References
Ahmad, F., Ahmad, I., and Khan, M.S. (2008) Screening of free-living
rhizospheric bacteria for their multiple plant growth promoting
activities. Microbiol. Res. 163.
https://doi.org/10.1016/j.micres.2006.04.001
Altowayti, W.A.H., Salem, A.A., Al-Fakih, A.M., Bafaqeer, A., Shahir,
S., and Tajarudin, H.A. (2022) Optimization of As(V) Removal by Dried
Bacterial Biomass: Nonlinear and Linear Regression Analysis for Isotherm
and Kinetic Modelling. Metals (Basel). 12.
https://doi.org/10.3390/met12101664
Andjelkovic, I., Azari, S., Erkelens, M., Forward, P., Lambert, and
M.F., Losic, D. (2017) Bacterial iron-oxide nanowires from biofilm waste
as a new adsorbent for the removal of arsenic from water. RSC Adv. 7.
https://doi.org/10.1039/c6ra26379h
Arnon, D.I. (1949) Copper enzymes in isolated chloroplasts.
Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24.
https://doi.org/10.1104/pp.24.1.1
Awasthi, S., Chauhan, R., Dwivedi, S., Srivastava, Suchi, Srivastava,
Sudhakar, and Tripathi, R.D. (2018) A consortium of alga
(Chlorella vulgaris ) and bacterium (Pseudomonas putida )
for amelioration of arsenic toxicity in rice: A promising and feasible
approach. Environ. Exp. Bot. 150.
https://doi.org/10.1016/j.envexpbot.2018.03.001
Ayangbenro, A.S., and Babalola, O.O. (2020) Genomic analysis ofBacillus cereus NWUAB01 and its heavy metal removal from polluted
soil. Sci. Rep. 10. https://doi.org/10.1038/s41598-020-75170-x
Bagade, A., Nandre, V., Paul, D., Patil, Y., Sharma, N., Giri, A., and
Kodam, K. (2020) Characterization of hyper tolerant Bacillus
firmus L-148 for arsenic oxidation. Environ. Pollut. 261.
https://doi.org/10.1016/j.envpol.2020.114124
Bates, L.S., Waldren, R.P., and Teare, I.D. (1973) Rapid determination
of free proline for water-stress studies. Plant Soil 39.
https://doi.org/10.1007/BF00018060
Bhowmick, S., Pramanik, S., Singh, P., Mondal, P., Chatterjee, D., and
Nriagu, J. (2018) Arsenic in groundwater of West Bengal, India: A review
of human health risks and assessment of possible intervention options.
Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2017.08.216
Cappuccino, J.G., and Sherman, N. (2014) Microbiology: A Laboratory
Manual, 10th Edition.
Cavalca, L., Zecchin, S., Zaccheo, P., Abbas, B., Rotiroti, M., Bonomi,
T., and Muyzer, G. (2019) Exploring biodiversity and arsenic metabolism
of microbiota inhabiting arsenic-rich groundwaters in Northern Italy.
Front. Microbiol. 10. https://doi.org/10.3389/fmicb.2019.01480
Chakraborti, D., Singh, S.K., Rahman, M.M., Dutta, R.N., Mukherjee,
S.C., Pati, S., and Kar, P.B. (2018) Groundwater arsenic contamination
in the ganga river basin: A future health danger. Int. J. Environ. Res.
Public Health. https://doi.org/10.3390/ijerph15020180
Chandrashekar, K.R., and Sandhyarani, S. (1996) Salinity induced
chemical changes in Crotalaria striata DC. plants. Indian J.
Plant Physiol. 1.
Chellaiah Edward Raja (2012) Arsenic, boron and salt resistantBacillus safensis MS11 isolated from Mongolia desert soil.
African J. Biotechnol. 11. https://doi.org/10.5897/ajb11.3131
Chen, J., Li, J., Zhang, H., Shi, W., and Liu, Y. (2019) Bacterial
heavy-metal and antibiotic resistance genes in a copper tailing dam area
in northern China. Front. Microbiol. 10.
https://doi.org/10.3389/fmicb.2019.01916
Chen, S., Li, X., Sun, G., Zhang, Y., Su, J., and Ye, J. (2015) Heavy
metal induced antibiotic resistance in bacterium LSJC7. Int. J. Mol.
