References

Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players.Nature Neuroscience , 11 (9), 1109–1116. https://doi.org/10.1038/nn.2182Alaerts, K., Senot, P., Swinnen, S. P., Craighero, L., Wenderoth, N., & Fadiga, L. (2010). Force requirements of observed object lifting are encoded by the observer’s motor system: A TMS study. European Journal of Neuroscience , 31 (6), 1144–1153. https://doi.org/10.1111/J.1460-9568.2010.07124.XAlaerts, K., Swinnen, S. P., & Wenderoth, N. (2010). Observing how others lift light or heavy objects: Which visual cues mediate the encoding of muscular force in the primary motor cortex? Neuropsychologia ,48 (7), 2082–2090. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2010.03.029Albergoni, A., Biggio, M., Faelli, E., Pesce, A., Ruggeri, P., Avanzino, L., Bove, M., & Bisio, A. (2023). Sensorimotor expertise influences perceptual weight judgments during observation of a sport-specific gesture.Frontiers in Sports and Active Living , 5 (6), 1148812. https://doi.org/10.3389/FSPOR.2023.1148812Albergoni, A., Biggio, M., Faelli, E., Ruggeri, P., Avanzino, L., Bove, M., & Bisio, A. (2023). Aging deteriorates the ability to discriminate the weight of an object during an action observation task. Frontiers in Aging Neuroscience , 15 , 1216304. https://doi.org/10.3389/FNAGI.2023.1216304/BIBTEXBingham, G. P. (1987). Kinematic Form and Scaling: Further Investigations on the Visual Perception of Lifted Weight. Journal of Experimental Psychology: Human Perception and Performance , 13 (2), 155–177. https://doi.org/10.1037/0096-1523.13.2.155Bisio, A., Stucchi, N., Jacono, M., Fadiga, L., & Pozzo, T. (2010). Automatic versus voluntary motor imitation: Effect of visual context and stimulus velocity.PLoS ONE , 5 (10). https://doi.org/10.1371/journal.pone.0013506Bisio, A, Casteran, M., Ballay, Y., Manckoundia, P., Mourey, F., & Pozzo, T. (2012). Motor resonance mechanisms are preserved in Alzheimer’s disease patients.Neuroscience , 222 , 58–68. https://doi.org/10.1016/j.neuroscience.2012.07.017Bisio, Ambra, Sciutti, A., Nori, F., Metta, G., Fadiga, L., Sandini, G., & Pozzo, T. (2014). Motor contagion during human-human and human-robot interaction.PLoS ONE , 9 (8), e106172. https://doi.org/10.1371/journal.pone.0106172Bonini, L., Rotunno, C., Arcuri, E., & Gallese, V. (2022). Mirror neurons 30 years later: implications and applications. Trends in Cognitive Sciences ,26 (9), 767–781. https://doi.org/10.1016/J.TICS.2022.06.003Borot, L., Vergotte, G., & Perrey, S. (2018). Different Hemodynamic Responses of the Primary Motor Cortex Accompanying Eccentric and Concentric Movements: A Functional NIRS Study. Brain Sciences , 8 (5), 75. https://doi.org/10.3390/BRAINSCI8050075Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: An fMRI study with expert dancers. Cerebral Cortex , 15 (8), 1243–1249. https://doi.org/10.1093/cercor/bhi007Calvo-Merino, B., Grèzes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or Doing? Influence of Visual and Motor Familiarity in Action Observation.Current Biology , 16 (19), 1905–1910. https://doi.org/10.1016/j.cub.2006.07.065Canepa, P., Papaxanthis, C., Bisio, A., Biggio, M., Paizis, C., Faelli, E., Avanzino, L., & Bove, M. (2021). Motor Cortical Excitability Changes in Preparation to Concentric and Eccentric Movements. Neuroscience , 475 , 73–82. https://doi.org/10.1016/J.NEUROSCIENCE.2021.08.009Casiraghi, L., Alahmadi, A. A. S., Monteverdi, A., Palesi, F., Castellazzi, G., Savini, G., Friston, K., Gandini Wheeler-Kingshott, C. A. M., & D’Angelo, E. (2019). I See Your Effort: Force-Related BOLD Effects in an Extended Action Execution–Observation Network Involving the Cerebellum.Cerebral Cortex , 29 (3), 1351–1368. https://doi.org/10.1093/CERCOR/BHY322Christou, E. A., & Carlton, L. G. (2002). Motor output is more variable