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Abstract

We develop the Riemann-Hilbert (RH) method for the generalized inhomogeneous Hirota equation with zero boundary condition.

The RH problem is related to two kinds of scattering data: N simple poles and one N-order pole. Here we consider that when

the scattering data have one or more higher-order poles, the formulas of bound-state (BS) solitons and multiple BS solitons are

obtained, and the interaction between solitons and BS solitons are shown.
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1. Introduction

Nonlinear evolution equations can describe the basic dynamics of real systems and have important applications in the fields

of optics[1, 2], Bose–Einstein condensate[3], atmosphere[4] and plasma physics[5]. The soliton solutions of nonlinear partial

differential equations have also attracted the attention of scholars [6–8]. A significant feature of the solitons is that after each

interaction, the solitons maintain the same velocity and amplitude and travel in the same direction as before. Most of the literature

has studied the behavior of solitons and their interactions in integrable systems, which are very valuable for integrable systems.

When two or more basic solitons coexist at the same speed and position, bound-state (BS) solitons, also known as multipole

soliton solutions, will be generated. The BS soliton is a special soliton with multiple same velocity components. In this paper,

we plan to consider the generalized inhomogeneous Hirota equation[9],

iqt ` iµ1q ` ipυ1 ` µ1xqqx ` pυ2 ` µ2xqpqxx ` 2|q|
2qq

`2µ2pqx ` q
şx

´8
|q|

2dx1q ` iυ
´

qxxx ` 6|q|
2qx

¯

“ 0.
(1)

The Lax pair of Eq.(1) can be given by the AKNS method as follows

ϕx “ Pϕ, P “ ´iλσ3 ` U,

ϕt “ Qϕ,Q “ ´4iυλ3σ3 ´ 2i pυ2 ` µ2xq λ2σ3 ` i pυ1 ` µ1xq λσ3

` 4υλ2U ` 2 pυ2 ` µ2xq λU ´ 2iυλσ3U2 ` 2iυλσ3Ux ` V,

(2)

where

σ3 “

¨

˝

1 0

0 ´1

˛

‚,U “

¨

˝

0 q

´q˚ 0

˛

‚,V “

¨

˝

A B

´B˚ ´A

˛

‚, (3)
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and
A “ iµ2

şx
´8

|q|
2dx1 ` ipυ2 ` µ2xq|q|

2
` υ pqq˚

x ´ q˚qxq ,

B “ ipυ2 ` µ2xqqx ´ υqxx ´ pυ1 ` µ1xq q ´ 2υ|q|
2q ` iµ2q.

(4)

where q “ qpx, tq represents the complex envelope, ϕ is the eigenfunction, λ is the spectral parameter, x and t represent the

coordinates of time evolution and spatial distribution respectively, the subscript represents the partial derivative, * represents the

complex conjugate, and υ, υ1, µ1, µ2 are real numbers and υ1 ` µ1x, υ2 ` µ2x are the linear inhomageneous coefficients. Eq.(1)

can be obtained by verifying the compatibility condition Pt ´ Qx ` rP,Qs “ 0.

Ref.[10] analyzed the Lax pair, B:acklund transformation and one-soliton solution of Eq.(1). In Ref.[9], the non-autonomous

soliton solutions are obtained by Darboux transformation. In Ref.[11], the bilinear form, one-soliton solution, two-soliton so-

lutions and N-soliton solutions of Eq.(1) are obtained by Hirota bilinear method and symbolic computation, respectively. In

Ref.[12], the N-soliton matrix related to the simple zeros in the Riemann-Hilbert (RH) problem of the Hirota equation is con-

structed. Then, the N-soliton matrix of the inhomogeneous variable coefficient Hirota equation can be obtained by special

relational transformation from the N-soliton matrix of the Hirota equation. Next, by using the generalized Darboux transfor-

mation, the higher-order soliton solutions corresponding to the elementary higher-order zeros in the RH problem of the Hirota

equation are obtained. In Ref.[13], the quantitative equivalence between Eq.(1), Heisenberg ferromagnetic spin and Wadati-

Konno-Ichikawa-Shimizu equation are proved by moving spiral space curve form and three-dimensional representation.

It is well known that the inverse scattering transformation (IST) method is an effective method for solving nonlinear integrable

equations including NLS hierarchy equations. It can be used to solve the initial value problem of integrable systems proposed

by Gardner, Greene, Kruskal and Miura [14, 15]. It is mainly based on the asymptotic properties of the Jost solution and the

corresponding Gelfand-Levitan-Marchenko integral equation theorem. Later, Zakharov and Shabat developed the RH method to

simplify the original IST method[16]. At present, the research of RH method has made many successful progresses in the field

of nonlinear integrable systems, such as the matrix modified Korteweg-de Vries equation [17], the reverse space-time nonlocal

Sasa–Satsuma equation[18] and the quartic NLS equation[19]. Recently, a robust IST is proposed for the focused NLS equation,

which is an improvement of the standard IST to deal with severe spectral singularity [20, 21]. In this paper, we will construct the

corresponding RH problem, and use the Laurent expansion to derive the BS soliton solution of Eq.(1)[22–25].

The rest of the paper is arranged as follows. In Sect.2, we perform spectral analysis on Eq.(1) and construct a suitable RH

problem for Eq.(1). In Sect.3, we assume that the analytical scattering coefficient has high-order zeros, which leads to the high-

order poles of the reflection coefficient in RH problem. By using the Laurent expansion, the BS soliton solutions and multi-BS

soliton solutions of the Eq.(1) can be derived. In Sect.4, the interaction of high-order pole solitons can be shown. In Sect.5, we

give the summary.

