References
Ahmad, F., Ahmad, I., and Khan, M.S. (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163. https://doi.org/10.1016/j.micres.2006.04.001
Altowayti, W.A.H., Salem, A.A., Al-Fakih, A.M., Bafaqeer, A., Shahir, S., and Tajarudin, H.A. (2022) Optimization of As(V) Removal by Dried Bacterial Biomass: Nonlinear and Linear Regression Analysis for Isotherm and Kinetic Modelling. Metals (Basel). 12. https://doi.org/10.3390/met12101664
Andjelkovic, I., Azari, S., Erkelens, M., Forward, P., Lambert, and M.F., Losic, D. (2017) Bacterial iron-oxide nanowires from biofilm waste as a new adsorbent for the removal of arsenic from water. RSC Adv. 7. https://doi.org/10.1039/c6ra26379h
Arnon, D.I. (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24. https://doi.org/10.1104/pp.24.1.1
Awasthi, S., Chauhan, R., Dwivedi, S., Srivastava, Suchi, Srivastava, Sudhakar, and Tripathi, R.D. (2018) A consortium of alga (Chlorella vulgaris ) and bacterium (Pseudomonas putida ) for amelioration of arsenic toxicity in rice: A promising and feasible approach. Environ. Exp. Bot. 150. https://doi.org/10.1016/j.envexpbot.2018.03.001
Ayangbenro, A.S., and Babalola, O.O. (2020) Genomic analysis ofBacillus cereus NWUAB01 and its heavy metal removal from polluted soil. Sci. Rep. 10. https://doi.org/10.1038/s41598-020-75170-x
Bagade, A., Nandre, V., Paul, D., Patil, Y., Sharma, N., Giri, A., and Kodam, K. (2020) Characterization of hyper tolerant Bacillus firmus L-148 for arsenic oxidation. Environ. Pollut. 261. https://doi.org/10.1016/j.envpol.2020.114124
Bates, L.S., Waldren, R.P., and Teare, I.D. (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39. https://doi.org/10.1007/BF00018060
Bhowmick, S., Pramanik, S., Singh, P., Mondal, P., Chatterjee, D., and Nriagu, J. (2018) Arsenic in groundwater of West Bengal, India: A review of human health risks and assessment of possible intervention options. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2017.08.216
Cappuccino, J.G., and Sherman, N. (2014) Microbiology: A Laboratory Manual, 10th Edition.
Cavalca, L., Zecchin, S., Zaccheo, P., Abbas, B., Rotiroti, M., Bonomi, T., and Muyzer, G. (2019) Exploring biodiversity and arsenic metabolism of microbiota inhabiting arsenic-rich groundwaters in Northern Italy. Front. Microbiol. 10. https://doi.org/10.3389/fmicb.2019.01480
Chakraborti, D., Singh, S.K., Rahman, M.M., Dutta, R.N., Mukherjee, S.C., Pati, S., and Kar, P.B. (2018) Groundwater arsenic contamination in the ganga river basin: A future health danger. Int. J. Environ. Res. Public Health. https://doi.org/10.3390/ijerph15020180
Chandrashekar, K.R., and Sandhyarani, S. (1996) Salinity induced chemical changes in Crotalaria striata DC. plants. Indian J. Plant Physiol. 1.
