References
Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action
anticipation and motor resonance in elite basketball players.Nature Neuroscience , 11 (9), 1109–1116.
https://doi.org/10.1038/nn.2182Alaerts, K., Senot, P., Swinnen, S. P.,
Craighero, L., Wenderoth, N., & Fadiga, L. (2010). Force requirements
of observed object lifting are encoded by the observer’s motor system: A
TMS study. European Journal of Neuroscience , 31 (6),
1144–1153. https://doi.org/10.1111/J.1460-9568.2010.07124.XAlaerts, K.,
Swinnen, S. P., & Wenderoth, N. (2010). Observing how others lift light
or heavy objects: Which visual cues mediate the encoding of muscular
force in the primary motor cortex? Neuropsychologia ,48 (7), 2082–2090.
https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2010.03.029Albergoni, A.,
Biggio, M., Faelli, E., Pesce, A., Ruggeri, P., Avanzino, L., Bove, M.,
& Bisio, A. (2023). Sensorimotor expertise influences perceptual weight
judgments during observation of a sport-specific gesture.Frontiers in Sports and Active Living , 5 (6), 1148812.
https://doi.org/10.3389/FSPOR.2023.1148812Albergoni, A., Biggio, M.,
Faelli, E., Ruggeri, P., Avanzino, L., Bove, M., & Bisio, A. (2023).
Aging deteriorates the ability to discriminate the weight of an object
during an action observation task. Frontiers in Aging
Neuroscience , 15 , 1216304.
https://doi.org/10.3389/FNAGI.2023.1216304/BIBTEXBingham, G. P. (1987).
Kinematic Form and Scaling: Further Investigations on the Visual
Perception of Lifted Weight. Journal of Experimental Psychology:
Human Perception and Performance , 13 (2), 155–177.
https://doi.org/10.1037/0096-1523.13.2.155Bisio, A., Stucchi, N.,
Jacono, M., Fadiga, L., & Pozzo, T. (2010). Automatic versus voluntary
motor imitation: Effect of visual context and stimulus velocity.PLoS ONE , 5 (10).
https://doi.org/10.1371/journal.pone.0013506Bisio, A, Casteran, M.,
Ballay, Y., Manckoundia, P., Mourey, F., & Pozzo, T. (2012). Motor
resonance mechanisms are preserved in Alzheimer’s disease patients.Neuroscience , 222 , 58–68.
https://doi.org/10.1016/j.neuroscience.2012.07.017Bisio, Ambra, Sciutti,
A., Nori, F., Metta, G., Fadiga, L., Sandini, G., & Pozzo, T. (2014).
Motor contagion during human-human and human-robot interaction.PLoS ONE , 9 (8), e106172.
https://doi.org/10.1371/journal.pone.0106172Bonini, L., Rotunno, C.,
Arcuri, E., & Gallese, V. (2022). Mirror neurons 30 years later:
implications and applications. Trends in Cognitive Sciences ,26 (9), 767–781. https://doi.org/10.1016/J.TICS.2022.06.003Borot,
L., Vergotte, G., & Perrey, S. (2018). Different Hemodynamic Responses
of the Primary Motor Cortex Accompanying Eccentric and Concentric
Movements: A Functional NIRS Study. Brain Sciences , 8 (5),
75. https://doi.org/10.3390/BRAINSCI8050075Calvo-Merino, B., Glaser, D.
E., Grèzes, J., Passingham, R. E., & Haggard, P. (2005). Action
observation and acquired motor skills: An fMRI study with expert
dancers. Cerebral Cortex , 15 (8), 1243–1249.
https://doi.org/10.1093/cercor/bhi007Calvo-Merino, B., Grèzes, J.,
Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or
Doing? Influence of Visual and Motor Familiarity in Action Observation.Current Biology , 16 (19), 1905–1910.
https://doi.org/10.1016/j.cub.2006.07.065Canepa, P., Papaxanthis, C.,
Bisio, A., Biggio, M., Paizis, C., Faelli, E., Avanzino, L., & Bove, M.
(2021). Motor Cortical Excitability Changes in Preparation to Concentric
and Eccentric Movements. Neuroscience , 475 , 73–82.
https://doi.org/10.1016/J.NEUROSCIENCE.2021.08.009Casiraghi, L.,
Alahmadi, A. A. S., Monteverdi, A., Palesi, F., Castellazzi, G., Savini,
G., Friston, K., Gandini Wheeler-Kingshott, C. A. M., & D’Angelo, E.
(2019). I See Your Effort: Force-Related BOLD Effects in an Extended
Action Execution–Observation Network Involving the Cerebellum.Cerebral Cortex , 29 (3), 1351–1368.
https://doi.org/10.1093/CERCOR/BHY322Christou, E. A., & Carlton, L. G.
