C, and 4D). Variants that were
associated with shorter period length were also associated with morningness,
while variants that were associated with diabetic status were also associated
with longer period. This is in agreement with our previous finding that in vitro
circadian period length correlates with human chronotype?’, and published
work showing that late chronotype is associated with worse glycemic
control®839,

Metabolomics reveals that circadian period lengthening is associated with
insulin resistance in obese individuals

We observed that within the obese group, circadian period length did not
correlate with BMI (p = 0.43, Kolmogorow-Smirnow test), indicating that
obesity index alone cannot explain the period lengthening effects of sera from
these subjects. It has been recognized that risk for cardiometabolic
abnormalities varies among obese patients*’. In our Diachron cohort, we
indeed observe such variation, with obese patients whose sera were
classified in the first quartile in terms of triglycerides and fasting blood glucose
and the fourth quartile of HDL cholesterol fitting the criteria for low
cardiometabolic risk based on these parameters*! (Table S10, fasting serum
triglycerides < 1.7 mmol/l, fasting blood glucose < 6.1 mmol/l, and HDL
cholesterol serum concentrations > 1.0 mmol/l in men or > 1.3 mmol/l in
women). This suggests that metabolic signature in the serum of obese
patients affects circadian period length.

In order to obtain more detailed metabolic signature, we performed targeted
and untargeted metabolomics of the patient sera by UPLC-MS. We detected
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371 features in total, including 40 from targeted, and 331 from untargeted
ones (Table S11, Table S12). Annotation of untargeted features by MS-
DIAL? identified 78 of them (Table S13). We next analyzed the metabolic
features in obese subjects (non-diabetic and diabetic combined) by quartiles
based on each of detected metabolites. The cellular period length distribution
measured in serum from the first and the fourth quartile group was compared.
We observed a statistically significant shift in the distribution of period length
between the first and fourth quartile for a range of compounds, including
targeted and annotated untargeted ones (Figure 5A, 5B). For most of the
compounds, the distribution of period length shifted toward longer values with
higher levels of compounds, with few compounds only exhibiting the opposite
tendency (one of lysophosphatidylcholine species, succinic acid, and
serotonin, see Discussion). In addition to annotation of untargeted feature,
we also employed the mummichog algorithm to infer pathway activity without
feature identification to gain information from the whole untargeted
metabolites?®. Metabolic pathway enrichment analysis on all untargeted
features suggested that branched-chain amino acid (BCAA) degradation and
biosynthesis were as among the most involved metabolic pathways (Table
S14). It has been reported that circulating BCAAs are elevated in subjects
with insulin resistance and T2D*2. Concordantly, we observe that many of the
metabolites associated with period length were also associated with insulin
resistance score (HOMA-IR) in our cohort (Figure S5).

In addition, we explored the association between serum lipid landscape and
cellular period length, based on the serum lipidomics analyses on the sub-set
of this cohort that we have recently reported (see Table S15)*3. We detected
statistically significant association between longer cellular period and lower
levels of phospholipids, specifically LysoPE, PC, and LysoPC species (Figure
5C). This finding is consistent with the earlier observation that lower levels of
phospholipids are associated with insulin resistance***°. Overall, we report
that serum metabolic status associated with insulin resistance in obese
patients may account for the period lengthening effect in U20S cells.

GWAS variants are enriched in branched-chain amino acid variants

If serum metabolite levels are associated with serum's effects on period
length that are partially explained by genetic variants, there should be
overlaps between our GWAS variants and those explaining metabolite levels.
Indeed, we found that GWAS variants are enriched in branched-chain amino
acid (BCAA) and branched-chain keto acid (BCKA) variants (Figure SGA).
Comparison of beta coefficient direction between GWAS variants and the
metabolite variants confirmed that longer period measured in U20S cells is
associated with higher levels for all BCAAs and BCKAs in the patients’ sera
(Figure S6B).