2. Riemann-Hilbert problem: zero boundary condition

2.1. Eigenfunction and asymptotic analysis

With the initial conditions of rapid decay[26]

qpx, 0q “ q0pxq, q0pxq Ñ 0, |x| Ñ 8, (5)
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the Lax pair have the following asymptotic Jost solution

ψpx, t, λq Ñ I, |x| Ñ 8, (6)

where θpλq “ λx ` 4υλ3t ` 2pυ2 ` µ2xqλ2t ´ pυ1 ` µ1xqλt. Therefore, it is easy to do the following transformation

ψ “ ϕeiθpλqσ3 , (7)

there is

ψpx, t, λq Ñ I, |x| Ñ 8, (8)

at the same time, the Lax pair equivalent to Eq.(2) is

ψx ` iλ rσ3, ψs “ Uψ,

ψt `
“

4iυλ3 ` 2ipυ2 ` µ2xqλ2 ´ ipυ1 ` µ1xqλ
‰

rσ3, ψs

“
“

4υλ2U ` 2 pυ2 ` µ2xq λU ´ 2iυλσ3U2 ` 2iυλσ3Ux ` V
‰

ψ.

(9)

This Lax pair can be written in the form of total differential

dpeiθpλq
^
σ3ψq

“ eiθpλq
^
σ3 trUdx ` p4υλ2U ` 2 pυ2 ` µ2xq λU

´2iυλσ3U2 ` 2iυλσ3Ux ` Vqdtsψu,

(10)

where eiθpλq
^
σ3ψ “ eiθpλqσ3ψeiθpλqσ3 .

Letting ψ be Taylor expansion at 8

ψ “ ψp0q `
ψp1q

λ
` ¨ ¨ ¨ . (11)

Then, we take the above formula into Eq.(9) and compare the power coefficient of λ to get

x´ part

O pλq : i
”

σ3, ψ
p0q

ı

“ 0, (12)

O
`

λ0˘

: ψp0q
x ` i

”

σ3, ψ
p1q

ı

“ Uψp0q; (13)

t´ part

O
`

λ3˘

: 4iυ
”

σ3, ψ
p0q

ı

“ 0, (14)

O
`

λ2˘

: 4iυ
”

σ3, ψ
p0q

ı

` 2i pυ2 ` µ2xq

”

σ3, ψ
p0q

ı

“ 4υUψp0q. (15)

It is inferred from Eq.(12) and Eq.(14) that ψp0q is a diagonal matrix, from Eq.(13) and Eq.(15) that

ψ
p0q
x “ 0. (16)

Eq.(11) takes limits on both sides of x and λ at the same time. Since ψp0q has nothing to do with x and λ, after exchanging
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order, it has

lim
λÑ8

lim
|x|Ñ8

ψ “ lim
|x|Ñ8

lim
λÑ8

ˆ

ψp0q `
ψp1q

λ
` ¨ ¨ ¨

˙

. (17)

So we can get ψp0q “ I, then get

ψ “ I, λ Ñ 8. (18)

Then take ψp0q “ I into Eq.(15), and compare the corresponding elements of the matrix to get

qpx, tq “ 2i
´

ψp1q
¯

12
“ 2i lim

λÑ8
pλψq12. (19)

Since the integral of Eq.(10) is path independent, we can choose two special ways p´8, tq Ñ px, tq and p`8, tq Ñ px, tq. Thus

we can obtain two characteristic functions

ψ˘px, t, λq “ I ˘

ż x

˘8

e´iλpx´yq
^
σ3 p´iσ3Upy, tqqψ˘py, t, λqdy. (20)

Theorem 1. The jost solution ψ˘ px, t, λq have the following analytic properties:

‚rψ´s1, rψ`s2 are analytic in tλ|Imλ ą 0u,

‚rψ´s2, rψ`s1 are analytic in tλ|Imλ ă 0u.

Proof. For the above integral equation, we directly calculate that

e´iλpx´yq
^
σ3 p´iσ3Upy, t, λqq “

¨

˝

0 ´iqe´2iλpx´yq

iq˚e2iλpx´yq 0

˛

‚, (21)

and

e2iλpx´yq “ e2ipx´yqReλe´2px´yqImλ, e´2iλpx´yq “ e´2ipx´yqReλe´2px´yqImλ, (22)

because y ă x, the first column of ψ´ is analytic in C` and the second column of ψ´ is analytic in C´, denoted by

ψ´ “
“

rψ´s
`

1 , rψ´s
´

2

‰

, (23)

the same can prove the first column of ψ` is analytic in C´ and the second column of ψ` is analytic in C` , denoted by

ψ` “
“

rψ`s
´

1 , rψ`s
`

2

‰

. (24)

From Abel’s theorem, we can get det pϕqx “ det pϕqt “ 0. Based on Eq.(7), we have

detpψq “ detpϕq detpeiθpλqσ3 q “ detpϕq, (25)

then

det pψqx “ det pψqt “ 0, (26)
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it shows that detpψq has nothing to do with x, t, and then from progressive ψ Ñ I p|x| Ñ 8q, we can know

detpψq “ lim
|x|Ñ8

detpψq “ det
ˆ

lim
|x|Ñ8

ψ

˙

“ 1, (27)

specially

detpψ˘q “ detpψq “ 1. (28)

Since ψ˘ “ ϕ˘eiθpλqσ3 is the matrix solution of Eq.(9), the two solutions are linearly related, then

