Reference
Alberdi, A., Bideguren, G. M., Aizpurua, O. (2021). Diversity and compositional changes in the gut microbiota of wild and captive vertebrates: a meta-analysis. Scientific Reports, 11 (1), 22660. https://doi.org/10.1038/S41598-021-02015-6
Amato, K. R., Leigh, S. R., Kent, A., Mackie, R. I., Yeoman, C. J., Stumpf, R. M., Wilson, B. A., Nelson K. E., White, B. A., Garber, P. A. (2015). The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra ). Microbial ecology, 69(2), 434–443. https://doi.org/10.1007/s00248-014-0554-7
Amato, K. R., Martinez-Mota, R., Righini, N., Raguet-Schofield, M., Corcione, F. P, Marini, E, Humphrey, G., Gaffney, J., Lovelace, E., Williams, L., Luong, A., Dominguez-Bello, M. G., Stumpf, R. M., White, B., Nelson, K. E., Knight, R., Leigh, S. R. (2016). Phylogenetic and ecological factors impact the gut microbiota of two Neotropical primate species. Oecologia, 180(3), 717–733. https://doi.org/10.1007/s00442-015-3507-z
Anderson, M. J., Ellingsen, K. E., McArdle, B. H. (2006). Multivariate dispersion as a measure of beta diversity.
Ecology Letters, 9(6), 683–69. https://doi.org/10.1111/j.1461-0248.2006.00926.x
Bennett, G., Malone, M., Sauther, M. L., Cuozzo, F. P., White, B., Nelson, K. E., Stumpf, R. M., Knight, R., Leigh, S. R., Amato, K. R. (2016). Host age, social group, and habitat type influence the gut microbiota of wild ring-tailed lemurs (Lemur catta ). American Journal of Primatology, 78(8), 883–892. https://doi.org/10.1002/ajp.22555
Bokulich, N. A., Kaehler, B. D., Rideout, J. R., Dillon, M., Bolyen, E., Knight, R., Huttley, G. A., Caporaso, J. G. (2018). Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome, 6(1), 1–17. https://doi.org/10.1186/s40168-018-0470-z
Bornbusch, S. L., Greene, L. K., Rahobilalaina, S., Calkins, S., Rothman, R. S., Clarke, T. A., LaFleur, M., Drea, C. M. (2022). Gut microbiota of ring-tailed lemurs (Lemur catta ) vary across natural and captive populations and correlate with environmental microbiota. Animal Microbiome, 4(1), 29. https://doi.org/10.1186/S42523-022-00176-X
Cabana, F., Clayton, J. B., Nekaris, K. A., Wirdateti, W., Knights, D., Seedorf, H. (2019). Nutrient-based diet modifications impact on the gut microbiome of the Javan slow loris (Nycticebus javanicus ). Scientific Reports, 9, 1–11. https://doi.org/10.1038/s41598-019-40911-0
Callahan, B. J., Mcmurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J., Holmes, S. P. (2016). Dada2: high-resolution sample inference from illumina amplicon data. Nature Methods, 2016, 13(7): 581–583. https://doi.org/10.1038/nmeth.3869
Campbell, T. P., Sun, X. Q., Patel, V. H., Sanz, C., Morgan, D., Dantas, G. (2020). The microbiome and resistome of chimpanzees, gorillas, and humans across host lifestyle and geography. ISME Journal, 14(6), 1584–1599. https://doi.org/10.1038/s41396-020-0634-2
Cheng, M., Zou, S. Z., Liao, Z. T., Luo, Y., Tang, Y., Zhang, J. D. (2020). Characteristics of intestinal micro-ecological environment of wild and captive Giant Pandas and their differences. Journal of China West Normal University (Natural Sciences), 41(2), 117–124. https://doi.org/10.16246/j.issn.1673-5072.2020.02.001
Clayton, J. B., Vangay, P., Huang, H., Ward, T., Hillmann, B. M., Al-Ghalith, G. A., Travis, D. A., Long, H, T., Tuan, B. V., Minh, V. V., Cabana, F., Nadler, T., Toddes, B., Murphy, T., Glander, K. E., Johnson, T. J., Knights, D. (2016). Captivity humanizes the primate microbiome. Proceedings of the National Academy of Sciences of the United States of America, 113(37), 10376–10381. https://doi.org/10.1073/pnas.1521835113