Chellaiah Edward Raja (2012) Arsenic, boron and salt resistantBacillus safensis MS11 isolated from Mongolia desert soil. African J. Biotechnol. 11. https://doi.org/10.5897/ajb11.3131
Chen, J., Li, J., Zhang, H., Shi, W., and Liu, Y. (2019) Bacterial heavy-metal and antibiotic resistance genes in a copper tailing dam area in northern China. Front. Microbiol. 10. https://doi.org/10.3389/fmicb.2019.01916
Chen, S., Li, X., Sun, G., Zhang, Y., Su, J., and Ye, J. (2015) Heavy metal induced antibiotic resistance in bacterium LSJC7. Int. J. Mol. Sci. 16. https://doi.org/10.3390/ijms161023390
Das, S., and Barooah, M. (2018) Characterization of siderophore producing arsenic-resistant Staphylococcus sp. Strain TA6 isolated from contaminated groundwater of Jorhat, Assam and its possible role in arsenic geocycle. BMC Microbiol. 18. https://doi.org/10.1186/s12866-018-1240-6
Deepika, K. V., Raghuram, M., Kariali, E., and Bramhachari, P. V. (2016) Biological responses of symbiotic Rhizobium radiobacter strain VBCK1062 to the arsenic contaminated rhizosphere soils of mung bean. Ecotoxicol. Environ. Saf. 134. https://doi.org/10.1016/j.ecoenv.2016.08.008
Dey, U., Chatterjee, S., and Mondal, N.K. (2016) Isolation and characterization of arsenic-resistant bacteria and possible application in bioremediation. Biotechnol. Reports 10. https://doi.org/10.1016/j.btre.2016.02.002
Di Franco, C., Santini, T., Pisaneschi, G., and Beccari, E. (2005) Insights into the genetic organization of the Bacillus mycoides cryptic plasmids pDx14.2 and pSin9.7 deduced from their complete nucleotide sequence. Plasmid 54. https://doi.org/10.1016/j.plasmid.2005.05.002
El-Helow, E.R., Sabry, S.A., and Amer, R.M. (2000) Cadmium biosorption by a cadmium resistant strain of Bacillus thuringiensis: Regulation and optimization of cell surface affinity for metal cations. BioMetals 13. https://doi.org/10.1023/A:1009291931258
El-Meihy, R.M., Abou-Aly, H.E., Youssef, A.M., Tewfike, T.A., and El-Alkshar, E.A. (2019) Efficiency of heavy metals-tolerant plant growth promoting bacteria for alleviating heavy metals toxicity on sorghum. Environ. Exp. Bot. 162. https://doi.org/10.1016/j.envexpbot.2019.03.005
Felestrino, É.B., Vieira, I.T., Caneschi, W.L., Cordeiro, I.F., Assis, R. de A.B., Lemes, C.G. de C., Fonseca, N.P., Sanchez, A.B., Cepeda, J.C.C., Ferro, J.A., Garcia, C.C.M., do Carmo, F.F., Kamino, L.H.Y., and Moreira, L.M. (2018) Biotechnological potential of plant growth-promoting bacteria from the roots and rhizospheres of endemic plants in ironstone vegetation in southeastern Brazil. World J. Microbiol. Biotechnol. 34. https://doi.org/10.1007/s11274-018-2538-0
Freundlich, H.M.F. (1906) Over the adsorption in solution. J. Phys. Chem 57.
Gaur, A.C. (1990) Phosphate solubilizing micro-organisms as biofertilizer. Omega scientific publishers
Ghosh, D., Sen, S., and Mohapatra, S. (2017) Modulation of proline metabolic gene expression in Arabidopsis thaliana under water-stressed conditions by a drought-mitigating Pseudomonas putida strain. Ann. Microbiol. 67. https://doi.org/10.1007/s13213-017-1294-y
Giri, A.K., Patel, R.K., Mahapatra, S.S., and Mishra, P.C. (2013) Biosorption of arsenic (III) from aqueous solution by living cells ofBacillus cereus . Environ. Sci. Pollut. Res. 20. https://doi.org/10.1007/s11356-012-1249-6
Glatstein, D.A., Bruna, N., Gallardo-Benavente, C., Bravo, D., Carro Pérez, M.E., Francisca, F.M., and Pérez-Donoso, J.M. (2018) Arsenic and Cadmium Bioremediation by Antarctic Bacteria Capable of Biosynthesizing CdS Fluorescent Nanoparticles. J. Environ. Eng. 144. https://doi.org/10.1061/(asce)ee.1943-7870.0001293