Sci. 16. https://doi.org/10.3390/ijms161023390
Das, S., and Barooah, M. (2018) Characterization of siderophore
producing arsenic-resistant Staphylococcus sp. Strain TA6
isolated from contaminated groundwater of Jorhat, Assam and its possible
role in arsenic geocycle. BMC Microbiol. 18.
https://doi.org/10.1186/s12866-018-1240-6
Deepika, K. V., Raghuram, M., Kariali, E., and Bramhachari, P. V. (2016)
Biological responses of symbiotic Rhizobium radiobacter strain
VBCK1062 to the arsenic contaminated rhizosphere soils of mung bean.
Ecotoxicol. Environ. Saf. 134.
https://doi.org/10.1016/j.ecoenv.2016.08.008
Dey, U., Chatterjee, S., and Mondal, N.K. (2016) Isolation and
characterization of arsenic-resistant bacteria and possible application
in bioremediation. Biotechnol. Reports 10.
https://doi.org/10.1016/j.btre.2016.02.002
Di Franco, C., Santini, T., Pisaneschi, G., and Beccari, E. (2005)
Insights into the genetic organization of the Bacillus mycoides cryptic plasmids pDx14.2 and pSin9.7 deduced from their complete
nucleotide sequence. Plasmid 54.
https://doi.org/10.1016/j.plasmid.2005.05.002
El-Helow, E.R., Sabry, S.A., and Amer, R.M. (2000) Cadmium biosorption
by a cadmium resistant strain of Bacillus thuringiensis: Regulation and optimization of cell surface affinity for metal cations.
BioMetals 13. https://doi.org/10.1023/A:1009291931258
El-Meihy, R.M., Abou-Aly, H.E., Youssef, A.M., Tewfike, T.A., and
El-Alkshar, E.A. (2019) Efficiency of heavy metals-tolerant plant growth
promoting bacteria for alleviating heavy metals toxicity on sorghum.
Environ. Exp. Bot. 162. https://doi.org/10.1016/j.envexpbot.2019.03.005
Felestrino, É.B., Vieira, I.T., Caneschi, W.L., Cordeiro, I.F., Assis,
R. de A.B., Lemes, C.G. de C., Fonseca, N.P., Sanchez, A.B., Cepeda,
J.C.C., Ferro, J.A., Garcia, C.C.M., do Carmo, F.F., Kamino, L.H.Y., and
Moreira, L.M. (2018) Biotechnological potential of plant
growth-promoting bacteria from the roots and rhizospheres of endemic
plants in ironstone vegetation in southeastern Brazil. World J.
Microbiol. Biotechnol. 34. https://doi.org/10.1007/s11274-018-2538-0
Freundlich, H.M.F. (1906) Over the adsorption in solution. J. Phys. Chem
57.
Gaur, A.C. (1990) Phosphate solubilizing micro-organisms as
biofertilizer. Omega scientific publishers
Ghosh, D., Sen, S., and Mohapatra, S. (2017) Modulation of proline
metabolic gene expression in Arabidopsis thaliana under
water-stressed conditions by a drought-mitigating Pseudomonas
putida strain. Ann. Microbiol. 67.
https://doi.org/10.1007/s13213-017-1294-y
Giri, A.K., Patel, R.K., Mahapatra, S.S., and Mishra, P.C. (2013)
Biosorption of arsenic (III) from aqueous solution by living cells ofBacillus cereus . Environ. Sci. Pollut. Res. 20.
https://doi.org/10.1007/s11356-012-1249-6
Glatstein, D.A., Bruna, N., Gallardo-Benavente, C., Bravo, D., Carro
Pérez, M.E., Francisca, F.M., and Pérez-Donoso, J.M. (2018) Arsenic and
Cadmium Bioremediation by Antarctic Bacteria Capable of Biosynthesizing
CdS Fluorescent Nanoparticles. J. Environ. Eng. 144.
https://doi.org/10.1061/(asce)ee.1943-7870.0001293
Glibota, N., Grande, M.J., Galvez, A., and Ortega, E. (2020) Genetic
determinants for metal tolerance and antimicrobial resistance detected
in bacteria isolated from soils of olive tree farms. Antibiotics 9.