Discussion

Obesity is often accompanied by metabolic syndrome as a comorbidity*®,
characterized by abdominal obesity, high blood pressure, high blood sugar
and triglyceride levels, low HDL cholesterol, and insulin resistance*’. Our
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552  study suggests that alterations in serum featuring metabolic syndrome of

553 obese patients have period lengthening effect on U20S cellular oscillations, in
554 line with longer period observed in mice with high-fat diet induced obesity’.
555 Notably, we did not find a correlation between period length and BMI,

556  suggesting that it is not weight gain per se, but rather metabolic signature

557  alterations associated with metabolic syndrome are responsible for the

558 changes in circadian characteristics observed in cultured cells.

559  Taking a multi-omic approach, we mapped insulin resistance as the

560 parameter that is associated with a circadian period modifying effect. Our
561 genetic analysis using cellular phenotype linked MARCH1, whose regulatory
562  role in insulin resistance development have been demonstrated

563  previously®*3448 to changes in cellular circadian period length exerted by
564 individual differences in serum components. Indeed, higher MARCH1

565 expression was reported in white adipose tissue from obese insulin-resistant
566  subjects®. Interestingly, the variant in March1 gene, rs7654787, seems to
567 have a protective effect since it is associated with shorter period length, and
568 lower MARCH1 expression. Meta-analysis of phenome-wide association
569 (PheWAS) confirms that this variant is negatively correlated with BMI (Figure
570 S7). The second PheWAS phenotype is Platelet count, for which a closer
571 look at our data revealed that in fact in obese subjects, shorter period length
572  was also associated with lower platelet count (p = 0.004, Kolmogorow-

573  Smirnow test), consistent with the negative beta coefficient. Platelet count
574  has been shown to be higher in impaired fasting glucose and metabolic

575  syndrome (but not T2D), and is associated with insulin resistance*®*°. Thus,
576  our genetic approach using cellular phenotype allow to identify not only the
577  circulating factors that affect circadian traits, but also pinpointed the

578 hematological phenotype that we were not aware of in the first place.

579  Our metabolomic and lipidomic profiling further identify a panel of insulin

580 resistance-related metabolites and lipids interacting with the circadian clock.
581 In addition to the well-described branched chain amino acids and branched
582  chain keto acids, we also found a positive correlation between glutamic acid
583 levels in serum and insulin resistance, corroborating results reported in the
584 literature®'. A correlation between uridine levels in urine and HOMA-IR have
585 been observed in humans before®? and injection of uridine in obese mice

586 induced deterioration of glucose tolerance®3. Also, upregulation of the

587  kynurenine pathway has been related to insulin resistance in obesity.

588 Tryptophan can be metabolized either to kynurenine or to serotonin. It has
589 been suggested that inflammation in obesity induces upregulation of the

590 tryptophan-kynurenine route®*. Activation of this pathway results in increased
591 levels of xanthurenic acid, which can form complexes with insulin that are less
592  active than insulin itself*®. In line with these findings, serotonin was reported
593  to enhance insulin secretion® and we observed an inverse relation between
594  serotonin levels in serum and circadian period length. Similarly, for succinic
595 acid®®, and lysophosphatidylcholine®” enhancing effects on insulin release
596 have been reported. We found for increased serum levels of these

597 metabolites a shortening of the circadian period length. This further indicates
598 insulin resistance being a key factor in the alteration of circadian clock

599  properties.
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Insulin has been shown to lengthen period length in mouse cells by increasing
PER2 protein synthesis via simultaneous mTOR activation and miRNA-
mediated posttranscriptional regulation®®. Thus, higher serum insulin in obese
subjects likely prolongs period length of cellular oscillations in U20S cells in a
similar way. Secondly, metabolic pathway analysis indicated disturbed BCAA
metabolism to be the most enriched pathway contributing to period
lengthening. Within the last decade, evidence for the association between
increased circulating BCAAs and insulin resistance has emerged*?. Animal
models have suggested, that elevated BCAA levels lead to hyperactivation of
mTORC1 followed by activation of the ribosomal kinase S6K1. This leads to
phosphorylation and thereby inhibition of insulin receptor substrate 1 (IRS-1)
resulting in insulin resistance®®. Although it is still under investigation if the
same mechanism underlies insulin resistance in obese individuals, activation
of the mTOR pathway by BCAA is one possible way that these circulating
amino acids contribute to circadian period lengthening. Of note, as Crosby et
al. has shown, mTOR activation alone is not sufficient to induce PER2
translation, but synergic mTOR activation and inhibition of PER2-regulating
miRNAs by insulin is required for increase in PER2 translation that leads to
period lengthening®®. This could explain the discrepancy in period modifying
effects of mTOR activation in flies and in mice. In Drosophila, Seghal and co-
workers found circadian period lengthening upon mTORC1 activation .
However, in mice, Ramanathan et al. reported that mTOR activation
shortened period length, with the protein levels of CLOCK, BMAL1, and CRY1
but not PERs being affected®’. Therefore, the effect of mTOR activation on
the circadian clocks is likely context dependent. Alternatively, BCAA,
especially leucine and ketoleucine, as potent insulin secretagogues®?®, may
exert their effects on circadian period length indirectly, mediated via insulin.
Unraveling potential mechanisms underlying the reported here intricate link
between insulin resistance and altered cellular circadian rhythms warrants
further studies.