during eccentric compared with concentric contractions. Medicine and Science in Sports and Exercise , 34 (11), 1773–1778. https://doi.org/10.1097/00005768-200211000-00013de Leeuw, J. R. (2015). jsPsych: A JavaScript library for creating behavioral experiments in a Web browser. Behavior Research Methods , 47 (1), 1–12. https://doi.org/10.3758/s13428-014-0458-yde Morree, H. M., & Marcora, S. M. (2010). The face of effort: Frowning muscle activity reflects effort during a physical task. Biological Psychology ,85 (3), 377–382. https://doi.org/10.1016/J.BIOPSYCHO.2010.08.009Delgado, D. A., Lambert, B. S., Boutris, N., McCulloch, P. C., Robbins, A. B., Moreno, M. R., & Harris, J. D. (2018). Validation of Digital Visual Analog Scale Pain Scoring With a Traditional Paper-based Visual Analog Scale in Adults.Journal of the American Academy of Orthopaedic Surgeons Global Research and Reviews , 2 (3). https://doi.org/10.5435/JAAOSGLOBAL-D-17-00088Duarte, F., Figueroa, T., & Lemus, L. (2018). A Two-interval Forced-choice Task for Multisensory Comparisons. Journal of Visualized Experiments : JoVE ,2018 (141). https://doi.org/10.3791/58408Duchateau, J., & Baudry, S. (2014). Insights into the neural control of eccentric contractions.Journal of Applied Physiology , 116 (11), 1418–1425. https://doi.org/10.1152/japplphysiol.00002.2013Ebisch, S. J. H., Perrucci, M. G., Ferretti, A., Del Gratta, C., Romani, G. L., & Gallese, V. (2008). The Sense of touch: Embodied simulation in a visuotactile mirroring mechanism for observed animate or inanimate touch. Journal of Cognitive Neuroscience , 20 (9), 1611–1623. https://doi.org/10.1162/jocn.2008.20111Fang, Y., Siemionow, V., Sahgal, V., Xiong, F., & Yue, G. H. (2001). Greater movement-related cortical potential during human eccentric versus concentric muscle contractions. Journal of Neurophysiology ,86 (4), 1764–1772. https://doi.org/10.1152/jn.2001.86.4.1764Gavazzi, G., Bisio, A., & Pozzo, T. (2013). Time perception of visual motion is tuned by the motor representation of human actions. Scientific Reports , 3 , 1168. https://doi.org/10.1038/srep01168Grabiner, M., & Owings, T. (2002). EMG differences between concentric and eccentric maximum voluntary contractions are evident prior to movement onset.Experimental Brain Research , 145 (4), 505–511. https://doi.org/10.1007/s00221-002-1129-2Gueugneau, N., Martin, A., Gaveau, J., & Papaxanthis, C. (2023). Gravity-efficient motor control is associated with contraction-dependent intracortical inhibition.IScience , 26 (7). https://doi.org/10.1016/J.ISCI.2023.107150Howell, J. N., Fuglevand, A. J., Walsh, M. L., & Bigland-Ritchie, B. (1995). Motor unit activity during isometric and concentric-eccentric contractions of the human first dorsal interosseus muscle. Journal of Neurophysiology ,74 (2), 901–904. https://doi.org/10.1152/jn.1995.74.2.901Kemmerer, D. (2021). What modulates the Mirror Neuron System during action observation?: Multiple factors involving the action, the actor, the observer, the relationship between actor and observer, and the context. Progress in Neurobiology , 205 , 102128. https://doi.org/10.1016/j.pneurobio.2021.102128Knoblauch, K., & Maloney, L. T. (2012). Modeling psychophysical data in R. Modeling Psychophysical Data in R , 1–367. https://doi.org/10.1007/978-1-4614-4475-6Kopec, C. D., & Brody, C. D. (2010). Human performance on the temporal bisection task. Brain and Cognition , 74 (3), 262–272. https://doi.org/10.1016/J.BANDC.2010.08.006Kwon, Y. H., & Park, J. W. (2011). Different cortical activation patterns during voluntary eccentric and concentric muscle contractions: An fMRI study.NeuroRehabilitation , 29 (3), 253–259. https://doi.org/10.3233/NRE-2011-0701Linares, D., & López-Moliner, J. (2016). quickpsy: An R package to fit psychometric functions for multiple groups. R