https://doi.org/10.3390/antibiotics9080476
Gu, K., Liu, W., Han, J., Ou, Z., Wu, D., and Qin, W. (2019) Arsenic and
antimony extraction from high arsenic smelter ash with alkaline pressure
oxidative leaching followed by Na2S leaching. Sep. Purif. Technol. 222.
https://doi.org/10.1016/j.seppur.2019.04.028
Gutierrez, C.K., Matsui, G.Y., Lincoln, D.E., Lovell, C.R. (2009)
Production of the phytohormone indole-3-acetic acid by estuarine species
of the genus vibrio. Appl. Environ. Microbiol. 75.
https://doi.org/10.1128/AEM.02072-08
Ho, Y.S., McKay, G. (1998) A Comparison of chemisorption kinetic models
applied to pollutant removal on various sorbents. Process Saf. Environ.
Prot. 76. https://doi.org/10.1205/095758298529696
Islam, M.M., Karim, M.R., Zheng, X., and Li, X. (2018) Heavy metal and
metalloid pollution of soil, water and foods in Bangladesh: A critical
review. Int. J. Environ. Res. Public Health.
https://doi.org/10.3390/ijerph15122825
Jain, D., Kour, R., Bhojiya, A.A., Meena, R.H., Singh, A., Mohanty,
S.R., Rajpurohit, D., and Ameta, K.D. (2020) Zinc tolerant plant growth
promoting bacteria alleviates phytotoxic effects of zinc on maize
through zinc immobilization. Sci. Rep. 10.
https://doi.org/10.1038/s41598-020-70846-w
Jeon, Y.S., Lee, K., Park, S.C., Kim, B.S., Cho, Y.J., Ha, S.M., and
Chun, J. (2014) EzEditor: A versatile sequence alignment editor for both
rRNA- and protein-coding genes. Int. J. Syst. Evol. Microbiol. 64.
https://doi.org/10.1099/ijs.0.059360-0
Keramati, P., Hoodaji, M., and Tahmourespour, A. (2011) Multi-metal
resistance study of bacteria highly resistant to mercury isolated from
dental clinic effluent. African. J Microbiol. Res. 30;5(7):831-7.
https://doi.org/10.5897/AJMR10.860
Krumova, K., Nikolovska, M., and Groudeva, V. (2008) Isolation and
identification of arsenic-transforming bacteria from arsenic
contaminated sites in Bulgaria. Biotechnol. Biotechnol. Equip. 22.
https://doi.org/10.1080/13102818.2008.10817541
Kumar, A., Ali, M., Kumar, R., Kumar, M., Sagar, P., Pandey, R.K.,
Akhouri, V., Kumar, V., Anand, G., Niraj, P.K., Rani, R., Kumar, S.,
Kumar, D., Bishwapriya, A., and Ghosh, A.K. (2021) Arsenic exposure in
Indo Gangetic plains of Bihar causing increased cancer risk. Sci. Rep.
11. https://doi.org/10.1038/s41598-021-81579-9
Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018) MEGA X:
Molecular evolutionary genetics analysis across computing platforms.
Mol. Biol. Evol. 35. https://doi.org/10.1093/molbev/msy096
Lampis, S., Santi, C., Ciurli, A., Andreolli, M., and Vallini, G. (2015)
Promotion of arsenic phytoextraction efficiency in the fern Pteris
vittata by the inoculation of As-resistant bacteria: A soil
bioremediation perspective. Front. Plant Sci. 6.
https://doi.org/10.3389/fpls.2015.00080
Langmuir, I. (1918) The adsorption of gases on plane surfaces of glass,
mica and platinum. J. Am. Chem. Soc. 40.
https://doi.org/10.1021/ja02242a004
Li, L.G., Xia, Y., and Zhang, T. (2017) Co-occurrence of antibiotic and
metal resistance genes revealed in complete genome collection. ISME J.