Glibota, N., Grande, M.J., Galvez, A., and Ortega, E. (2020) Genetic determinants for metal tolerance and antimicrobial resistance detected in bacteria isolated from soils of olive tree farms. Antibiotics 9. https://doi.org/10.3390/antibiotics9080476
Gu, K., Liu, W., Han, J., Ou, Z., Wu, D., and Qin, W. (2019) Arsenic and antimony extraction from high arsenic smelter ash with alkaline pressure oxidative leaching followed by Na2S leaching. Sep. Purif. Technol. 222. https://doi.org/10.1016/j.seppur.2019.04.028
Gutierrez, C.K., Matsui, G.Y., Lincoln, D.E., Lovell, C.R. (2009) Production of the phytohormone indole-3-acetic acid by estuarine species of the genus vibrio. Appl. Environ. Microbiol. 75. https://doi.org/10.1128/AEM.02072-08
Ho, Y.S., McKay, G. (1998) A Comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf. Environ. Prot. 76. https://doi.org/10.1205/095758298529696
Islam, M.M., Karim, M.R., Zheng, X., and Li, X. (2018) Heavy metal and metalloid pollution of soil, water and foods in Bangladesh: A critical review. Int. J. Environ. Res. Public Health. https://doi.org/10.3390/ijerph15122825
Jain, D., Kour, R., Bhojiya, A.A., Meena, R.H., Singh, A., Mohanty, S.R., Rajpurohit, D., and Ameta, K.D. (2020) Zinc tolerant plant growth promoting bacteria alleviates phytotoxic effects of zinc on maize through zinc immobilization. Sci. Rep. 10. https://doi.org/10.1038/s41598-020-70846-w
Jeon, Y.S., Lee, K., Park, S.C., Kim, B.S., Cho, Y.J., Ha, S.M., and Chun, J. (2014) EzEditor: A versatile sequence alignment editor for both rRNA- and protein-coding genes. Int. J. Syst. Evol. Microbiol. 64. https://doi.org/10.1099/ijs.0.059360-0
Keramati, P., Hoodaji, M., and Tahmourespour, A. (2011) Multi-metal resistance study of bacteria highly resistant to mercury isolated from dental clinic effluent. African. J Microbiol. Res. 30;5(7):831-7. https://doi.org/10.5897/AJMR10.860
Krumova, K., Nikolovska, M., and Groudeva, V. (2008) Isolation and identification of arsenic-transforming bacteria from arsenic contaminated sites in Bulgaria. Biotechnol. Biotechnol. Equip. 22. https://doi.org/10.1080/13102818.2008.10817541
Kumar, A., Ali, M., Kumar, R., Kumar, M., Sagar, P., Pandey, R.K., Akhouri, V., Kumar, V., Anand, G., Niraj, P.K., Rani, R., Kumar, S., Kumar, D., Bishwapriya, A., and Ghosh, A.K. (2021) Arsenic exposure in Indo Gangetic plains of Bihar causing increased cancer risk. Sci. Rep. 11. https://doi.org/10.1038/s41598-021-81579-9
Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35. https://doi.org/10.1093/molbev/msy096
Lampis, S., Santi, C., Ciurli, A., Andreolli, M., and Vallini, G. (2015) Promotion of arsenic phytoextraction efficiency in the fern Pteris vittata by the inoculation of As-resistant bacteria: A soil bioremediation perspective. Front. Plant Sci. 6. https://doi.org/10.3389/fpls.2015.00080
Langmuir, I. (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40. https://doi.org/10.1021/ja02242a004
Li, L.G., Xia, Y., and Zhang, T. (2017) Co-occurrence of antibiotic and metal resistance genes revealed in complete genome collection. ISME J. 11. https://doi.org/10.1038/ismej.2016.155
Marwa, N., Singh, N., Srivastava, S., Saxena, G., Pandey, V., and Singh, N. (2019) Characterizing the hypertolerance potential of two indigenous bact
erial strains (Bacillus flexus and Acinetobacter junii ) and their efficacy in arsenic bioremediation. J. Appl. Microbiol. 126. https://doi.org/10.1111/jam.14179
Mazumder, D.N.G., Ghosh, A.K., Majumdar, K.K., Mukherjee, S., and Majumder, P.K. (2020) Ground Water Arsenic Contamination in Malda, West Bengal, India: Epidemiology and Efficacy of Mitigation Measures. Int. J. Med. Public Heal. 10.
