The bound-state solution of the generalized inhomogeneous Hirota equation
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Abstract

We develop the Riemann-Hilbert (RH) method for the generalized inhomogeneous Hirota equation with zero boundary condition.
The RH problem is related to two kinds of scattering data: N simple poles and one N-order pole. Here we consider that when
the scattering data have one or more higher-order poles, the formulas of bound-state (BS) solitons and multiple BS solitons are
obtained, and the interaction between solitons and BS solitons are shown.
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1. Introduction

Nonlinear evolution equations can describe the basic dynamics of real systems and have important applications in the fields
of optics[1, 2], Bose—Einstein condensate[3], atmosphere[4] and plasma physics[5]. The soliton solutions of nonlinear partial
differential equations have also attracted the attention of scholars [6—8]. A significant feature of the solitons is that after each
interaction, the solitons maintain the same velocity and amplitude and travel in the same direction as before. Most of the literature
has studied the behavior of solitons and their interactions in integrable systems, which are very valuable for integrable systems.
When two or more basic solitons coexist at the same speed and position, bound-state (BS) solitons, also known as multipole
soliton solutions, will be generated. The BS soliton is a special soliton with multiple same velocity components. In this paper,

we plan to consider the generalized inhomogeneous Hirota equation[9],

ig + g + i(v1 + i x)gy + (V2 + 103)(qx + 2]4/’q)

. . ) ey
+20(qx + q 52, lal"dx') + iv (qm + 6lq] qx) = 0.
The Lax pair of Eq.(1) can be given by the AKNS method as follows
¢y = Pp,P = —idoz + U,
¢ = 06,0 = —4ivlos — 2i (vy + wox) oz + i (v1 + yx) dos )
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and

. 2 . 2
A=iu§° gl dx + i(vy + puax)lgl” + v (9qF — q*q.)., @
B = i(vy + 2x)qy — Vg — (U1 + 11X) g — 2v|q\2q + iuag.

where ¢ = ¢(x, 1) represents the complex envelope, ¢ is the eigenfunction, A is the spectral parameter, x and ¢ represent the
coordinates of time evolution and spatial distribution respectively, the subscript represents the partial derivative, * represents the
complex conjugate, and v, vy, u1, o are real numbers and vy + X, v + ppx are the linear inhomageneous coefficients. Eq.(1)
can be obtained by verifying the compatibility condition P, — Q, + [P, Q] = 0.

Ref.[10] analyzed the Lax pair, Backlund transformation and one-soliton solution of Eq.(1). In Ref.[9], the non-autonomous
soliton solutions are obtained by Darboux transformation. In Ref.[11], the bilinear form, one-soliton solution, two-soliton so-
lutions and N-soliton solutions of Eq.(1) are obtained by Hirota bilinear method and symbolic computation, respectively. In
Ref.[12], the N-soliton matrix related to the simple zeros in the Riemann-Hilbert (RH) problem of the Hirota equation is con-
structed. Then, the N-soliton matrix of the inhomogeneous variable coefficient Hirota equation can be obtained by special
relational transformation from the N-soliton matrix of the Hirota equation. Next, by using the generalized Darboux transfor-
mation, the higher-order soliton solutions corresponding to the elementary higher-order zeros in the RH problem of the Hirota
equation are obtained. In Ref.[13], the quantitative equivalence between Eq.(1), Heisenberg ferromagnetic spin and Wadati-
Konno-Ichikawa-Shimizu equation are proved by moving spiral space curve form and three-dimensional representation.

It is well known that the inverse scattering transformation (IST) method is an effective method for solving nonlinear integrable
equations including NLS hierarchy equations. It can be used to solve the initial value problem of integrable systems proposed
by Gardner, Greene, Kruskal and Miura [14, 15]. It is mainly based on the asymptotic properties of the Jost solution and the
corresponding Gelfand-Levitan-Marchenko integral equation theorem. Later, Zakharov and Shabat developed the RH method to
simplify the original IST method[16]. At present, the research of RH method has made many successful progresses in the field
of nonlinear integrable systems, such as the matrix modified Korteweg-de Vries equation [17], the reverse space-time nonlocal
Sasa—Satsuma equation[ 18] and the quartic NLS equation[19]. Recently, a robust IST is proposed for the focused NLS equation,
which is an improvement of the standard IST to deal with severe spectral singularity [20, 21]. In this paper, we will construct the
corresponding RH problem, and use the Laurent expansion to derive the BS soliton solution of Eq.(1)[22-25].