Clayton, J. B., Al-Ghalith, G. A., Long, H. T., Tuan, B. V., Cabana, F., Huang, H., Vangay, P., Ward, T., Minh, V. V., Tam, N. A., Dat, N. T., Travis, D. A., Mur‐taugh, M. P., Covert, H., Glander, K. E., Nadler, T., Toddes, B., Sha, J. C. M., Singer, R., Knights, D., Johnson, T. J. (2018). Associations between nutrition, gut microbiome, and health in a novel nonhuman primate model. Scientific Reports. 8(1), 11159. https://doi.org/10.1038/s41598-018-29277-x
Diaz, J., Reese, A. T. (2021). Possibilities and limits for using the gut microbiome to improve captive animal health. Animal Microbiome, 3(1), 89. https://doi.org/10.1186/S42523-021-00155-8
Douglas, G. M., Maffei, V. J., Zaneveld, J., Yurgel, S. N., Brown, J. R., Taylor, C. M., Huttenhower, C. (2019). PICRUSt2: An improved and extensible approach for metagenome inference. BioRxiv, https://doi.org/10.1101/672295
Frankel, J. S., Mallott, E. K., Hopper, L. M., Ross, S. R., Amato, K. R. (2019). The effect of captivity on the primate gut microbiome varies with host dietary niche. American Journal of Primatology, 81(12), e23061. https://doi.org/10.1002/ajp.23061
Gani, M., Mohd-Ridwan, A., Sitam, F. T., Kamarudin, Z., Selamat, S. S., Awang, N. M. Z., Karuppannan, K. V., Md-Zain, B. M. (2024). Habitat shapes the gut microbiome diversity of Malayan tigers (Panthera tigris jacksoni ) as revealed through metabarcoding 16S rRNA profiling. World Journal of Microbiology & Biotechnology, 40(4), 111. https://doi.org/10.1007/s11274-023-03868-x
Gomez, A., Petrzelkova, K., Yeoman, C. J., Vlckova, K., Mrázek, J., Koppova, I., Carbonero, F., Ulanov, A., Modry, D., Todd, A., Torralba, M., Nelson, K, E., Gaskins, H. R., Wilson, B., Stumpf, R.M., White, B. A., Leigh, S. R. (2015). Gut microbiome composition and metabolomic profiles of wild western lowland gorillas (Gorilla gorilla gorilla ) reflect host ecology. Molecular Ecology, 24(10), 2551–2565. https://doi.org/10.1111/mec.13181
Guo, Q. Y., Wei, X., Lu, M, J., Fan, P. L., Zhou, Q. H. (2023). Advances and prospects of the gut microbiome in non-human primate. Acta Theriologica Sinica, 43(1), 69–81. https://doi.org/10.16829/j.slxb.150669
Hale, V. L., Tan, C. L., Niu, K. F., Yang, Y. Q., Knight, R., Zhang, Q. K., Cui, D.Y., Amato, K. R. (2018). Diet versus phylogeny: a comparison of gut microbiota in captive colobine monkey species. Mirobial Ecology, 75(2), 515–527. https://doi.org/10.1007/s00248-017-1041-8
Hale, V. L., Tan, C. L., Niu, K. F., Yang, Y. Q., Zhang, Q. K., Knight, R., Amato, K. R. (2019). Gut microbiota in wild and captive Guizhou snub-nosed monkeys, Rhinopithecus brelichi . American Journal of Primatology, 81(10–11), e22989. https://doi.org/10.1002/ajp.22989
He, Y. Y., Zhang, M. H., Dai, C. Y., Yu, L. J. (2023). Comparison of the gut microbial communities of domestic and wild Mallards (Anas platyrhynchos ) based on high-throughput sequencing technology. Animals, 13(18), 2956. https://doi.org/10.3390/ani13182956
Huang, X. L., Li, H. B., Zhang, X., Cheng, S. C., Yan, Y. Y., Yang, W., Meng, B. S., Wang, C., Yang, J., Ran, J. C. (2024). Difference of gut microbial structure between Rhinopithecus brelichi andMacaca thibetana in Fanjingshan Nature Reserve. Acta Theriologica Sinica, 44(2), 183–194. https://doi.org/10.16829/j.slxb.150837
Jia, T., Chang, W. S., Marcelino, V, R., Zhao, S. F., Liu, X. F., You, Y. Y., Holmes, E. C., Shi, M., Zhang, C. L. (2022). Characterization of the gut microbiome and resistomes of wild and zoo-captive Macaques. Frontiers in Veterinary Science, 8, 778556. https://doi.org/10.3389/FVETS.2021.778556