11. https://doi.org/10.1038/ismej.2016.155
Marwa, N., Singh, N., Srivastava, S., Saxena, G., Pandey, V., and Singh,
N. (2019) Characterizing the hypertolerance potential of two indigenous
bact
erial strains (Bacillus flexus and Acinetobacter junii )
and their efficacy in arsenic bioremediation. J. Appl. Microbiol. 126.
https://doi.org/10.1111/jam.14179
Mazumder, D.N.G., Ghosh, A.K., Majumdar, K.K., Mukherjee, S., and
Majumder, P.K. (2020) Ground Water Arsenic Contamination in Malda, West
Bengal, India: Epidemiology and Efficacy of Mitigation Measures. Int. J.
Med. Public Heal. 10.
Miller, A.L., and Walker, J.B. (1970) Accumulation of
streptomycin-phosphate in cultures of streptomycin producers grown on a
high-phosphate medium. J. Bacteriol. 104.
https://doi.org/10.1128/jb.104.1.8-12.1970
Mirza, B.S., Sorensen, D.L., Dupont, R.R., and McLean, J.E. (2017) New
arsenate reductase gene (arrA ) PCR primers for diversity
assessment and quantification in environmental samples. Appl. Environ.
Microbiol. 83. https://doi.org/10.1128/AEM.02725-16
Mujawar, S.Y., Shamim, K., Vaigankar, D.C., and Dubey, S.K. (2019)
Arsenite biotransformation and bioaccumulation by Klebsiella
pneumoniae strain SSSW7 possessing arsenite oxidase (aioA ) gene.
BioMetals 32. https://doi.org/10.1007/s10534-018-0158-7
Nanda, M., Kumar, V., and Sharma, D.K. (2019) Multimetal tolerance
mechanisms in bacteria: The resistance strategies acquired by bacteria
that can be exploited to ‘clean-up’ heavy metal contaminants from water.
Aquat. Toxicol. https://doi.org/10.1016/j.aquatox.2019.04.011
Pandey, N., and Bhatt, R. (2015) Arsenic resistance and accumulation by
two bacteria isolated from a natural arsenic contaminated site. J. Basic
Microbiol. 55. https://doi.org/10.1002/jobm.201400723
Parisa, K., Mehran, H., and Arezoo, T. (2011) Multi-metal resistance
study of bacteria highly resistant to mercury isolated from dental
clinic effluent. African J. Microbiol. Res. 5.
https://doi.org/10.5897/ajmr10.860
Pepi, M., Protano, G., Ruta, M., Nicolardi, V., Bernardini, E., Focardi,
S.E., and Gaggi, C. (2011) Arsenic-resistant Pseudomonas spp. andBacillus sp. bacterial strains reducing As(V) to As(III),
isolated from Alps soils, Italy. Folia Microbiol. (Praha). 56.
https://doi.org/10.1007/s12223-011-0010-8
Podgorski, J., and Berg, M. (2020) Global threat of arsenic in
groundwater. Science (80). 368. https://doi.org/10.1126/science.aba1510
Prasad, K.S., Ramanathan, A.L., Paul, J., Subramanian, V., and Prasad,
R. (2013) Biosorption of arsenite (As+3) and arsenate (As+5) from
aqueous solution by Arthrobacter sp. biomass. Environ. Technol.
(United Kingdom) 34. https://doi.org/10.1080/09593330.2013.786137
Rehman, A., Butt, S.A., and Hasnain, S. (2010) Isolation and
characterization of arsenite oxidizing Pseudomonas lubricans and
its potential use in bioremediation of wastewater. African J.
Biotechnol. 9. https://doi.org/10.5897/ajb09.1663
Renu, S., Sarim, K.M., Singh, D.P., Sahu, U., Bhoyar, M.S., Sahu, A.,
Kaur, B., Gupta, A., Mandal, A., Thakur, J.K., Manna, M.C., and Saxena,
A.K. (2022) Deciphering Cadmium (Cd) Tolerance in Newly Isolated
Bacterial Strain, Ochrobactrum intermedium BB12, and Its Role in
Alleviation of Cd Stress in Spinach Plant (Spinacia oleracea L.). Front.