The rest of the paper is arranged as follows. In Sect.2, we perform spectral analysis on Eq.(1) and construct a suitable RH
problem for Eq.(1). In Sect.3, we assume that the analytical scattering coefficient has high-order zeros, which leads to the high-
order poles of the reflection coefficient in RH problem. By using the Laurent expansion, the BS soliton solutions and multi-BS
soliton solutions of the Eq.(1) can be derived. In Sect.4, the interaction of high-order pole solitons can be shown. In Sect.5, we

give the summary.

2. Riemann-Hilbert problem: zero boundary condition

2.1. Eigenfunction and asymptotic analysis

With the initial conditions of rapid decay[26]

q(x,0) = go(x), go(x) = 0, [x| — o0, (5)



the Lax pair have the following asymptotic Jost solution

U(x,1,2) = I, |x| — o0,

where 9(1) = Ax + 4v 3t + 2(vy + ppx)A%t — (v + pyx)At. Therefore, it is easy to do the following transformation

W= ¢ei6(/l)o'3 ’

there is

U(x,t,A) = I, |x| — oo,

at the same time, the Lax pair equivalent to Eq.(2) is

Y+ id[os,¢] = Uy,
Ur + [4ivd® + 2i(vs + pox) A — i(vy + pix) 2] [073, ¢/
= [4U/12U + 2 (va + p2x) AU — 2ivdo3U? + 2ivdos U, + V] U

This Lax pair can be written in the form of total differential

d(eie(/l) 3 W)
— PN {[Udx + (4vA2U + 2 (v + pax) AU
—2ivdo3U? + 2ivdo3 U, + V)dtly},

where @) ‘TA%// — ) wei(i(/l)og'
Letting ¢ be Taylor expansion at o0
y®

S () R ST
lﬁlﬁJr/lJr

Then, we take the above formula into Eq.(9) and compare the power coefficient of A to get
X— part
00 : i[0'3,1//(0)] —0,
0 (1) g +i[orsuV| = Uy ®;
t— part
0 (/13) s div [0’3, 1,0(0)] =0,
(0] (/12) s div [0'3,1,//(0)] + 2i (vp + pox) [0'3,111(0)] = 4le//(0).

It is inferred from Eq.(12) and Eq.(14) that Yy isa diagonal matrix, from Eq.(13) and Eq.(15) that

w0

(6)

)

®)

(€))

(10)

(1)

(12)

13)

(14)

5)

(16)

Eq.(11) takes limits on both sides of x and A at the same time. Since (?) has nothing to do with x and A, after exchanging
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order, it has

o o A
lim lim ¢ = lim lim 1//()+—+~-~ . 7
A—0 |x| >0 |x| =00 A—00 A
So we can get (9 = I, then get
Y =1,1— c0. (18)

Then take %(*) = I into Eq.(15), and compare the corresponding elements of the matrix to get
_ (1)> PR
q(x.1) = 2i (t!f ,, = 20 lim ()12 (19)

Since the integral of Eq.(10) is path independent, we can choose two special ways (—o0,t) — (x,f) and (+00,7) — (x,¢). Thus

we can obtain two characteristic functions

X

Yo (x,1,4) =1+ f e DG (ioy Uy, 1) s (3,1, A)dy. (20)

+oo

Theorem 1. The jost solution Y4 (x,t, 1) have the following analytic properties:
o[y_],, [¢+], are analytic in {A|ImA > 0},
o[y_],, [W+], are analytic in {A]ImA < 0}.