Jia, W., He, Q. Q., Yan, S. S., Luo, T., Wu, H. H., Deng, H. Q., Zhou, J. (2022). Preliminary study on the niche differentiation of Grey Snub-nosed monkey and Tibetan Macaque in Fanjing Mountain in winter and spring. Chinese Journal of Zoology, 57(4), 503–513. https://doi.org/10.13859/j.cjz.202204003
Jiang, F., Song, P. F., Zhang, J. J., Gao, H. M., Wang, H. J., Cai, Z. Y., Liu, D. X., Zhang, T. Z. (2023). Comparative analysis of gut microbial composition and functions of forest musk deer in different breeding centres. Acta Theriologica Sinica, 43(2), 129–140. https://doi.org/10.16829/j.slxb.150701
Kohl, K. D., Skopec, M. M., Dearing, M. D. (2014). Captivity results in disparate loss of gut microbial diversity in closely related hosts. Conservation Physiology, 4(1), cou009. https://doi.org/10.1093/conphys/cou009
Ley, R. E., Hamady, M., Lozupone, C., Turnbaugh, P. J., Ramey, R. R., Bircher, J. S., Schlegel, M. L., Tucker, T. A., Schrenzel, M. D., Knight, R., Gordon, J. I. (2008). Evolution of mammals and their gut microbes. Science, 320(5883), 1647–1651. https://doi.org/10.1126/science.1155725
Li, Y. M., Hu, X. L., Yang, S., Zhou, J. T., Zhang, T. X., Qi, L., Sun, X. N., Fan, M. Y., Xu, S. H., Cha, M., Zhang, M. S., Lin, S. B., Liu, S. Q., Hu, D. F. (2017). Comparative analysis of the gut microbiota composition between captive and wild forest Musk Deer. Frontiers in Microbiology, 8, 1705. https://doi.org/10.3389/fmicb.2017.01705
Li, L., Shan, J., Tang, Y., Li, D. Y., Qin, M. S. (2024). The effects of food provisioning on the gut microbiota community and antibiotic resistance genes of Yunnan snub-nosed monkey. Frontiers in Microbiology, 15, 1361218. https://doi.org/10.3389/fmicb.2024.1361218
Mamuad, L. L, Seo, B. J., Al Faruk, M. S., Espiritu, H. M., Jin, S. J., Kim, W. I., Lee, S. S., Cho, Y. I. (2020). Treponema spp., the dominant pathogen in the lesion of bovine digital dermatitis and its characterization in dairy cattle. Veterinary Microbiology, 245, 108696. https://doi.org/10.1016/j.vetmic.2020.108696
Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. Journal, 17(1), 10. https://doi.org/10.14806/ej.17.1.200
McKenzie, V. J., Song, S. J., Delsuc, F., Prest, T. L., Oliverio, A. M., Korpita, T. M., Alexiev, A., Amato, K. R., Metcalf, J. L., Kowalewski, M., Avenant, N. L., Link, A., Di Fiore, A., Seguin-Orlando, A., Feh, C., Orlando, L., Mendelson, J. R., Sanders, J., Knight, R. (2017). The effects of captivity on the mammalian gut microbiome. Integrative and Comparative, 57(4), 690–704. https://doi.org/10.1093/icb/icx090
Narat, V., Amato, K. R., Ranger, N., Salmona, M., Mercier-Delarue, S., Rupp, S., Ambata, P., Njouom, R., Simon, F., Giles-Vernick, T., LeGoff, J. (2020). A multi-disciplinary comparison of great ape gut microbiota in a central African forest and European zoo. Scientific Reports, 10(1), 19107. https://doi.org/10.1038/s41598-020-75847-3
Nguyen, T. Q., Martínez-alvaro, M., Lima, J., Auffret, M. D., Rutherford, K. M. D., Simm, G., Dewhurst, R. J., Baima, E. T., Roehe, R. (2023). Identification of intestinal and fecal microbial biomarkers using a porcine social stress model. Frontiers in Microbiology, 14,1197371. https://doi.org/10.3389/FMICB.2023.1197371
Sawaswong, V., Praianantathavorn, K., Chanchaem, P., Khamwut, A., Kemthong, T., Hamada, Y., Malaivijitnond, S., Payungporn, S. (2021). Comparative analysis of oral-gut microbiota between captive and wild long-tailed macaque in Thailand. Scientific Reports, 11(1), 14280. https://doi.org/10.1038/S41598-021-93779-4
Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12(6), R60. https://doi.org/10.1186/gb-2011-12-6-r60