(2002). Motor output is more variable during eccentric compared with
concentric contractions. Medicine and Science in Sports and
Exercise , 34 (11), 1773–1778.
https://doi.org/10.1097/00005768-200211000-00013de Leeuw, J. R. (2015).
jsPsych: A JavaScript library for creating behavioral experiments in a
Web browser. Behavior Research Methods , 47 (1), 1–12.
https://doi.org/10.3758/s13428-014-0458-yde Morree, H. M., & Marcora,
S. M. (2010). The face of effort: Frowning muscle activity reflects
effort during a physical task. Biological Psychology ,85 (3), 377–382.
https://doi.org/10.1016/J.BIOPSYCHO.2010.08.009Delgado, D. A., Lambert,
B. S., Boutris, N., McCulloch, P. C., Robbins, A. B., Moreno, M. R., &
Harris, J. D. (2018). Validation of Digital Visual Analog Scale Pain
Scoring With a Traditional Paper-based Visual Analog Scale in Adults.Journal of the American Academy of Orthopaedic Surgeons Global
Research and Reviews , 2 (3).
https://doi.org/10.5435/JAAOSGLOBAL-D-17-00088Duarte, F., Figueroa, T.,
& Lemus, L. (2018). A Two-interval Forced-choice Task for Multisensory
Comparisons. Journal of Visualized Experiments : JoVE ,2018 (141). https://doi.org/10.3791/58408Duchateau, J., & Baudry,
S. (2014). Insights into the neural control of eccentric contractions.Journal of Applied Physiology , 116 (11), 1418–1425.
https://doi.org/10.1152/japplphysiol.00002.2013Ebisch, S. J. H.,
Perrucci, M. G., Ferretti, A., Del Gratta, C., Romani, G. L., &
Gallese, V. (2008). The Sense of touch: Embodied simulation in a
visuotactile mirroring mechanism for observed animate or inanimate
touch. Journal of Cognitive Neuroscience , 20 (9),
1611–1623. https://doi.org/10.1162/jocn.2008.20111Fang, Y., Siemionow,
V., Sahgal, V., Xiong, F., & Yue, G. H. (2001). Greater
movement-related cortical potential during human eccentric versus
concentric muscle contractions. Journal of Neurophysiology ,86 (4), 1764–1772.
https://doi.org/10.1152/jn.2001.86.4.1764Gavazzi, G., Bisio, A., &
Pozzo, T. (2013). Time perception of visual motion is tuned by the motor
representation of human actions. Scientific Reports , 3 ,
1168. https://doi.org/10.1038/srep01168Grabiner, M., & Owings, T.
(2002). EMG differences between concentric and eccentric maximum
voluntary contractions are evident prior to movement onset.Experimental Brain Research , 145 (4), 505–511.
https://doi.org/10.1007/s00221-002-1129-2Gueugneau, N., Martin, A.,
Gaveau, J., & Papaxanthis, C. (2023). Gravity-efficient motor control
is associated with contraction-dependent intracortical inhibition.IScience , 26 (7).
https://doi.org/10.1016/J.ISCI.2023.107150Howell, J. N., Fuglevand, A.
J., Walsh, M. L., & Bigland-Ritchie, B. (1995). Motor unit activity
during isometric and concentric-eccentric contractions of the human
first dorsal interosseus muscle. Journal of Neurophysiology ,74 (2), 901–904.
https://doi.org/10.1152/jn.1995.74.2.901Kemmerer, D. (2021). What
modulates the Mirror Neuron System during action observation?: Multiple
factors involving the action, the actor, the observer, the relationship
between actor and observer, and the context. Progress in
Neurobiology , 205 , 102128.
https://doi.org/10.1016/j.pneurobio.2021.102128Knoblauch, K., &
Maloney, L. T. (2012). Modeling psychophysical data in R. Modeling
Psychophysical Data in R , 1–367.
https://doi.org/10.1007/978-1-4614-4475-6Kopec, C. D., & Brody, C. D.
(2010). Human performance on the temporal bisection task. Brain
and Cognition , 74 (3), 262–272.
https://doi.org/10.1016/J.BANDC.2010.08.006Kwon, Y. H., & Park, J. W.
(2011). Different cortical activation patterns during voluntary
eccentric and concentric muscle contractions: An fMRI study.NeuroRehabilitation , 29 (3), 253–259.
https://doi.org/10.3233/NRE-2011-0701Linares, D., & López-Moliner, J.
(2016). quickpsy: An R package to fit psychometric functions for
multiple groups. R Journal , 8 (1), 122–131.
https://doi.org/10.32614/RJ-2016-008Macmillan, N. A., & Creelman, C. D.