Proof. For the above integral equation, we directly calculate that

. A O _iqe—ZM(X—)')
e D (g3 Uy, 1,2)) = : Q1)
iq*eZi/l(xfy) 0
and
eZi/l(xfy) _ eZi(xfy)Re/1672(xfy)Im/l’672i/l(x7y) _ 672i(x7y)Rel672(x7y)1m/l’ (22)

because y < x, the first column of _ is analytic in C and the second column of ¢ _ is analytic in C_, denoted by

vo = [lv-1{ . lv-15 ] (23)

the same can prove the first column of i is analytic in C_ and the second column of ¥ is analytic in C , denoted by

U = [l sy ] (24)

From Abel’s theorem, we can get det (¢), = det (¢), = 0. Based on Eq.(7), we have
det(y) = det(¢) det(e?D73) = det(¢p), (25)

then
det (¢), = det (), = 0, (26)
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it shows that det(y) has nothing to do with x, 7, and then from progressive  — I (]x| — o0), we can know

det(y) = |llim det(y) = det ( l‘im zﬁ) =1, 27
specially
det(y 1) = det(y) = L. (28)

Since Y+ = ¢+e®D73 is the matrix solution of Eq.(9), the two solutions are linearly related, then

Uy (x.1,4) = (.1, )e DS (1) (29)

with

S (1) = si1(2) 512 () ’ (30)

521 (1) s22(4)

where S (1) is independent of x, f and is called spectral matrix function. Taking the determinant on both sides of Eq.(29) to get

det(S (1)) = 1. 3D
Based on the symmetry condition
oW (x, 1, A% )0y = Yy (x,1, 1), (32)
0'25*(/1*)0'2 :S(/l), (33)
0 —i
where 0, = , We can get
i 0
si () = s& (A%), 521 (1) = —s% (2%). (34)

Then S (1) can be written as

S(A) = ) @ , (35)

—STZ (A*) 52 ()

with 55 (1), 512 (1) are called scattering data. Moreover, Eq.(7) and Eq.(29) lead to
S() = "D Fuly, (36)
and

522 (A) = det ([y—]y, [+1) . 512 () = ') det [+ v-1o) - (37)

Then, we will find that s, (1) and s1, (1) can be represented by jost solution 4 (x,#,4). According to the analyticity of jost

solution 4 (x,7, 1), we can get

Theorem 2. sy, (1), 512 () satisfy
o[sn (D)) + [su (D) =1,1€R,



57 (/l) — 1, S12 (ﬂ) — 0 (/l e OO) s
o572, (A) is analytic in {A]ImA > 0}.

2.2. The Riemann-Hilbert problem

Expanding Eq.(29), we have
[Wily — -]y s% (1%) = —[w_1,e "W sty (2%),

Wil = [W-],e 2 D515 (2) + [Y_]o52 (1),

furthermore, we have

_ 1 51 (4%) Q200
[¢—]1 - S;kz (/l*) [lﬁ-‘r]l + S;z (ﬂ*) [lﬁ—]z s
[Vl s12 ()

_ —2i0(A)
59 (/l) S;Z (/l*)SZZ (/l) [l/j+]1e +

S;‘z (/l*) S22 (/1)

The above formula is changed into matrix form

S]z(/l)

(w1,

(1) = () 0 ( a0

sSE(E) sE(%)sn(A)

It is known from Eq.(31) and Eq.(35) that
det (S (4)) = 533 (4%) 522 () + 535 (4%) 512 (1) = L.

Next, letting p(1) = 2243,

we know that for A € R, there is

So, Eq.(42) can be converted into

([w]l [¢+]2> = ( [m]‘),w]z) o200 1 p()

’ 522 (/l S;z (/l*

Define piecewise analytic functions

1° 522 (/1)

| Eeds v, | ma <o

(et ) = [[lﬁ—] [‘”]Z],Im4>o,

p*(A) 1+ ()

).

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)



my (x,t,1) = lim m(x,1,4 + ig), (s, A € R). (48)

=0+
From Eq.(46), we have
my (x,6,2) = m_ (x,£,1) J (1), (49)
and jump matrix
S = e [ ) bore) (50)
() 1+ [r)) ()@ 1+ ()

Theorem 3. Based on the above situations, the following RH problem can be obtained
o m (x,t,4) is analytic in C\R,
emy (x,t,d) =m_ (x,1,4) J (1) ,A€R,

e Normalization: m (x,t,4) — 1,1 — o0.

From Eq.(19), the solution g(x, ) of the generalized inhomogeneous Hirota equation can be given by m (x, #, 1) as

g (x,7) = lim (2id) myy (x,1,) = 2i lim (Am (x,1,2)),,. (51)

A—00 A—00

It is worth noting that if the reflection coefficient sy, (1) # 0(VA), the above RH problem can be transformed into the
regular RH problem by the method of the falling line, and then solved by the Plemelj formula [27]. If the reflection coefficient
s22 (1) = 0 and its zero point is simple, we can apply the residue condition to solve the problem. If it has multiple high-order
poles, the residue condition is not sufficient to obtain the solution of RH problem, which will involve the coefficients of the
singular part of the Laurent expansion at the corresponding high-order poles [23, 25, 28]. Therefore, in the next section, we will

solve the RH problem with multiple higher-order poles.