Microbiol. 12. https://doi.org/10.3389/fmicb.2021.758144
Renu, Sarim, K.M., Sahu, U., Bhoyar, M.S., Singh, D.P., Singh, U.B.,
Sahu, A., Gupta, A., Mandal, A., Thakur, J.K., and Manna, M.C. (2021)
Augmentation of metal-tolerant bacteria elevates growth and reduces
metal toxicity in spinach. Bioremediat. J. 25.
https://doi.org/10.1080/10889868.2020.1844133
Sanyal, S.K., Mou, T.J., Chakrabarty, R.P., Hoque, S., Hossain, M.A.,
and Sultana, M. (2016) Diversity of arsenite oxidase gene and
arsenotrophic bacteria in arsenic affected Bangladesh soils. AMB Express
6. https://doi.org/10.1186/s13568-016-0193-0
Sarim, K.M., Kukreja, K., Shah, I., Choudhary, and C.K. (2019)
Biosorption of direct textile dye Congo red by Bacillus subtilis
HAU-KK01. Bioremediat. J. 23.
https://doi.org/10.1080/10889868.2019.1641466
Sarkar, A., Kazy, S.K., and Sar, P. (2013) Characterization of arsenic
resistant bacteria from arsenic rich groundwater of West Bengal, India.
Ecotoxicology 22. https://doi.org/10.1007/s10646-012-1031-z
Schwyn, B., and Neilands, J.B. (1987) Universal chemical assay for the
detection and determination of siderophores. Anal. Biochem. 160.
https://doi.org/10.1016/0003-2697(87)90612-9
Selvankumar, T., Radhika, R., Mythili, R., Arunprakash, S., Srinivasan,
P., Govarthanan, M., and Kim, H. (2017) Isolation, identification and
characterization of arsenic transforming exogenous endophyticCitrobacter sp. RPT from roots of Pteris vittata . 3
Biotech 7. https://doi.org/10.1007/s13205-017-0901-8
Shaji, E., Santosh, M., Sarath, K. V., Prakash, P., Deepchand, V., and
Divya, B. V. (2021) Arsenic contamination of groundwater: A global
synopsis with focus on the Indian Peninsula. Geosci. Front. 12.
https://doi.org/10.1016/j.gsf.2020.08.015
Shivaji, S., Suresh, K., Chaturvedi, P., Dube, S., and Sengupta, S.
(2005) Bacillus arsenicu s sp. nov., an arsenic-resistant
bacterium isolated from a siderite concretion in West Bengal, India.
Int. J. Syst. Evol. Microbiol. 55. https://doi.org/10.1099/ijs.0.63476-0
Shrivastava, A., Barla, A., Singh, S., Mandraha, S., and Bose, S. (2017)
Arsenic contamination in agricultural soils of Bengal deltaic region of
West Bengal and its higher assimilation in monsoon rice. J. Hazard.
Mater. 324. https://doi.org/10.1016/j.jhazmat.2016.11.022
Shukla, R., Sarim, K.M., Singh, and D.P. (2020) Microbe-mediated
management of arsenic contamination: current status and future
prospects. Environ. Sustain. 3.
https://doi.org/10.1007/s42398-019-00090-0
Simeonova, D.D., Lièvremont, D., Lagarde, F., Muller, D.A.E., Groudeva,
V.I., and Lett, M.C. (2004) Microplate screening assay for the detection
of arsenite-oxidizing and arsenate-reducing bacteria. FEMS Microbiol.
Lett. 237. https://doi.org/10.1016/j.femsle.2004.06.040
Singh, P., Raghukumar, C., Parvatkar, R.R., and Mascarenhas-Pereira,
M.B.L. (2013) Heavy metal tolerance in the psychrotolerantCryptococcus sp. isolated from deep-sea sediments of the Central
Indian Basin. Yeast 30. https://doi.org/10.1002/yea.2943
Sinha, S., and Mukherjee, S.K. (2009) Pseudomonas aeruginosa KUCd1, a
possible candidate for cadmium bioremediation. Brazilian J. Microbiol.