(2004). Detection Theory: A User’s Guide: 2nd edition. InDetection Theory: A User’s Guide: 2nd edition . Lawrence Erlbaum
Associates. https://doi.org/10.4324/9781410611147Maguinness, C., Setti,
A., Roudaia, E., & Kenny, R. A. (2013). Does that look heavy to you?
Perceived weight judgment in lifting actions in younger and older
adults. Frontiers in Human Neuroscience .
https://doi.org/10.3389/fnhum.2013.00795Meulenbroek, R. G. J., Bosga,
J., Hulstijn, M., & Miedl, S. (2007). Joint-action coordination in
transferring objects. Experimental Brain Research , 180 (2),
333–343. https://doi.org/10.1007/S00221-007-0861-Z/FIGURES/8Norman, J.
F., Norman, H. F., Swindle, J. M., Jennings, L. R. S., & Bartholomew,
A. N. (2009). Aging and the discrimination of object weight.Perception , 38 (9), 1347–1354.
https://doi.org/10.1068/p6367Oh, Y., Hass, N. C., & Lim, S. L. (2016).
Body Weight Can Change How Your Emotions Are Perceived. PloS One ,11 (11). https://doi.org/10.1371/JOURNAL.PONE.0166753Perrey, S.
(2018). Brain activation associated with eccentric movement: A narrative
review of the literature. European Journal of Sport Science ,18 (1), 75–82.
https://doi.org/10.1080/17461391.2017.1391334Petroni, A., Baguear, F.,
& Della-Maggiore, V. (2010). Motor resonance may originate from
sensorimotor experience. Journal of Neurophysiology .
https://doi.org/10.1152/jn.00386.2010Reichelt, A. F., Ash, A. M., Baugh,
L. A., Johansson, R. S., & Flanagan, J. R. (2013). Adaptation of lift
forces in object manipulation through action observation.Experimental Brain Research , 228 (2), 221–234.
https://doi.org/10.1007/S00221-013-3554-9Rizzolatti, G., Fadiga, L.,
Fogassi, L., & Gallese, V. (1999). Resonance behaviors and mirror
neurons. Archives Italiennes de Biologie , 137 (2–3),
85–100. https://doi.org/10.4449/AIB.V137I2.575Shellock, F. G.,
Fukunaga, T., Mink, J. H., & Edgerton, V. R. (1991). Exertional muscle
injury: Evaluation of concentric versus eccentric actions with serial MR
imaging. Radiology , 179 (3), 659–664.
https://doi.org/10.1148/radiology.179.3.2027970Shim, J., & Carlton, L.
G. (1997). Perception of kinematic characteristics in the motion of
lifted weight. Journal of Motor Behavior .
https://doi.org/10.1080/00222899709600828von Sobbe, L., Maienborn, C.,
Reiber, F., Scheifele, E., & Ulrich, R. (2021). Speed or duration?
Effects of implicit stimulus attributes on perceived duration.Journal of Cognitive Psychology , 33 (8), 877–898.
https://doi.org/10.1080/20445911.2021.1950736/SUPPL_FILE/PECP_A_1950736_SM9527.XLSXWinstein,
C. J., Grafton, S. T., & Pohl, P. S. (1997). Motor task difficulty and
brain activity: Investigation of goal- directed reciprocal aiming using
positron emission tomography. Journal of Neurophysiology ,77 (3), 1581–1594. https://doi.org/10.1152/jn.1997.77.3.1581Yao,
W. X., Li, J., Jiang, Z., Gao, J. H., Franklin, C. G., Huang, Y.,
Lancaster, J. L., & Yue, G. H. (2014). Aging interferes central control
mechanism for eccentric muscle contraction. Frontiers in Aging
Neuroscience , 6 (MAY).
https://doi.org/10.3389/FNAGI.2014.00086Yssaad-Fesselier, R., &
Knoblauch, K. (2006). Modeling psychometric functions in R.Behavior Research Methods 2006 38:1 , 38 (1), 28–41.
https://doi.org/10.3758/BF03192747Yue, G., & Cole, K. J. (1992).
Strength increases from the motor program: Comparison of training with
maximal voluntary and imagined muscle contractions. Journal of
Neurophysiology , 67 (5), 1114–1123.
https://doi.org/10.1152/jn.1992.67.5.1114Yue, G. H., Liu, J. Z.,
Siemionow, V., Ranganathan, V. K., Ng, T. C., & Sahgal, V. (2000).
Brain activation during human finger extension and flexion movements.Brain Research , 856 (1–2), 291–300.
https://doi.org/10.1016/S0006-8993(99)02385-9