3. The RH problem with multiple higher-order poles
Since s5; (4) is analytic in the upper half plane, s, (1) has finite zeros in the upper half plane, but there are no singular points.
Here, we consider the case of no reflection, that is, 512 (1) = 0. Suppose s2; (1) has N higher order poles and s3, (1*) has N

N
poles {/l;", Im/l;‘f < O}j:] , 80 522 () and s3, (1*) can be expanded as follows

522 (/l) = (/l — /l])n] (/1 — /lQ)nz X oo (/l — /lN)nNS() (/l) . (52)
s (%) = (A= 25)" (A= 25)" x (A= 2F)" s (%), (53)
where 59 (1) # 0, s (1*) # 0 (VA € {4]ImA > 0}).

3.1. The RH problem with one higher-order pole

We first consider the case of one higher-order pole 4 = Ay, so we have

522 () = (A= 29)50 (1), (54)



where ¢ (1) is analytic in C and s (1) # 0(Vk € {k[Imk > 0}). Based on Laurent series expansion at the higher-order pole,

o () and p* (1*) can be expressed as

Pl
p(A) =po () + ), ———.p" (%) = p5 (A¥) + (55)
;(ﬂ—ﬂo)l ,; A /l*)
where
] 1 aN—l N
pr=Jim e (- A0 e (W] 1= 12N (56)

Therefore m;; and m;, are meromorphic functions with one higher-pole 1y and /l;", respectively. According to the normalization

condition, the decomposition of m;; and m, can be defined as

mllxt/l 2 /l /l*) +lm12(xt/l Z/l(—);ot)) 57)

where H, (x,1),L, (x,t) (n = 1,2--- N) are unknown functions. If H, (x,f), L, (x,) are addressed, we can derive one high-
order pole solution g(x, t) of the generalized inhomogeneous Hirota equation. In order to find my; and m,,, according to Taylor

expansion at the analytic point, we have

6—219(/1) _ Z &m (x, t) (/l — /lo)m, (58)
m=0
. =
o200 _ Z g (x,1) (A — ,1:‘)’", (59)
+00
myy (x,1,2) = Z Sm(x,1) (2 — /lo)'", (60)
m=0
+
where
L d" e
gm ( ) /lli)n;llo % m—me s (62)
1 o™
Sm (x,1) = AIL/IO m! aﬁmm“ (x2), ©
1 om
T (x,1) = lim ——=—my (x,1,1), (©9

A ml oAm

withm = 0,1,2---. Based on Eq.(46) and Eq.(47), we have scattering relation in the form

my (x,,2) = [y ], = — + [w_]e " Wp* (1), (65)

ma (n1.) = 25— ) [y, (14 F). (66)
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Then we bring the above formulas into Taylor expansion. Letting |1] — o0, by comparing the coefficients of (/l — /l;“)_”,

H, (x,1)(n=1,2,---N) can be expressed as

N i—n

==Y >pre* T (67)

i=nm=0

Similarly, by comparing the coefficients of (1 — 4,) ™", L, (x,) (n = 1,2, - - - N) can be expressed as

N i—n

= Z Z Pi8i—n—mSm- (68)

i=nm=0

Consequently, H, (x,) and L, (x, 7) can be expressed by 7,, (x, 1) and g, (x, t) respectively. But we still can not get H,, (x, 1) and

L, (x,t). Now, we bring my; (x, ¢, 4) in Eq.(57) into 7,,, (x, ) to get

— (69)
= m (4 = 20)"™"
where m = 0, 1,2. - - -, likewise, we bring my; (x, 1, 2) in Eq.(57) into ¢, (x, ) to get
1+ Z T L(Xt))m+,,,m=0,
Sm(x,1) = _ (70)
) % m+n 1 (_l)mHn(xj) 123
n=l m (=)™
Taking the above equations into Eq.(67) and Eq.(68), we can get the representation of H, (x,) and L, (x, ) as follows
N i-n N m
m+j—1 \(=1)"L;(x,1)
H, (x P 8w 71
; Z:: g m (ax — 20)""
N N i—n N m
m+j—1 \(=1)"H;(x,1)
X t) = Zpigi n Z Z Z —,szgz n—m- (72)
i=n i=nm=0 j=1 m (/10 — /l*)