ψ`px, t, λq “ ψ´px, t, λqe´iθpλq
^
σ3 S pλq , (29)

with

S pλq “

¨

˝

s11 pλq s12 pλq

s21 pλq s22 pλq

˛

‚, (30)

where S pλq is independent of x, t and is called spectral matrix function. Taking the determinant on both sides of Eq.(29) to get

detpS pλqq “ 1. (31)

Based on the symmetry condition

σ2ψ
˚
˘px, t, λ˚qσ2 “ ψ˘px, t, λq, (32)

σ2S ˚pλ˚qσ2 “ S pλq, (33)

where σ2 “

¨

˝

0 ´i

i 0

˛

‚, we can get

s11 pλq “ s˚

22
pλ˚q , s21 pλq “ ´s˚

12
pλ˚q . (34)

Then S pλq can be written as

S pλq “

¨

˝

s˚
22 pλ˚q s12 pλq

´s˚
12 pλ˚q s22 pλq

˛

‚, (35)

with s22 pλq , s12 pλq are called scattering data. Moreover, Eq.(7) and Eq.(29) lead to

S pλq “ eiθpλq
^
σ3ψ´1

´ ψ` (36)

and

s22 pλq “ det prψ´s1, rψ`s2q , s12 pλq “ e2iθpλq det prψ`s1, rψ´s2q . (37)

Then, we will find that s22 pλq and s12 pλq can be represented by jost solution ψ˘px, t, λq. According to the analyticity of jost

solution ψ˘px, t, λq, we can get

Theorem 2. s22 pλq , s12 pλq satisfy

‚|s22 pλq|
2

` |s12 pλq|
2

“ 1, λ P R,
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‚s22 pλq Ñ 1, s12 pλq Ñ 0 pλ Ñ 8q ,

‚s22 pλq is analytic in tλ|Imλ ą 0u.

2.2. The Riemann-Hilbert problem

Expanding Eq.(29), we have

rψ`s1 ´ rψ´s1s˚
22 pλ˚q “ ´rψ´s2e2iθpλqs˚

12 pλ˚q , (38)

rψ`s2 “ rψ´s1e´2iθpλqs12 pλq ` rψ´s2s22 pλq , (39)

furthermore, we have

rψ´s1 “
1

s˚
22 pλ˚q

rψ`s1 `
s˚

12 pλ˚q

s˚
22 pλ˚q

rψ´s2e2iθpλq, (40)

rψ`s2

s22 pλq
“

s12 pλq

s˚
22 pλ˚q s22 pλq

rψ`s1e´2iθpλq `
1

s˚
22 pλ˚q s22 pλq

rψ´s2. (41)

The above formula is changed into matrix form

ˆ

rψ´s1,
rψ`s2

s22 pλq

˙

“

ˆ

rψ`s1

s˚
22 pλ˚q

, rψ´s2

˙

e´2iθpλq
^
σ3

¨

˝

1 s12pλq

s22pλq

s˚
12pλ

˚q

s˚
22pλ˚q

1
s˚

22pλ˚qs22pλq

˛

‚. (42)

It is known from Eq.(31) and Eq.(35) that

det pS pλqq “ s˚
22 pλ˚q s22 pλq ` s˚

12 pλ˚q s12 pλq “ 1. (43)

Next, letting ρpλq “
s12pλq

s22pλq
, we know that for λ P R, there is

s˚
12 pλ˚q

s˚
22 pλ˚q

“ ρ˚pλq, (44)

1
s˚

22 pλ˚q s22 pλq
“

s˚
22 pλ˚q s22 pλq ` s˚

12 pλ˚q s12 pλq

s˚
22 pλ˚q s22 pλq

“ 1 `
s˚

12 pλ˚q s12 pλq

s˚
22 pλ˚q s22 pλq

“ 1 ` |ρpλq|
2.

(45)

So, Eq.(42) can be converted into

ˆ

rψ´s1,
rψ`s2

s22 pλq

˙

“

ˆ

rψ`s1

s˚
22 pλ˚q

, rψ´s2

˙

e´2iθpλq
^
σ3

¨

˝

1 ρpλq

ρ˚pλq 1 ` |ρpλq|
2

˛

‚. (46)

Define piecewise analytic functions

m px, t, λq “

$

&

%

”

rψ´s1,
rψ`s2
s22pλq

ı

, Imλ ą 0,
”

rψ`s1

s˚
22pλ˚q

, rψ´s2

ı

, Imλ ă 0.
(47)
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m˘ px, t, λq “ lim
εÑ0`

m px, t, λ ˘ iεq , pε, λ P Rq. (48)

From Eq.(46), we have

m` px, t, λq “ m´ px, t, λq J pλq , (49)

and jump matrix

J pλq “ e´iθpλq
^
σ3

¨

˝

1 rpλq

r˚pλq 1 ` |rpλq|
2

˛

‚“

¨

˝

1 rpλqe´2iθpλq

r˚pλqe2iθpλq 1 ` |rpλq|
2

˛

‚. (50)

Theorem 3. Based on the above situations, the following RH problem can be obtained

‚ m px, t, λq is analytic in CzR,

‚ m` px, t, λq “ m´ px, t, λq J pλq , λ P R,

‚ Normalization: m px, t, λq Ñ I, λ Ñ 8.