Miller, A.L., and Walker, J.B. (1970) Accumulation of streptomycin-phosphate in cultures of streptomycin producers grown on a high-phosphate medium. J. Bacteriol. 104. https://doi.org/10.1128/jb.104.1.8-12.1970
Mirza, B.S., Sorensen, D.L., Dupont, R.R., and McLean, J.E. (2017) New arsenate reductase gene (arrA ) PCR primers for diversity assessment and quantification in environmental samples. Appl. Environ. Microbiol. 83. https://doi.org/10.1128/AEM.02725-16
Mujawar, S.Y., Shamim, K., Vaigankar, D.C., and Dubey, S.K. (2019) Arsenite biotransformation and bioaccumulation by Klebsiella pneumoniae strain SSSW7 possessing arsenite oxidase (aioA ) gene. BioMetals 32. https://doi.org/10.1007/s10534-018-0158-7
Nanda, M., Kumar, V., and Sharma, D.K. (2019) Multimetal tolerance mechanisms in bacteria: The resistance strategies acquired by bacteria that can be exploited to ‘clean-up’ heavy metal contaminants from water. Aquat. Toxicol. https://doi.org/10.1016/j.aquatox.2019.04.011
Pandey, N., and Bhatt, R. (2015) Arsenic resistance and accumulation by two bacteria isolated from a natural arsenic contaminated site. J. Basic Microbiol. 55. https://doi.org/10.1002/jobm.201400723
Parisa, K., Mehran, H., and Arezoo, T. (2011) Multi-metal resistance study of bacteria highly resistant to mercury isolated from dental clinic effluent. African J. Microbiol. Res. 5. https://doi.org/10.5897/ajmr10.860
Pepi, M., Protano, G., Ruta, M., Nicolardi, V., Bernardini, E., Focardi, S.E., and Gaggi, C. (2011) Arsenic-resistant Pseudomonas spp. andBacillus sp. bacterial strains reducing As(V) to As(III), isolated from Alps soils, Italy. Folia Microbiol. (Praha). 56. https://doi.org/10.1007/s12223-011-0010-8
Podgorski, J., and Berg, M. (2020) Global threat of arsenic in groundwater. Science (80). 368. https://doi.org/10.1126/science.aba1510
Prasad, K.S., Ramanathan, A.L., Paul, J., Subramanian, V., and Prasad, R. (2013) Biosorption of arsenite (As+3) and arsenate (As+5) from aqueous solution by Arthrobacter sp. biomass. Environ. Technol. (United Kingdom) 34. https://doi.org/10.1080/09593330.2013.786137
Rehman, A., Butt, S.A., and Hasnain, S. (2010) Isolation and characterization of arsenite oxidizing Pseudomonas lubricans and its potential use in bioremediation of wastewater. African J. Biotechnol. 9. https://doi.org/10.5897/ajb09.1663
Renu, S., Sarim, K.M., Singh, D.P., Sahu, U., Bhoyar, M.S., Sahu, A., Kaur, B., Gupta, A., Mandal, A., Thakur, J.K., Manna, M.C., and Saxena, A.K. (2022) Deciphering Cadmium (Cd) Tolerance in Newly Isolated Bacterial Strain, Ochrobactrum intermedium BB12, and Its Role in Alleviation of Cd Stress in Spinach Plant (Spinacia oleracea L.). Front. Microbiol. 12. https://doi.org/10.3389/fmicb.2021.758144
Renu, Sarim, K.M., Sahu, U., Bhoyar, M.S., Singh, D.P., Singh, U.B., Sahu, A., Gupta, A., Mandal, A., Thakur, J.K., and Manna, M.C. (2021) Augmentation of metal-tolerant bacteria elevates growth and reduces metal toxicity in spinach. Bioremediat. J. 25. https://doi.org/10.1080/10889868.2020.1844133