40. https://doi.org/10.1590/s1517-83822009000300030
Stolz, J.F., Basu, P., Santini, J.M., and Oremland, R.S. (2006) Arsenic
and selenium in microbial metabolism. Annu. Rev. Microbiol.
https://doi.org/10.1146/annurev.micro.60.080805.142053
Suhadolnik, M.L.S., Salgado, A.P.C., Scholte, L.L.S., Bleicher, L.,
Costa, P.S., Reis, M.P., Dias, M.F., Ávila, M.P., Barbosa, F.A.R.,
Chartone-Souza, E., and Nascimento, A.M.A. (2017) Novel
arsenic-transforming bacteria and the diversity of their arsenic-related
genes and enzymes arising from arsenic-polluted freshwater sediment.
Sci. Rep. 7. https://doi.org/10.1038/s41598-017-11548-8
Sun, Y., Polishchuk, E.A., Radoja, U., and Cullen, W.R. (2004)
Identification and quantification of arsC genes in environmental
samples by using real-time PCR. J. Microbiol. Methods 58.
https://doi.org/10.1016/j.mimet.2004.04.015
Tam, L.M., Price, N.E., and Wang, Y. (2020). Molecular Mechanisms of
Arsenic-Induced Disruption of DNA Repair. Chem. Res. Toxicol.
https://doi.org/10.1021/acs.chemrestox.9b00464
Tian, X., Li, T., Yang, K., Xu, Y., Lu, H., and Lin, D. (2012) Effect of
humic acids on physicochemical property and Cd(II) sorption of
multiwalled carbon nanotubes. Chemosphere 89.
https://doi.org/10.1016/j.chemosphere.2012.05.082
Tirry, N., Tahri Joutey, N., Sayel, H., Kouchou, A., Bahafid, W., Asri,
M., and El Ghachtouli, N. (2018) Screening of plant growth promoting
traits in heavy metals resistant bacteria: Prospects in
phytoremediation. J. Genet. Eng. Biotechnol. 16.
https://doi.org/10.1016/j.jgeb.2018.06.004
Titah, H.S., Abdullah, S.R.S., Idris, M., Anuar, N., Basri, H.,
Mukhlisin, M., Tangahu, B.V., Purwanti, I.F., Kurniawan, and S.B. (2018)
Arsenic Resistance and Biosorption by Isolated Rhizobacteria from the
Roots of Ludwigia octovalvis . Int. J. Microbiol. 2018.
https://doi.org/10.1155/2018/3101498
Turpeinen, R., Kairesalo, T., and Häggblom, M.M. (2004) Microbial
community structure and activity in arsenic-, chromium- and
copper-contaminated soils. FEMS Microbiol. Ecol. 47.
https://doi.org/10.1016/S0168-6496(03)00232-0
Vallalar, B., Meyer-Dombard, D.R., Cardace, D., and Arcilla, C.A. (2019)
Multimetal Resistant, Alkalitolerant Bacteria Isolated from
Serpentinizing Fluid-Associated Sediments and Acid Mine Drainage in the
Zambales Ophiolite, the Philippines. Geomicrobiol. J. 36.
https://doi.org/10.1080/01490451.2019.1628132
Yan, A., Wang, Y., Tan, S.N., Mohd Yusof, M.L., Ghosh, S., and Chen, Z.
(2020) Phytoremediation: A Promising Approach for Revegetation of Heavy
Metal-Polluted Land. Front. Plant Sci.
https://doi.org/10.3389/fpls.2020.00359
Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J.
(2017) Introducing EzBioCloud: A taxonomically united database of 16S
rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol.
Microbiol. 67. https://doi.org/10.1099/ijsem.0.001755
Yu, X., Li, Y., Zhang, C., Liu, H., Liu, J., Zheng, W., Kang, X., Leng,
X., Zhao, K., Gu, Y., Zhang, X., Xiang, Q., and Chen, Q. (2014)
Culturable heavy metal-resistant and plant growth promoting bacteria in
V-Ti magnetite mine tailing soil from Panzhihua, China. PLoS One 9.
https://doi.org/10.1371/journal.pone.0106618
Zhai, W., Qin, T., Li, L., Guo, T., Yin, X., Khan, M.I., Hashmi, M.Z.,
Liu, X., Tang, X., and Xu, J. (2020) Abundance and diversity of
microbial arsenic biotransformation genes in the sludge of full-scale
anaerobic digesters from a municipal wastewater treatment plant.
Environ. Int. 138. https://doi.org/10.1016/j.envint.2020.105535