From Eq.(19), the solution qpx, tq of the generalized inhomogeneous Hirota equation can be given by m px, t, λq as

q px, tq “ lim
λÑ8

p2iλq m12 px, t, λq “ 2i lim
λÑ8

pλm px, t, λqq12. (51)

It is worth noting that if the reflection coefficient s22 pλq ‰ 0 p@λq , the above RH problem can be transformed into the

regular RH problem by the method of the falling line, and then solved by the Plemelj formula [27]. If the reflection coefficient

s22 pλq “ 0 and its zero point is simple, we can apply the residue condition to solve the problem. If it has multiple high-order

poles, the residue condition is not sufficient to obtain the solution of RH problem, which will involve the coefficients of the

singular part of the Laurent expansion at the corresponding high-order poles [23, 25, 28]. Therefore, in the next section, we will

solve the RH problem with multiple higher-order poles.

3. The RH problem with multiple higher-order poles

Since s22 pλq is analytic in the upper half plane, s22 pλq has finite zeros in the upper half plane, but there are no singular points.

Here, we consider the case of no reflection, that is, s12 pλq “ 0. Suppose s22 pλq has N higher order poles and s˚
22 pλ˚q has N

poles
!

λ˚
j
, Imλ˚

j ă 0
)N

j“1
, so s22 pλq and s˚

22 pλ˚q can be expanded as follows

s22 pλq “ pλ ´ λ1q
n1 pλ ´ λ2q

n2 ˆ ¨ ¨ ¨ pλ ´ λNq
nN s0 pλq , (52)

s˚
22 pλ˚q “

`

λ ´ λ˚

1

˘n1
`

λ ´ λ˚

2

˘n2
ˆ ¨ ¨ ¨

`

λ ´ λ˚

N

˘nN s˚

0
pλ˚q , (53)

where s0 pλq ‰ 0, s˚
0

pλ˚q ‰ 0 p@λ P tλ|Imλ ą 0uq.

3.1. The RH problem with one higher-order pole

We first consider the case of one higher-order pole λ “ λ0, so we have

s22 pλq “ pλ ´ λ0q
N s0 pλq , (54)
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where s0 pλq is analytic in C` and s0 pλq ‰ 0 p@k P tk|Imk ą 0uq. Based on Laurent series expansion at the higher-order pole,

ρ pλq and ρ˚ pλ˚q can be expressed as

ρ pλq “ ρ0 pλq `

N
ÿ

l“1

ρl

pλ ´ λ0q
l , ρ

˚ pλ˚q “ ρ˚
0 pλ˚q `

N
ÿ

l“1

ρ˚
l

`

λ ´ λ˚
0

˘l , (55)

where

ρl “ lim
λÑλ0

1
pN ´ lq!

BN´l

BkN´l

”

pλ ´ λ0q
Nρ pλq

ı

, l “ 1, 2 ¨ ¨ ¨ N. (56)

Therefore m11 and m12 are meromorphic functions with one higher-pole λ0 and λ˚
0

, respectively. According to the normalization

condition, the decomposition of m11 and m12 can be defined as

m11 px, t, λq “

N
ÿ

n“1

Hn px, tq
`

λ ´ λ˚
0

˘n ` 1,m12 px, t, λq “

N
ÿ

n“1

Ln px, tq
pλ ´ λ0q

n , (57)

where Hn px, tq , Ln px, tq pn “ 1, 2 ¨ ¨ ¨ Nq are unknown functions. If Hn px, tq , Ln px, tq are addressed, we can derive one high-

order pole solution qpx, tq of the generalized inhomogeneous Hirota equation. In order to find m11 and m12, according to Taylor

expansion at the analytic point, we have

e´2iθpλq “

`8
ÿ

m“0

gm px, tq pλ ´ λ0q
m, (58)

e´2iθpλq “

`8
ÿ

m“0

g˚

m
px, tq

`

λ ´ λ˚

0

˘m
, (59)

m11 px, t, λq “

`8
ÿ

m“0

ςm px, tq pλ ´ λ0q
m, (60)

m12 px, t, λq “

`8
ÿ

m“0

τm px, tq
`

λ ´ λ˚

0

˘m
, (61)

where

gm px, tq “ lim
λÑλ0

1
m!

Bm

Bλm e´2iθpλq, (62)

ςm px, tq “ lim
λÑλ0

1
m!

Bm

Bλm m11 px, t, λq , (63)

τm px, tq “ lim
λÑλ˚

0

1
m!

Bm

Bλm m12 px, t, λq , (64)

with m “ 0, 1, 2 ¨ ¨ ¨ . Based on Eq.(46) and Eq.(47), we have scattering relation in the form

m11 px, t, λq “ rψ´s1 “
rψ`s1

s˚
22 pλ˚q

` rψ´s2e´2iθpλqρ˚pλq, (65)

m12 px, t, λq “
rψ`s2

s22 pλq
“

rψ`s1

s˚
22 pλ˚q

e´2iθpλqρpλq ` rψ´s2

´

1 ` |ρpλq|
2
¯

. (66)
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Then we bring the above formulas into Taylor expansion. Letting |λ| Ñ 8, by comparing the coefficients of
`

λ ´ λ˚
0

˘´n,

Hn px, tq pn “ 1, 2, ¨ ¨ ¨ Nq can be expressed as

Hn px, tq “ ´

N
ÿ

i“n

i´n
ÿ

m“0

ρ˚

i
g˚

i´n´m
τm. (67)

Similarly, by comparing the coefficients of pλ ´ λ0 q
´n, Ln px, tq pn “ 1, 2, ¨ ¨ ¨ Nq can be expressed as

Ln px, tq “

N
ÿ

i“n

i´n
ÿ

m“0

ρigi´n´mςm. (68)

Consequently, Hn px, tq and Ln px, tq can be expressed by τm px, tq and ςm px, tq respectively. But we still can not get Hn px, tq and