Collectively, our multi-omics analyses identify circulating metabolic factors
characteristic of insulin resistance that affect cellular circadian properties.
Moreover, we provide novel clues on how shared genomic and metabolomic
factors related to obesity and T2D affect cellular circadian traits that could be
measured in a commonly used U20S cell line.
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Figure legends:

Figure 1: Individual sera have profound effects on circadian period length of
U20S cell oscillations. (A) Study design: type 2 diabetes (T2D, subdivided
into non-obese and obese) subjects, obese non-T2D subjects and control
subjects were recruited. Cell culture medium containing 10% serum from
each subject was incubated on U20S cells to measure changes in circadian
parameters exerted by circulating components. Basic blood chemistry test,
patient genotyping, as well as, metabolite profiling by LC-MS were performed
to identify genetic and metabolomic factors affecting circadian traits. (B)
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Circadian period length measured in U20S cells in the presence of patient's
serum.

Figure 2: Clinical parameters related to severity of obesity in the group of
obese subjects (obese non-T2D and obese T2D combined) were associated
with longer cellular period length. For each blood parameter, patients were
divided into quartiles for that parameter. Period lengths were then compared
between the 1st and the 4th quartile. Shown are blood parameters that have
statistically significant difference between these two quartiles (p < 0.05,
Kolmogorov-Smirnov test, one-sided).

Figure 3: A variant in the intron of March1 gene is associated with period
length and has an impact on insulin and HOMA-IR levels. (A) The A allele of
variant rs7654787 is associated with shorter period length in U20S cells. (B)
Insulin level stratified by genotype of variant rs7654787 and obese state. (C)
HOMA-IR stratified by genotype of variant rs7654787 and obese state. ***: p
< 0.0001, **: p <0001, *: p< 0.01, ns: not significant, Tukey’s range test.

Figure 4: GWAS variants are enriched in chronotype and diabetes-related
traits in UKBiobank. (A) Enrichment analysis was done for p-values of the
613 GWAS variants against those of all variants in the listed traits. Shown is
the p-value of the enrichment analysis for each trait. Red line indicates p =
0.05. (B) Beta coefficient directions between period length and traits that had
a p-value < 0.05 in (A) were compared. Shown are p-value of chi-squared
test of dependency. Red line indicates p = 0.05. (C) and (D) Examples of
beta coefficient directions between period length and traits. (C) Variants that
are associated with shorter period length are associated with a morningness
phenotype. (D) Variants that are associated with longer period length are
associated with higher T2D risk.

Figure 5: Metabolites and lipids associated with insulin resistance are
associated with longer period length in U20S cells. (A) Metabolite levels
associated with period length in obese subjects are shown. They are sorted
by p-value, and direction of comparison with period length (longer period
length indicated by positive values). Red lines indicate p = 0.05 (one-sided
Kolmogorov-Smirnov test comparing the 1st vs the 4th quartile as in Figure 2)
for each direction. (B) Examples of cumulative distribution comparing period
length between patients falling in the 1st vs the 4th quartile for each
metabolite. (C) Correlation between phospholipid levels and period length in
obese subjects. LysoPE: Spearman correlation coefficient = -0.45, p = 0.01.
PC: cor =-0.36, p = 0.04. LysoPC: cor =-0.37, p = 0.04.