Journal , 8 (1), 122–131. https://doi.org/10.32614/RJ-2016-008Macmillan, N. A., & Creelman, C. D. (2004). Detection Theory: A User’s Guide: 2nd edition. InDetection Theory: A User’s Guide: 2nd edition . Lawrence Erlbaum Associates. https://doi.org/10.4324/9781410611147Maguinness, C., Setti, A., Roudaia, E., & Kenny, R. A. (2013). Does that look heavy to you? Perceived weight judgment in lifting actions in younger and older adults. Frontiers in Human Neuroscience . https://doi.org/10.3389/fnhum.2013.00795Meulenbroek, R. G. J., Bosga, J., Hulstijn, M., & Miedl, S. (2007). Joint-action coordination in transferring objects. Experimental Brain Research , 180 (2), 333–343. https://doi.org/10.1007/S00221-007-0861-Z/FIGURES/8Norman, J. F., Norman, H. F., Swindle, J. M., Jennings, L. R. S., & Bartholomew, A. N. (2009). Aging and the discrimination of object weight.Perception , 38 (9), 1347–1354. https://doi.org/10.1068/p6367Oh, Y., Hass, N. C., & Lim, S. L. (2016). Body Weight Can Change How Your Emotions Are Perceived. PloS One ,11 (11). https://doi.org/10.1371/JOURNAL.PONE.0166753Perrey, S. (2018). Brain activation associated with eccentric movement: A narrative review of the literature. European Journal of Sport Science ,18 (1), 75–82. https://doi.org/10.1080/17461391.2017.1391334Petroni, A., Baguear, F., & Della-Maggiore, V. (2010). Motor resonance may originate from sensorimotor experience. Journal of Neurophysiology . https://doi.org/10.1152/jn.00386.2010Reichelt, A. F., Ash, A. M., Baugh, L. A., Johansson, R. S., & Flanagan, J. R. (2013). Adaptation of lift forces in object manipulation through action observation.Experimental Brain Research , 228 (2), 221–234. https://doi.org/10.1007/S00221-013-3554-9Rizzolatti, G., Fadiga, L., Fogassi, L., & Gallese, V. (1999). Resonance behaviors and mirror neurons. Archives Italiennes de Biologie , 137 (2–3), 85–100. https://doi.org/10.4449/AIB.V137I2.575Shellock, F. G., Fukunaga, T., Mink, J. H., & Edgerton, V. R. (1991). Exertional muscle injury: Evaluation of concentric versus eccentric actions with serial MR imaging. Radiology , 179 (3), 659–664. https://doi.org/10.1148/radiology.179.3.2027970Shim, J., & Carlton, L. G. (1997). Perception of kinematic characteristics in the motion of lifted weight. Journal of Motor Behavior . https://doi.org/10.1080/00222899709600828von Sobbe, L., Maienborn, C., Reiber, F., Scheifele, E., & Ulrich, R. (2021). Speed or duration? Effects of implicit stimulus attributes on perceived duration.Journal of Cognitive Psychology , 33 (8), 877–898. https://doi.org/10.1080/20445911.2021.1950736/SUPPL_FILE/PECP_A_1950736_SM9527.XLSXWinstein, C. J., Grafton, S. T., & Pohl, P. S. (1997). Motor task difficulty and brain activity: Investigation of goal- directed reciprocal aiming using positron emission tomography. Journal of Neurophysiology ,77 (3), 1581–1594. https://doi.org/10.1152/jn.1997.77.3.1581Yao, W. X., Li, J., Jiang, Z., Gao, J. H., Franklin, C. G., Huang, Y., Lancaster, J. L., & Yue, G. H. (2014). Aging interferes central control mechanism for eccentric muscle contraction. Frontiers in Aging Neuroscience , 6 (MAY). https://doi.org/10.3389/FNAGI.2014.00086Yssaad-Fesselier, R., & Knoblauch, K. (2006). Modeling psychometric functions in R.Behavior Research Methods 2006 38:1 , 38 (1), 28–41. https://doi.org/10.3758/BF03192747Yue, G., & Cole, K. J. (1992). Strength increases from the motor program: Comparison of training with maximal voluntary and imagined muscle contractions. Journal of Neurophysiology , 67 (5), 1114–1123. https://doi.org/10.1152/jn.1992.67.5.1114Yue, G. H., Liu, J. Z., Siemionow, V., Ranganathan, V. K., Ng, T. C., & Sahgal, V. (2000). Brain activation during human finger extension and flexion movements.Brain Research , 856 (1–2), 291–300. https://doi.org/10.1016/S0006-8993(99)02385-9