Ln px, tq. Now, we bring m12 px, t, λq in Eq.(57) into τm px, tq to get

τm px, tq “

N
ÿ

n“1

¨

˝

m ` n ´ 1

m

˛

‚

p´1q
mLn px, tq

`

λ˚
0

´ λ0
˘m`n , (69)

where m “ 0, 1, 2. ¨ ¨ ¨ , likewise, we bring m11 px, t, λq in Eq.(57) into ςm px, tq to get

ςm px, tq “

$

’

’

’

’

&

’

’

’

’

%

1 `
N
ř

n“1

Lnpx,tq

pλ0´λ˚
0 q

m`n ,m “ 0,

N
ř

n“1

¨

˝

m ` n ´ 1

m

˛

‚

p´1q
mHnpx,tq

pλ0´λ˚
0 q

m`n ,m “ 1, 2, 3, ¨ ¨ ¨ .

(70)

Taking the above equations into Eq.(67) and Eq.(68), we can get the representation of Hn px, tq and Ln px, tq as follows

Hn px, tq “ ´

N
ÿ

i“n

i´n
ÿ

m“0

N
ÿ

j“1

¨

˝

m ` j ´ 1

m

˛

‚

p´1q
mL j px, tq

`

λ˚
0

´ λ0
˘m` j ρ

˚
i g˚

i´n´m, (71)

Ln px, tq “

N
ÿ

i“n

ρigi´n `

N
ÿ

i“n

i´n
ÿ

m“0

N
ÿ

j“1

¨

˝

m ` j ´ 1

m

˛

‚

p´1q
mH j px, tq

`

λ0 ´ λ˚
0

˘m` j ρigi´n´m. (72)

The above two equations form a linear system. In order to find the exact forms of m11 px, t, λq and m12 px, t, λq more conveniently,

we introduce some definitions of symbols as follows

| Hy “ pH1,H2, ¨ ¨ ¨ HNq
T , | Ly “ pL1, L2, ¨ ¨ ¨ LNq

T , (73)

|γy “ pγ1, γ2, ¨ ¨ ¨ γNq
T , γn px, tq “

N
ÿ

i“n

ρig´n, (74)

Ω “ rΩn, jsNˆN “

»

–´

N
ÿ

i“n

i´n
ÿ

m“0

¨

˝

m ` j ´ 1

m

˛

‚

p´1q
mρ˚

i g˚
i´n´m

`

λ˚
0

´ λ0
˘m` j

fi

fl

NˆN

, (75)
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where n, j “ 1, 2, ¨ ¨ ¨ N and T denotes transposition of matrix. So Hn px, tq and Ln px, tq can also be expressed as

| Hy “ Ω |γy , | Ly “ |γy ´Ω˚ | Hy . (76)

Combining the above two formulas, we can get

| Hy “ ΩpI `Ω˚Ωq
´1

|γy , | Ly “ pI `Ω˚Ωq
´1

|γy . (77)

Substituting the above formulas into the expression of m11 px, t, λq and m12 px, t, λq in Eq.(57). Letting

xΛ pλq| “

˜

1
`

λ ´ λ˚
0

˘ ,
1

`

λ ´ λ˚
0

˘2 ¨ ¨ ¨
1

`

λ ´ λ˚
0

˘N

¸

, (78)

then we can get

m11 px, t, λq “ 1 ` xΛ pλq|ΩpI `Ω˚Ωq
´1

|γy “
det pI `Ω˚Ω` |γy xΛ pλq|Ω q

det pI `Ω˚Ωq
, (79)

m12 px, t, λq “ xΛ˚ pλ˚q| pI `Ω˚Ωq
´1

|γy “
det pI `Ω˚Ω` |γy xΛ˚ pλ˚q| q

det pI `Ω˚Ωq
´ 1. (80)

Based on Eq.(51), N-order BS solition of the generation inhomogeneous Hirota equation can be obtained, which can be expressed

as follows
q px, tq “ 2i lim

λÑ8
pλm px, t, λqq12

“ lim
λÑ8

2iλ
´

xΛ˚ pλ˚q| pI `Ω˚Ωq
´1

|γy

¯

“2i

˜

det
`

I `Ω˚Ω`
ˇ

ˇγy
@

Λ0
ˇ

ˇ

˘

det pI `Ω˚Ωq
´ 1

¸

,

(81)

where
@

Λ0
ˇ

ˇ “ p1, 0, 0 ¨ ¨ ¨ 0q.

3.2. RH problem with N higher-order poles

In this section, we study the scattering coefficient with N different higher-order poles λ1, λ2, ¨ ¨ ¨ λN , the order of λ1, λ2, ¨ ¨ ¨ λN

are n1, n2 ¨ ¨ ¨ nN , respectively.The method is similar to that of a higher order pole, then the expansion of s22 pλq is Eq.(52). The

Laurent series of ρ pλq is expanded to

ρ pλq “ ρ0 pλq `

N
ÿ

i“1

ni
ÿ

mi“1

ρi,mi

pλ ´ λiq
mi
, ρ˚ pλ˚q “ ρ˚

0
pλ˚q `

N
ÿ

i“1

ni
ÿ

mi“1

ρ˚
i,mi

`

λ ´ λ˚
i

˘mi
, (82)

where

ρi,mi “ lim
λÑλi

1
pni ´ miq!