The above two equations form a linear system. In order to find the exact forms of my; (x, ¢, 1) and m,, (x, ¢, 1) more conveniently,

we introduce some definitions of symbols as follows

|Hy = (Hi,Ha, - Hy)", |Ly = (L1, L, Ly)", (73)
|)/> = (71,7’2, o ")/N)T, ')’n ()C, t) = Zpl‘gfn’ (74)
(w1 ()
Q=[Qlyn=|-2 2 ﬁ ; (75
i=nm=0 m ( 0 O) NxN



where n, j = 1,2,--- N and T denotes transposition of matrix. So H, (x,t) and L, (x, ) can also be expressed as
|H) =Qly). [L) =|y) —Q"[H).
Combining the above two formulas, we can get
|H) = QI +Q*Q) 7 y), |L) = (1 +Q*Q) " ).

Substituting the above formulas into the expression of m; (x,, 1) and my; (x, ¢, 1) in Eq.(57). Letting

1 1 1
al= <(ﬂ—ﬂ?)’(ﬁ—ﬂ:)2m (ﬂ—ﬂ:‘)”)’

then we can get
_det (I +Q*Q + |y)(A()[Q)
B det (1 + Q*Q) ’

mi (x,0,2) = 1+ (A Q)| QI +Q*Q) ' |y)

det (1 + Q*Q + |y) (A* (2¥)])
det (I + Q*Q)

miz (x,1,4) = (A* (%) (I + Q*Q) ' |y) = 1.

(76)

(77)

(78)

(79)

(80)

Based on Eq.(51), N-order BS solition of the generation inhomogeneous Hirota equation can be obtained, which can be expressed

as follows
g (x,t) =2i lim (Am(x,t,2)),

A—00

~ lim 2i2 (<A* ()| (1 + Q* Q)" |7>)

L (det I+ Q+|ndn)) 1)

det (1 + Q*Q)

where (A°| = (1,0,0---0).

3.2. RH problem with N higher-order poles

In this section, we study the scattering coefficient with N different higher-order poles A;, A2, - - - Ay, the order of 4;, 45, - - -

81)

An

are ny, ny - - - ny, respectively. The method is similar to that of a higher order pole, then the expansion of sy, (1) is Eq.(52). The

Laurent series of p (1) is expanded to

P +22 e W)= )+ 30

i= lm,—l i=1mi=1

where

1 an,vfm,- N .
— (A= )"p (D], (i=1,2,---N),

Pim, = lim
YIS (n—m)! (4 — )

10
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and po (1) (VA € {1|ImA > 0}) is analytic in C;. According to the normalization condition, A, A5, - - - Ay are also the poles of

my; and my,. Then m;; and m, can be defined as

miy (x,1,1) = ZZ _A* +1m12xm ZZJ A,, (84)

r=1i=1 rlll

wherei = 1,2,---Nandr = 1,2, - -n;. If we solve H;, (x,1) and L; - (x, ), m; can be obtained. Then m,; and m;, then we can
get the solution ¢(x, ) of the generalized inhomogeneous Hirota equation. By using the same method as the previous section, we

have
nig mi—r n

—1 —1 n ,
SRS | e @
-4

mimr =0 g—11=1 n (aF
nj mi—r n n+gq-— 1 (—I)HHL (.X, l)
Z Pim;&imi—r + Z 2 Z Z ﬁpi,nﬁgi,mi—n—r' (86)
mi=r mi=r n=0 g=11[=1 n (/ll - /ll )
We introduce
|H) = (Hi,Ha,--- ,H )T \H‘>=( ilaHi,Za"',Hi,n,)T’
|L> = <L19L29" .L ) |L> - ll’ l29"' ’Li,n,')T’ (87)

T
|7> = (71’)/27' o »VN) 5 |yl> = (Yi,la')’i,z»' o 77i,n,~) >

momr (g1 \ (0" 8k, .,
Q= [Quilyn = | = 2 D] : (88)