Figure S1: Association between clinical parameters and circadian period
length in obese participants, but not other groups. (A) Clinical parameters for
T2D subjects (non-obese T2D and obese T2D combined). Only Triglycerides
and ASAT showed statistically significant differences (p < 0.05, Kolmogorov-
Smirnov test, one-sided). (B) Clinical parameters for non-obese subjects
(controls and non-obese T2D combined).

Figure S2: Genome-wide association study (GWAS) identified variants that
are associated with circadian period length measured in U20S cells. (A)
Manhattan plot showed the top variants associated with period length. While
the top three variants are intergenic, the 4th variant mapped to the intron of
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March1 gene (marked by an arrow). (B) Q-Q plot showing the expected vs.
observed GWAS p-values.

Figure S3: Genotype at rs7654787 did not influence insulin and HOMA-IR
levels when stratifying patients by T2D status. (A) Insulin level stratified by
genotype of variant rs7654787 and T2D status. (B) HOMA-IR stratified by
genotype of variant rs7654787 and T2D status. ***: p < 0.0001, **: p < 0001,
*: p< 0.01, ns: not significant, Tukey’s range test.

Figure S4: Confirmation that rs7654787 is active. (A) Genome Browser view
showing variant rs7654787 (whose position marked by a blue vertical line) is
located near cis regulatory region (CRE, H3K4me3, H3K3me1, and H3K27Ac
signatures). (B) Variant rs6536810, which is in linkage disequilibrium with
rs7654787 (R?=0.9956), is colocalised with expression quantitative trait loci
(eQTL) signals in the pancreas. Left panel compared eQTL vs GWAS p-value
for variant rs6536810. Right panels show GWAS (upper) and eQTL (lower) p-
values for variants around the colocalisation coordinate. Plot was produced
using coloc R package.

Figure S5: Targeted and untargeted metabolites that are associated with
HOMA-IR. ***: p < 0.001, **: p < 0.01, * p < 0.05. HOMA-IR between obese
subjects that fall in the 1st vs the 4th quartile for each metabolite.

Figure S6: GWAS variants are enriched in metabolite variants. (A) p-values
of enrichment analysis. (B) Examples of beta coefficient direction.

Figure S7: PheWAS of variant rs7654787 (image represents screen shot from
hugeamp.org, or Common Metabolic Diseases Knowledge Portal).

Figure S8: Principal component analysis before (a) and after (b) instrumental
drift correction.

Table titles

Table 1: Characteristics of the study groups. Footnote: ' Median (IQR), n (%);
2 Kruskal-Wallis rank sum test, Pearson’s Chi-squared test.

Table S1: Patient inclusion criteria.
Table S2: Patient exclusion criteria.
Table S3: Serum clinical parameters of subjects.

Table S4: Composition of standard mixtures of reference compounds and
collision energies used for the acquisition of product ion scans.

Table S5: Parameter settings for preprocessing of LC-MS data using XCMS in
R.

Table S6: Target list for targeted peak extraction.
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Table S7: P-values of Kolmogorov-Smirnov test comparing the period length
between the first and the fourth quartile for control subjects.

Table S8: List of the GWAS variants and their associated p-values.

Table S9: List of clumped GWAS variants based on empirical estimates of
linkage disequilibrium between SNPs.

Table S10: Quartiles of serum clinical parameters for obese subjects.
Table S11: ID of targeted metabolites.
Table S12: Metabolite levels for all subjects.

Table S13: Targeted and untargeted metabolites information and their
annotation.

Table S14: Metabolite pathway enrichment in obese subjects.

Table S15: Lipidomics of a subset of subjects.
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Characteristic
Age (years)
Sex

Female

Male
BMI (kg/m?)
HbATc (%)
Fasting blood glucose (mmol/l)
Insulin (mU/1)
HOMA-IR
Total cholesterol (mmol/l)
HDL-cholesterol (mmol/l)
LDL-cholesterol (mmol/l)
Triglyceride (mmol/l)
Leptin (ng/ml)
Cortisol (nmol/l)
TSH (mU/1)
Urea (mmol/l)
Creatinine (umol/l)
ALAT (U/l)
ASAT (U/I)
GGT (U/1)
Alkaline phosphatase (U/l)
Total bilirubin (umol/l)
Heart beat

Systolic blood pressure (mm Hg)

Diastolic blood pressure (mm Hg)

"Median (IQR); n (%)

2 Kruskal-Wallis rank sum test; Pearson's Chi-squared test

Table 1. Characteristics of the study groups

Control, N = 97" Obese non T2D, N = 85" Non obese T2D, N = 52" Obese T2D, N = 40" p-value?