Bni´mi

pλ ´ λiq
ni´mi

rpλ ´ λiq
niρ pλqs , pi “ 1, 2, ¨ ¨ ¨ Nq , (83)
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and ρ0 pλq p@λ P tλ|Imλ ą 0uq is analytic in C`. According to the normalization condition, λ1, λ2, ¨ ¨ ¨ λN are also the poles of

m11 and m12. Then m11 and m12 can be defined as

m11 px, t, λq “

ni
ÿ

r“1

N
ÿ

i“1

Hi,r px, tq
`

λ ´ λ˚
i

˘r ` 1,m12 px, t, λq “

ni
ÿ

r“1

N
ÿ

i“1

Li,r px, tq
pλ ´ λiq

r , (84)

where i “ 1, 2, ¨ ¨ ¨ N and r “ 1, 2, ¨ ¨ ¨ ni. If we solve Hi,r px, tq and Li,r px, tq, m12 can be obtained. Then m11 and m12, then we can

get the solution qpx, tq of the generalized inhomogeneous Hirota equation. By using the same method as the previous section, we

have

Hi,r px, tq “ ´

ni
ÿ

mi“r

mi´r
ÿ

n“0

nl
ÿ

q“1

N
ÿ

l“1

¨

˝

n ` q ´ 1

n

˛

‚

p´1q
nLl,q px, tq

`

λ˚
i ´ λl

˘n`q ρ˚

i,mi
g˚

i,mi´n´r, (85)

Li,r px, tq “

ni
ÿ

mi“r

ρi,mi gi,mi´r `

ni
ÿ

mi“r

mi´r
ÿ

n“0

nl
ÿ

q“1

N
ÿ

l“1

¨

˝

n ` q ´ 1

n

˛

‚

p´1q
nHl,q px, tq

`

λi ´ λ˚
l

˘n`q ρi,mi gi,mi´n´r. (86)

We introduce
|Hy “ pH1,H2, ¨ ¨ ¨ ,HNq

T , |Hiy “ pHi,1,Hi,2, ¨ ¨ ¨ ,Hi,ni q
T ,

|Ly “ pL1, L2, ¨ ¨ ¨ .LNq
T , |Liy “ pLi,1, Li,2, ¨ ¨ ¨ , Li,ni q

T ,

|γy “ pγ1, γ2, ¨ ¨ ¨ , γNq
T , |γiy “ pγi,1, γi,2, ¨ ¨ ¨ , γi,ni q

T ,

(87)

Ω “ rΩi,lsniˆnl
“

»

–´

ni
ÿ

mi“r

mi´r
ÿ

n“0

¨

˝

n ` q ` 1

n

˛

‚

p´1q
nρ˚

i,mi
g˚

i,mi´n´r
`

λ˚
i ´ λl

˘n`q

fi

fl

niˆnl

, (88)

xΛ0| “
`@

Λ1
0

ˇ

ˇ ,
@

Λ2
0

ˇ

ˇ , ¨ ¨ ¨ , xΛn
0|

˘

,
@

Λi
0

ˇ

ˇ “ p1, 0, ¨ ¨ ¨ , 0q1ˆni
. (89)

Then, the multiple BS solitons of the generalized inhomogeneous Hirota equation are derived as

q px, tq “ 2i
„

det pI `Ω˚Ω` |Λ0yq

det pI `Ω˚Ωq
´ 1

ȷ

. (90)

4. Some solutions of the generalized inhomogeneous Hirota equation

4.1. Solution related to one simple pole

For N “ 1, letting λ0 “ ξ ` iη be a first order pole of s22 pλq, then, based on Eq.(81) we can easily get the first-order BS

soliton solution of the generalized inhomogeneous Hirota equation is

q “ 2i
ρ1g0

1 ´
ρ˚

1 g˚
0 ρ1g0

pλ˚
0 ´λ0q

2

“ 2iηe´2αisech
ˆ

2β ` ln
ˇ

ˇ

ˇ

ˇ

ρ1

2η

ˇ

ˇ

ˇ

ˇ

˙

, (91)

where α “ ξx ` 4υ
`

ξ3 ´ 3ξη2
˘

t ` 2 pυ2 ` µ2xq
`

ξ2 ´ η2
˘

t ´ ξ pυ1 ` µ1xq t and β “ ηx ` 4υ
`

3ξ2η ´ η3
˘

t ` 4ξη pυ2 ` µ2xq t ´

η pυ1 ` µ1xq t. Here we set ρ1 “ 1, υ “ υ1 “ υ2 “ µ1 “ 1, µ2 “ 0 and ξ “ 1, η “ ´ 1
3 . In fig.1 and fig.2 ,the patterns of

first-order BS solution are shown.
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Figure 1: The soliton solution with one simple pole of the generalized inhomo-
geneous Hirota equation with λ1 “ 1 ´ 1

3 i.
Figure 2: The density plot with one simple pole of the generalized inhomoge-
neous Hirota equation with λ1 “ 1 ´ 1

3 i.

4.2. Solution related to one second-order pole

For N “ 2, letting λ “ λ1 be a second-order pole of s22 pλq, then, we can easily get

ρ pλq “ ρ0 pλq `
ρ1

λ ´ λ1
`

ρ2

pλ ´ λ1q
2 , (92)

Ω “

¨

˚

˝

´
ρ˚

1 g˚
0

λ˚
1 ´λ1

´ ´
ρ˚

2 g˚
1

λ˚
1 ´λ1

`
ρ˚

2 g˚
0

pλ˚
1 ´λ1q

2 ´
ρ˚

1 g˚
0

pλ˚
1 ´λ1q

2 ´
ρ˚

2 g˚
1

pλ˚
1 ´λ1q

2 `
2ρ˚

2 g˚
0

pλ˚
1 ´λ1q

3

´
ρ˚

2 g˚
0

λ˚
1 ´λ1

´
ρ˚

2 g˚
0

pλ˚
1 ´λ1q

2

˛

‹

‚
, (93)

and

|γy “

´

ρ1g0 ` ρ2g1 ρ2g0

¯T
, |Λ0y “

´

1 0
¯

. (94)