Sanyal, S.K., Mou, T.J., Chakrabarty, R.P., Hoque, S., Hossain, M.A., and Sultana, M. (2016) Diversity of arsenite oxidase gene and arsenotrophic bacteria in arsenic affected Bangladesh soils. AMB Express 6. https://doi.org/10.1186/s13568-016-0193-0
Sarim, K.M., Kukreja, K., Shah, I., Choudhary, and C.K. (2019) Biosorption of direct textile dye Congo red by Bacillus subtilis HAU-KK01. Bioremediat. J. 23. https://doi.org/10.1080/10889868.2019.1641466
Sarkar, A., Kazy, S.K., and Sar, P. (2013) Characterization of arsenic resistant bacteria from arsenic rich groundwater of West Bengal, India. Ecotoxicology 22. https://doi.org/10.1007/s10646-012-1031-z
Schwyn, B., and Neilands, J.B. (1987) Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160. https://doi.org/10.1016/0003-2697(87)90612-9
Selvankumar, T., Radhika, R., Mythili, R., Arunprakash, S., Srinivasan, P., Govarthanan, M., and Kim, H. (2017) Isolation, identification and characterization of arsenic transforming exogenous endophyticCitrobacter sp. RPT from roots of Pteris vittata . 3 Biotech 7. https://doi.org/10.1007/s13205-017-0901-8
Shaji, E., Santosh, M., Sarath, K. V., Prakash, P., Deepchand, V., and Divya, B. V. (2021) Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula. Geosci. Front. 12. https://doi.org/10.1016/j.gsf.2020.08.015
Shivaji, S., Suresh, K., Chaturvedi, P., Dube, S., and Sengupta, S. (2005) Bacillus arsenicu s sp. nov., an arsenic-resistant bacterium isolated from a siderite concretion in West Bengal, India. Int. J. Syst. Evol. Microbiol. 55. https://doi.org/10.1099/ijs.0.63476-0
Shrivastava, A., Barla, A., Singh, S., Mandraha, S., and Bose, S. (2017) Arsenic contamination in agricultural soils of Bengal deltaic region of West Bengal and its higher assimilation in monsoon rice. J. Hazard. Mater. 324. https://doi.org/10.1016/j.jhazmat.2016.11.022
Shukla, R., Sarim, K.M., Singh, and D.P. (2020) Microbe-mediated management of arsenic contamination: current status and future prospects. Environ. Sustain. 3. https://doi.org/10.1007/s42398-019-00090-0
Simeonova, D.D., Lièvremont, D., Lagarde, F., Muller, D.A.E., Groudeva, V.I., and Lett, M.C. (2004) Microplate screening assay for the detection of arsenite-oxidizing and arsenate-reducing bacteria. FEMS Microbiol. Lett. 237. https://doi.org/10.1016/j.femsle.2004.06.040
Singh, P., Raghukumar, C., Parvatkar, R.R., and Mascarenhas-Pereira, M.B.L. (2013) Heavy metal tolerance in the psychrotolerantCryptococcus sp. isolated from deep-sea sediments of the Central Indian Basin. Yeast 30. https://doi.org/10.1002/yea.2943
Sinha, S., and Mukherjee, S.K. (2009) Pseudomonas aeruginosa KUCd1, a possible candidate for cadmium bioremediation. Brazilian J. Microbiol. 40. https://doi.org/10.1590/s1517-83822009000300030
Stolz, J.F., Basu, P., Santini, J.M., and Oremland, R.S. (2006) Arsenic and selenium in microbial metabolism. Annu. Rev. Microbiol. https://doi.org/10.1146/annurev.micro.60.080805.142053