57 (51, 64)

56 (58% )

41 (42%)
24.3 (20.5, 27.3)
5.30 (5.10, 5.40)
5.10 (4.90, 5.40)

7(5,9)
15(1.1,2.2)
5.30 (4.70, 6.00)
1.72 (1.47, 2.08)
2.86 (2.34, 3.65)
1.01 0.79, 1.30)
53, 12)
389 (315, 457)
2.07 (1.62, 2.83)
4.70 (4.10, 5.90)

77 (65, 86)

21 (18, 29)

23 (19, 27)

21 (15, 31)

62 (52, 77)

10 (8, 15)
66 (60, 73)
118 (107, 131)
72 (66, 79)

52 (48, 61)

40 (47%)

45 (53%)
33.4 (31.4, 35.7)
5.40 (5.30, 5.60)
5.40 (5.10, 5.90)

14 (10, 21)

3.6 (2.4, 5.3)
5.30 (4.70, 5.90)
1.30 (1.11, 1.47)
3.19 (2.53, 3.75)
1.36 (1.09, 1.89)

23 (10, 40)
312 (254, 410)
2.15 (1.47, 2.91)
5.30 (4.40, 6.30)

77 (67, 89)
27 (21, 37)
24 (19, 29)
25 (18, 50)
67 (57, 77)

8(7,12)

70 (62, 79)
131 (119, 134)

78 (70, 86)

64 (57, 67)

18 (35%)

34 (65%)
26.1(23.4, 28.2)
7.00 (6.68, 7.80)
7.95 (7.07, 9.10)

10 (7, 13)

3.5 (2.4, 4.9)
4.90 (3.70, 5.60)
1.23 (1.04, 1.46)
2.45 (1.71, 3.35)
1.45 (1.06, 2.55)

7 @, 11)

360 (288, 466)

1.97 (1.52, 2.90)
5.60 (4.77, 7.50)
80 (67, 92)
28 (22, 33)
22 (19, 29)
28 (20, 43)

)

61 (1,74

(

9 (7, 12)
72 (65, 80)

130 (119, 141)

76 (70, 81)

64 (55, 70)

14 (35%)

26 (65%)
34.2 (32.5, 36.5)
7.65 (7.10, 8.53)
9.10 (7.77, 11.17)

21 (12, 28)

7.9(4.8,12.7)
5.00 (4.27, 5.60
1.15 (0.98, 1.48
2.51 (1.77, 3.19
1.81(1.26,2.78

23 (14, 28)

390 (274, 462)
2.04 (1.65, 3.17)
5.45 (4.97, 6.90)

82 (67, 91)

42 (26, 65)
30 (22, 36)

)
)

)
)
)
)

30, 89

7, 10)
70, 84)
133 (128, 138)
79 (73, 83)

50 (

76 (59, 95
8 (

78 (

<0.001
0.019

<0.001
<0.001
<0.001
<0.001
<0.001
0.004
<0.001
<0.001
<0.001
<0.001
0.003
>0.9
<0.001
0.5
<0.001
0.034
<0.001
0.027
0.012
<0.001
<0.001
<0.001
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Figure S5
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Figure S6

A
Leucine -
Isoleucine -
Valine -
Serotonin -
3—-methyl-2—oxovalerate -
3—-methyl-2-oxobutyrate -
4-methyl-2-oxopentanoate -
— Log10(p)
B
100 - 100 - 100 -
75 - 75 - 75 -
Leucine direction Isoleucine direction Valine direction
c 50 - [ Decrease € 5. [ Decrease < 50. [ Decrease
[ Increase [ Increase [ Increase
25 - 25. 25 -
0- 0- 0-
shorter Ioﬁger sh.orter Io.nger shc.>rter Iohger

Period length direction Period length direction Period length direction



Figure S7
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