On the basis of Eq.(81), letting ρ1 “ ρ2 “ 1, υ “ υ1 “ υ2 “ µ2 “ 1, µ1 “ 0 and λ1 “ 1
3 `

?
3

3 i, the second-order BS soliton

solutions of the generalized inhomageneous Hirota equation is obtained as follows

q px, tq “
A1 px, tq eB1px,tq ` A2 px, tq eB2px,tq

A3 px, tq eB3px,tq ` 243eB4px,tq ` 768
, (95)

12



where
A1 px, tq “ 4096

?
3it ` 37888t ` 1536i ` 3072x,

B1 px, tq “

?
3p8t`6xq

9 ´
2ip23t`3xq

9 ,

A2 px, tq “ 2304
“ ?

3
`

3
4 ` ti

˘

` 3i
8 ´ 37t

4 ´ 3
4 x

‰

,

B2 px, tq “

?
3p24t`18xq

9 ´ 46it
9 ´ 2ix

3 ,

A3 px, tq “ p´25344t ´ 2304xq
?

3 ` 362752t2 ` 56832tx ` 2304x2 ` 3168,

B3 px, tq “
4

?
3p4t`3xq

9 ,

B4 px, tq “
8

?
3p4t`3xq

9 .

(96)

The fig.3 and fig.4 illustrate the interaction of two solitons. Without the influence of inhomogeneous parameters, two solitons

pass through each other, and their shapes remain unchanged except for phase shift. Before and after the interaction, the two

solitons have the same amplitude, and the amplitude will change during the interaction.

Figure 3: The second-order BS soliton solution of the generalized inhomoge-
neous Hirota equation with λ1 “ 1

3 `
?

3
3 i.

Figure 4: The density plot of the generalized inhomogeneous Hirota equation
with λ1 “ 1

3 `
?

3
3 i.

4.3. Solution related to one simple pole and one second-order pole

Letting λ “ λ1 be a simple pole of s22 pλq and λ “ λ2 be a second-order pole of s22 pλq, then we can easily get

ρ pλq “ ρ0 pλq `
ρ1,1

λ ´ λ1
`

ρ1,2

pλ ´ λ1q
2 `

ρ2,1

λ ´ λ2
, (97)

Ω “

¨

˝

Ω11 Ω12

Ω21 Ω22

˛

‚, (98)

|γy “

´

ρ1,1g1,0 ` ρ1,2g1,1 ρ1,2g1,0 ρ2,1g2,0

¯T
, (99)

|Λ0y “

´

1 0 1
¯

, (100)

13



with

Ω11 “

¨

˚

˝

´
ρ˚

1,1g˚
1,0

λ˚
1 ´λ1

´
ρ˚

1,2g˚
1,1

λ˚
1 ´λ1

`
ρ˚

1,2g˚
1,0

pλ˚
1 ´λ1q

2 ´
ρ˚

1,1g˚
1,0

pλ˚
1 ´λ1q

2 ´
ρ˚

1,2g˚
1,1

pλ˚
1 ´λ1q

2 `
2ρ˚

1,2g˚
1,0

pλ˚
1 ´λ1q

3

´
ρ˚

1,2g˚
1,0

λ˚
1 ´λ1

´
ρ˚

1,2g˚
1,0

pλ˚
1 ´λ1q

2

˛

‹

‚
,

Ω12 “

¨

˚

˝

´
ρ˚

1,1g˚
1,0

λ˚
1 ´λ2

´
ρ˚

1,2g˚
1,1

λ˚
1 ´λ2

`
ρ˚

1,2g˚
1,0

pλ˚
1 ´λ2q

2

´
ρ˚

1,2g˚
1,0

pλ˚
1 ´λ2q

2

˛

‹

‚
,

Ω21 “

ˆ

´
ρ˚

2,1g˚
2,0

λ˚
2 ´λ1

´
ρ˚

2,1g˚
2,0

pλ˚
2 ´λ1q

2

˙

,Ω22 “ ´
ρ˚

2,1g˚
2,0

λ˚
2 ´λ2

.

(101)

Here, we let ρ1,1 “ ρ1,2 “ ρ2,1 “ 1, υ “ υ1 “ υ2 “ 1, µ1 “ µ2 “ 0. Based on Eq.(90), we can derive the explicit solution for the

generalized inhomogeneous Hirota equation. The interaction between a soliton and a BS soliton are shown in fig.5 and fig.6.

Figure 5: One soliton solution and one second-order BS soliton solution of the
generalized inhomogeneous Hirota equation with λ1 “ 1

5 ´ 1
4 i, λ2 “ 1

5 ´ 1
8 i.

Figure 6: The density plot of the generalized inhomogeneous Hirota equation
with λ1 “ 1

5 ´ 1
4 i, λ2 “ 1

5 ´ 1
8 i.