Mnixn ® n+q
m=r 1=0 n (AF =)

n; Xn;

(Al

(Aol = ((Ag

Al s (| = 20) (89)

Then, the multiple BS solitons of the generalized inhomogeneous Hirota equation are derived as

det (1 + Q*Q + |Ayp)) 1]

det (1 + Q*Q) ©0)

q(x,t) =2i

4. Some solutions of the generalized inhomogeneous Hirota equation

4.1. Solution related to one simple pole

For N = 1, letting 1y = £ + in be a first order pole of s, (1), then, based on Eq.(81) we can easily get the first-order BS

P1
2

where @ = x+4v (€ = 367°) t+2 (va + pox) (€ —1?) t — & (vg + x) tand B = nx +4v (3 — ) t+4én (Vs + pox) t —
n(vi +mx)t. Herewesetp; = LLv =v; = v, =y = L,up = 0and € = 1,p = —%. In fig.1 and fig.2 ,the patterns of

soliton solution of the generalized inhomogeneous Hirota equation is

P180
1 p¥e¥pigo

(a3 —)°

q=2i = 2ine~*sech (2[3 +1In

first-order BS solution are shown.
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Figure 1: The soliton solution with one simple pole of the generalized inhomo- Figure 2: The density plot with one simple pole of the generalized inhomoge-
geneous Hirota equation with 1} = 1 — %i. neous Hirota equation with 4} = 1 — %i.

4.2. Solution related to one second-order pole

For N = 2, letting A = A; be a second-order pole of 5,5 (1), then, we can easily get

p(ﬂ)=po(/l)+ﬂflﬂl+(/1le1)2, 92)
_pj‘gé“ . _pggi“ p¥ ok I p¥ ek _ p¥ef _ 20 oif i
e ©3)
G-a)
and
ly) = ( P180 + 0281 P280 )T, Aoy = ( 10 ) (94)

On the basis of Eq.(81), lettingp; = pp = l,v=vi =v, =, = 1,4 =0and 4, = % + %gi, the second-order BS soliton

solutions of the generalized inhomageneous Hirota equation is obtained as follows

Ay (x,1) €510 1 Ay (x, 1) B2 (60

b 95
s (x,1) 50D + 243¢B (D) 1 768 )

q(x1) =

12



where

Ay (x,1) = 4096 \/3it + 37888¢ + 1536i + 3072x,

By (x,1) = V3 (8t+6x) 21(23;+3x)

As (x,1) = 2304 [ V3 (3 +1i) + L — 30— 34],

B (x,1) = \/§(Z4t+18x) B %,, _ 2% 96)
As (x,1) = (253441 — 2304x) /3 + 36275272 + 56832tx + 2304x> + 3168,

Bs (x,1) = 4f(4t+3x)

By (x,1) = W—'W)

The fig.3 and fig.4 illustrate the interaction of two solitons. Without the influence of inhomogeneous parameters, two solitons
pass through each other, and their shapes remain unchanged except for phase shift. Before and after the interaction, the two

solitons have the same amplitude, and the amplitude will change during the interaction.

Figure 3: The second-order BS soliton solution of the generalized inhomoge- Figure 4: The density plot of the generalized inhomogeneous Hirota equation
neous Hirota equation with 1} = % + %L with 1} = % + %gi.

4.3. Solution related to one simple pole and one second-order pole

Letting 2 = A, be a simple pole of s, (1) and A = A, be a second-order pole of sy, (1), then we can easily get

P11 P12 021
A=po) Tt w T 97
P =po (D) + =7 A i n ©7)
Q Q

Q- 11 12 ’ o

Qo Qp

T

|7> = ( P1,1810 T P1281,1 P12810 P2,1820 ) s (99)
Ay=(1 0 1), (100)

13



with

_plﬂ.‘lgfo _ P8t P8 _ ) . P8t 20581
Q- ( A= ﬂ?";/h* (F-a) (F-a) (/1}"*—/};)2 (aF-a)’ ’
_ Pia8io __Pip8ip
= (F—a)’
_P;’flé’fo _ Piagt P8t
Q ( A=t A=k (ki) (101)
2= ® K >
__Piadio
(4 )’
Q) = ( _piflg;,‘() _ p;.glgfo ; > Q= _P;Tlg;() )
F-q (A —a1) -2

Here, we let p; 1 = p12 = p21 = 1, =v; = vy = 1,41 = up = 0. Based on Eq.(90), we can derive the explicit solution for the

generalized inhomogeneous Hirota equation. The interaction between a soliton and a BS soliton are shown in fig.5 and fig.6.