Sun, B. H., Wang, X., Bernstein, S., Huffman, M. A., Xia, D. P., Gu, Z. Y., Chen, R., Sheeran, L. K., Wagner, R.S., Li, J. H. (2016). Marked variation between winter and spring gut microbiota in free-ranging Tibetan macaques (Macaca thibetana ). Scientific Reports, 6, e26035. https://doi.org/10.1038/srep26035
Sun, Y. W., Sun, Y. J., Shi, Z. H., Liu, Z. S., Zhao, C., Lu, T. F., Gao, H., Feng, Z., Chen, R., Zhang, J., Pan, R. L., Li, B. G., Ten, L. W., Guo, S. T. (2020). Gut microbiota of wild and captive alpine Musk Deer (Moschus chrysogaster ). Frontiers in Microbiology, 10, 3156. https://doi.org/10.3389/fmicb.2019.03156
Sun, Y., Yu, Y. Z., Wu, A. K., Zhang, C., Liu, X., Qian, C. J., Li, J. F., Ran, J. C. (2023). The composition and function of the gut microbiota of Francois’ langurs (Trachypithecus francoisi ) depend on the environment and diet. Frontiers in Microbiology, 14, 1269492. https://doi.org/10.3389/fmicb.2023.1269492
Tang, S., Xin, Y., Ma, Y. L., Xu, X. W., Zhao, S. H., Cao, J. H. (2020). Screening of microbes associated with swine growth and fat deposition traits across the intestinal tract. Frontiers in Microbiology, 11, 586776. https://doi.org/10.3389/fmicb.2020.586776
Tian, X., Tian, L. M., Jia, S., Li, N., Fu, X. X., Cui, H. X., Quan, X. J., Shi, K. (2020). Analysis of gut microbiome of wild and captive Sika deer. Heilongjiang Animal Science and Veterinary Medicine, 18, 138–140. https://doi.org/10.13881/j.cnki.hljxmsy.2019.12.0206
Wang, X. C., Zhang, J. L., Pan, H. J., Chen, Y. X., Mao, S. X., Qi, J. W., Shen, Y., Zhang, M. Y., Xiang, Z. F., Li, M. (2023). Unique characteristics of gut microbiota in black snub-nosed monkeys (Rhinopithecus strykeri ) reveal an enzymatic mechanism of adaptation to dietary vegetation. Zoological research, 44(2), 357–360. https://doi.org/10.24272/j.issn.2095-8137.2022.500
Wang, X. Y., Shi, B. G., Zuo, Z., Qi, Y. P., Zhao, S. J., Zhang, X. P., Lan, L. J., Shi, Y., Liu, X., Li, S. B., Wang, J. Q., Hu, J. (2023). Effects of two different straw pellets on Yak growth performance and ruminal microbiota during cold season. Animals, 13(3), 335. https://doi.org/10.3390/ani13030335
Wang, Y. T., Yang, X. Y., Zhang, M. Y., Pan, H. J. (2023). Comparative analysis of gut microbiota between wild and captive Golden Snub-Nosed Monkeys. Animals, 13(10), 1625. https://doi.org/10.3390/ani13101625
Wu, B., Zhu, C. Q., Li, D. Q., Dong, K., Wang, X. L., Shi, P. L. (2006). Setting biodiversity conservation priorities in the Forests of the Upper Yangtze Ecoregion based on ecoregion conservation methodology. Biodiversity Science, 14(2), 87–97. https://doi.org/10.1360/biodiv.050232
Xi, L., Wen, X. H., Jia, T., Han, J. C., Qin, X. X., Zhang, Y. Z., Wang, Z. H. (2023). Comparative study of the gut microbiota in three captiveRhinopithecus species. BMC Genomics, 24(1), 398. https://doi.org/10.1186/S12864-023-09440-Z
Xia, Y. N., Xu, X. J., Chen, H. J., Yue, R., Xia, D. P., Wang, X., Li, J. H., Sun, B. H. (2022). Effects of captive and primate-focused tourism on the gut microbiome of Tibetan macaques. Frontiers in Microbiology, 13, 1023898. https://doi.org/10.3389/fmicb.2022.1023898
Xiang, Z. F., Nie, S. G., Lei, X. P., Chang, Z. F., Wei, F. W., Li, M. (2009). Current status and conservation of the gray snub-nosed monkeyRhinopithecus brelichi (Colobinae) in Guizhou, China. Biological Conservation, 142(3), 469–476. https://doi.org/10.1016/j.biocon.2008.11.019
Xiang, Z. F., Liang, W. B., Nie, S. G., Li, M. (2012). Diet and feeding behavior of Rhinopithecus brelichi at Yangaoping, Guizhou. American journal of primatology, 74(6), 551–560. https://doi.org/10.1002/ajp.22008