4.4. Solution related to two second-order poles

Letting λ “ λ1 and λ “ λ2 be second-order pole of s22 pλq, then we can easily get

ρ pλq “ ρ0 pλq `
ρ1,1

λ ´ λ1
`

ρ1,2

pλ ´ λ1q
2 `

ρ2,1

λ ´ λ2
`

ρ2,1

pλ ´ λ2q
2 , (102)

Ω “

¨

˝

Ω11 Ω12

Ω21 Ω22

˛

‚, (103)

|γy “

´

ρ1,1g1,0 ` ρ1,2g1,1 ρ1,2g1,0 ρ2,1g2,0 ` ρ2,2g2,1 ρ2,2g2,0

¯T
, (104)

|Λ0y “

´

1 0 1 0
¯

, (105)
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with

Ω11 “

¨

˚

˝

´
ρ˚

1,1g˚
1,0

λ˚
1 ´λ1

´
ρ˚

1,2g˚
1,1

λ˚
1 ´λ1

`
ρ˚

1,2g˚
1,0

pλ˚
1 ´λ1q

2 ´
ρ˚

1,1g˚
1,0

pλ˚
1 ´λ1q

2 ´
ρ˚

1,2g˚
1,1

pλ˚
1 ´λ1q

2 `
2ρ˚

1,2g˚
1,0

pλ˚
1 ´λ1q

3

´
ρ˚

1,2g˚
1,0

λ˚
1 ´λ1

´
ρ˚

1,2g˚
1,0

pλ˚
1 ´λ1q

2

˛

‹

‚
,

Ω12 “

¨

˚

˝

´
ρ˚

1,1g˚
1,0

λ˚
1 ´λ2

´
ρ˚

1,2g˚
1,1

λ˚
1 ´λ2

`
ρ˚

1,2g˚
1,0

pλ˚
1 ´λ2q

2 ´
ρ˚

1,1g˚
1,0

λ˚
1 ´λ2

´
ρ˚

1,2g˚
1,1

λ˚
1 ´λ2

`
2ρ˚

1,2g˚
1,0

pλ˚
1 ´λ2q

2

´
ρ˚

1,2g˚
1,0

λ˚
1 ´λ2

´
ρ˚

1,2g˚
1,0

pλ˚
1 ´λ2q

2

˛

‹

‚
,

Ω21 “

¨

˚

˝

´
ρ˚

2,1g˚
2,0

λ˚
2 ´λ1

´
ρ˚

2,2g˚
2,1

λ˚
2 ´λ1

`
ρ˚

2,2g˚
2,0

pλ˚
2 ´λ1q

2 ´
ρ˚

2,1g˚
2,0

pλ˚
2 ´λ1q

2 ´
ρ˚

2,2g˚
2,1

pλ˚
2 ´λ1q

2 `
2ρ˚

2,2g˚
2,0

pλ˚
2 ´λ1q

3

´
ρ˚

2,2g˚
2,0

λ˚
2 ´λ1

´
ρ˚

2,2g˚
2,0

pλ˚
2 ´λ1q

2

˛

‹

‚
,

Ω22 “

¨

˚

˝

´
ρ˚

2,1g˚
2,0

λ˚
2 ´λ2

´
ρ˚

2,2g˚
2,1

λ˚
2 ´λ2

`
ρ˚

2,2g˚
2,0

pλ˚
2 ´λ2q

2 ´
ρ˚

2,1g˚
2,0

pλ˚
2 ´λ2q

2 ´
ρ˚

2,2g˚
2,1

pλ˚
2 ´λ2q

2 `
2ρ˚

2,2g˚
2,0

pλ˚
2 ´λ2q

3

´
ρ˚

2,2g˚
2,0

λ˚
2 ´λ2

´
ρ˚

2,2g˚
2,0

pλ˚
2 ´λ2q

2

˛

‹

‚
.

(106)

Here we let ρ1,1 “ ρ1,2 “ ρ2,1 “ 1, υ “ υ1 “ υ2 “ 1, µ1 “ µ2 “ 0. Based on Eq.(90), we can get the explicit solution of the

generalized inhomogeneous Hirota equation. The interaction between the two BS solitons are shown in fig.7 and fig.8.

Figure 7: Two second-order BS solitons solution of the generalized inhomoge-
neous Hirota equation with λ1 “ 1

3 ` 1
3 i, λ2 “ 1

5 ` 1
3 i.

Figure 8: The density plot of the generalized inhomogeneous Hirota equation
with λ1 “ 1

3 ` 1
3 i, λ2 “ 1

5 ` 1
3 i.

5. Summary

In this paper, based on the spectral analysis of Lax pair, the Riemann-Hilbert (RH) method is used to study the generalized

inhomogeneous Hirota equation with one or more high-order poles. By the analyticity and symmetry of the characteristic

function, we transform the zero boundary initial value problem of Eq.(1) into RH problem. When the scattering data have one

high-order pole and multiple high-order poles respectively, the RH problem is solved by its Laurent expansion, and the formula

of bound-state (BS) soliton corresponding to one high-order pole is obtained, as shown in Eq.(81), and the formula of BS soliton

corresponding to multiple high-order poles is obtained, as shown in Eq.(90), and the interaction between solitons are shown in
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Fig.(1-8).

The one-soliton solution and two-soliton solution of the generalized inhomogeneous Hirota equation can be given by the

most basic Darboux transformation [9], but this method can not find the high-order soliton solution, so it needs to be generalized.

The generalized Darboux transformation can derive the high-order soliton solution corresponding to the basic high-order zeros

in the RH problem of the Hirota equation, and then the high-order soliton solution of the generalized inhomogeneous variable

coefficient Hirota equation can be obtained by using the corresponding transformation relationship [12], but this method is

more complicated. In this paper, we directly solve the RH problem with high-order poles, and the formulas of BS solitons and

multiple solitons are expressed. The obtained solution has more extensive significance and richer content. In addition, the method

proposed in this paper can be further extended to solve some other nonlinear systems, and can be optimized to improve future

results.
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