E{{
‘ 0 10 20

-10

X

Figure 5: One soliton solution and one second-order BS soliton solution of the Figure 6: The density plot of the generalized inhomogeneous Hirota equation

. . . . . _l_l _l_l . _l_l _l_l
generalized inhomogeneous Hirota equation with 4) = 5 — zi,dp = 5 — gi. withd; = 53 — 7, = 5 — 5i.

4.4. Solution related to two second-order poles

Letting A = 4; and A = A, be second-order pole of sy, (1), then we can easily get

P11 P12 P21 P2,1
p(A) =po(2) + ——+ R o L — (102)
A= A-1) A-b  (A-1)

Q Q
Q- 11 12 ’ (103)
Qo Qp
T
ly) = < P11810 +P12811 P12810 P2,1820 F 022821 P22820 ) ) (104)
|A0>=<1 0 1 0), (105)
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with

* K EpEs L * K EpEs * %
_ P80 Piadia Pi2810 Pri8i0 Pia811 2P12810
* * 2 2 2 3
Q= A= A= (aF-a) (A —n) (AF—1) (aF—a1)
- k% * %k
_ Piadio __Piadio
3 2
A= (/1?‘—/11
k% * %k * % * % * ok * %
_ Pii8io  Piadi Pi2810 _ Pii8io  Piadi 201,810
Gt Af-b  (aFop)’ A=t Af-b T (aFop)
QIZ - L S * % >
) ol
AF—a *_ )’
* K % % ’ * K * ok (/ll /1:)* * % (106)
P& Papba P22820 P21820 P22821 2p3,2830
3 % 2 z 2 3
Gy = Lot e () (=) (=) (i -a)
= kK ® K
P28 _ P28
T 2
Eol (1)
kK * K * K kK ® K k%
P80 Paad P22820 _ P18 P2282.1 2p32850
3 * 2 P 2 3
Qy = Lo Ak () (=) (=) (-)
- * ok * %
P28 P28
* 2
L= (1F—n)

Here we let p1; = p12 = p21 = LLvu = v; = vp = L,y = up = 0. Based on Eq.(90), we can get the explicit solution of the

generalized inhomogeneous Hirota equation. The interaction between the two BS solitons are shown in fig.7 and fig.8.

lql

Figure 7: Two second-order BS solitons solution of the generalized inhomoge- Figure 8: The density plot of the generalized inhomogeneous Hirota equation
neous Hirota equation with A = % + %i, Ay = % + %i.

5. Summary

with Ay = § + 3ilp =1 + 4i.

In this paper, based on the spectral analysis of Lax pair, the Riemann-Hilbert (RH) method is used to study the generalized
inhomogeneous Hirota equation with one or more high-order poles. By the analyticity and symmetry of the characteristic
function, we transform the zero boundary initial value problem of Eq.(1) into RH problem. When the scattering data have one
high-order pole and multiple high-order poles respectively, the RH problem is solved by its Laurent expansion, and the formula
of bound-state (BS) soliton corresponding to one high-order pole is obtained, as shown in Eq.(81), and the formula of BS soliton

corresponding to multiple high-order poles is obtained, as shown in Eq.(90), and the interaction between solitons are shown in
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Fig.(1-8).

The one-soliton solution and two-soliton solution of the generalized inhomogeneous Hirota equation can be given by the
most basic Darboux transformation [9], but this method can not find the high-order soliton solution, so it needs to be generalized.
The generalized Darboux transformation can derive the high-order soliton solution corresponding to the basic high-order zeros
in the RH problem of the Hirota equation, and then the high-order soliton solution of the generalized inhomogeneous variable
coefficient Hirota equation can be obtained by using the corresponding transformation relationship [12], but this method is
more complicated. In this paper, we directly solve the RH problem with high-order poles, and the formulas of BS solitons and
multiple solitons are expressed. The obtained solution has more extensive significance and richer content. In addition, the method
proposed in this paper can be further extended to solve some other nonlinear systems, and can be optimized to improve future

results.
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