Suhadolnik, M.L.S., Salgado, A.P.C., Scholte, L.L.S., Bleicher, L., Costa, P.S., Reis, M.P., Dias, M.F., Ávila, M.P., Barbosa, F.A.R., Chartone-Souza, E., and Nascimento, A.M.A. (2017) Novel arsenic-transforming bacteria and the diversity of their arsenic-related genes and enzymes arising from arsenic-polluted freshwater sediment. Sci. Rep. 7. https://doi.org/10.1038/s41598-017-11548-8
Sun, Y., Polishchuk, E.A., Radoja, U., and Cullen, W.R. (2004) Identification and quantification of arsC genes in environmental samples by using real-time PCR. J. Microbiol. Methods 58. https://doi.org/10.1016/j.mimet.2004.04.015
Tam, L.M., Price, N.E., and Wang, Y. (2020). Molecular Mechanisms of Arsenic-Induced Disruption of DNA Repair. Chem. Res. Toxicol. https://doi.org/10.1021/acs.chemrestox.9b00464
Tian, X., Li, T., Yang, K., Xu, Y., Lu, H., and Lin, D. (2012) Effect of humic acids on physicochemical property and Cd(II) sorption of multiwalled carbon nanotubes. Chemosphere 89. https://doi.org/10.1016/j.chemosphere.2012.05.082
Tirry, N., Tahri Joutey, N., Sayel, H., Kouchou, A., Bahafid, W., Asri, M., and El Ghachtouli, N. (2018) Screening of plant growth promoting traits in heavy metals resistant bacteria: Prospects in phytoremediation. J. Genet. Eng. Biotechnol. 16. https://doi.org/10.1016/j.jgeb.2018.06.004
Titah, H.S., Abdullah, S.R.S., Idris, M., Anuar, N., Basri, H., Mukhlisin, M., Tangahu, B.V., Purwanti, I.F., Kurniawan, and S.B. (2018) Arsenic Resistance and Biosorption by Isolated Rhizobacteria from the Roots of Ludwigia octovalvis . Int. J. Microbiol. 2018. https://doi.org/10.1155/2018/3101498
Turpeinen, R., Kairesalo, T., and Häggblom, M.M. (2004) Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils. FEMS Microbiol. Ecol. 47. https://doi.org/10.1016/S0168-6496(03)00232-0
Vallalar, B., Meyer-Dombard, D.R., Cardace, D., and Arcilla, C.A. (2019) Multimetal Resistant, Alkalitolerant Bacteria Isolated from Serpentinizing Fluid-Associated Sediments and Acid Mine Drainage in the Zambales Ophiolite, the Philippines. Geomicrobiol. J. 36. https://doi.org/10.1080/01490451.2019.1628132
Yan, A., Wang, Y., Tan, S.N., Mohd Yusof, M.L., Ghosh, S., and Chen, Z. (2020) Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. Front. Plant Sci. https://doi.org/10.3389/fpls.2020.00359
Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. (2017) Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67. https://doi.org/10.1099/ijsem.0.001755
Yu, X., Li, Y., Zhang, C., Liu, H., Liu, J., Zheng, W., Kang, X., Leng, X., Zhao, K., Gu, Y., Zhang, X., Xiang, Q., and Chen, Q. (2014) Culturable heavy metal-resistant and plant growth promoting bacteria in V-Ti magnetite mine tailing soil from Panzhihua, China. PLoS One 9. https://doi.org/10.1371/journal.pone.0106618
Zhai, W., Qin, T., Li, L., Guo, T., Yin, X., Khan, M.I., Hashmi, M.Z., Liu, X., Tang, X., and Xu, J. (2020) Abundance and diversity of microbial arsenic biotransformation genes in the sludge of full-scale anaerobic digesters from a municipal wastewater treatment plant. Environ. Int. 138. https://doi.org/10.1016/j.envint.2020.105535