Xu, L., Zhang, Y., Wang, L., Chen, W. M., Wei, G. H. (2014). Diversity of endophytic bacteria associated with nodules of two indigenous legumes at different altitudes of the Qilian Mountains in China. Systematic and Applied Microbiology, 37(6), 457–465. https://doi.org/10.1016/j.syapm.2014.05.009
Yang, C. C., Du, Y., Ren, D. Y., Yang, X. B., Zhao, Y. (2021). Gut microbiota-dependent catabolites of tryptophan play a predominant role in the protective effects of turmeric polysaccharides against DSS-induced ulcerative colitis. Food & function, 12(20), 9793–9807. https://doi.org/10.1039/d1fo01468d
Yang, T. Y., Cui, D. Y., Niu, K. F. (2023). Current knowledge and conservation strategies of the Guizhou snub-nosed monkey in Fanjingshan, China. Chinese Journal of Wildlife, 44(3), 695–704. https://doi.org/10.12375/ysdwxb.20230326
Zeng, Y. (2020). Host gastrointestinal tract, living environment and diet explain the gut microbiota of Rhinopithecus roxellana . Sichuan Agricultural University. https://doi.org/10.27345/d.cnki.gsnyu.2020.001328
Zhai, P. P., WU, Y. Q., LU, J. (2020). Progress of study onAcinetobacter classification. Electronic Journal of Emerging Infectious Diseases, 5(1), 51–55+59. https://doi.org/10.19871/j.cnki.xfcrbzz.2020.01.012
Zhang, K. Q., Wang, X. X., Gong, X., Sui, J. L. (2022). Gut microbiome differences in rescued common kestrels (Falco tinnunculus ) before and after captivity. Frontiers in Microbiology, 13, 858592. https://doi.org/10.3389/FMICB.2022.858592
Zhang, S. F., Amanze, C., Sun, C. R., Zou, K., Fu, S. D., Deng, Y., Liu, X. D., Liang, Y. L. (2021). Evolutionary, genomic, and biogeographic characterization of two novel xenobiotics-degrading strains affiliated with Dechloromonas . Heliyon, 7, e07181. https://doi.org/10.1016/j.heliyon.2021.e07181
Zhang X, Zhong H F, Ran J C, Luo J X, Chen M F, Li H B, Wang, Y. Y., Chen, S. C., Yan, Y. Y., Huang, X. L. (2024). Analysis of winter diet in Guizhou golden monkey (Rhinopithecus brelichi ) using DNA metabarcoding data. Ecology and Evolution, 14(2), e10893. https://doi.org/10.1002/ECE3.10893
Zhao, G., Qi, M. P., Wang, Q. K., Hu, C. M., Li, X., Chen, Y. Y., Yang, J. Y., Yu, H. L., Chen, H. C., Guo, A. Z. (2023). Gut microbiome variations in Rhinopithecus roxellanae caused by changes in the environment. BMC Genomics, 24(1), 62. https://doi.org/10.1186/S12864-023-09142-6
Zhao, J. S., Yao, Y. F., Li, D. Y., Xu, H. M., Wu, J. Y., Wen, A. X., Xie, M., Ni, Q. Y., Zhang, M. W., Peng, G. N., Xu, H. L. (2018). Characterization of the gut microbiota in six geographical populations of Chinese Rhesus Macaques (Macaca mulatta ), implying an adaptation to high-altitude environment. Microbial Ecology, 76(2), 565–577. https://doi.org/10.1007/s00248-018-1146-8
Zhao, X. R., Wang, X. C. Effects of captive environment and human feeding on gut microbiome of Macaques. Chinese Journal of Wildlife, 45(2), 269-275. https://doi.org/10.12375/ysdwxb.20240205
Figure legends
Figure 1. Fecal sampling points for the study of R. brelichi in Fanjing Mountain National Nature Reserve. Identification was based on the mitochondrial COⅠ technique: 31 fecal samples belonged to R. brelichi and 11 to other monkey species.
Figure 2. Rarefaction ASV curves (a) and Venn diagram (b) of gut microbiota of wild and captive R. brelichi . W stands for wild, C stands for captive, here and in similar places below.
Figure 3. Analysis of gut microbial alpha and beta diversity in wild and captive R. brelichi . (a) The alpha diversity differences between groups as reflected in the Chao1, ACE, Shannon, and Simpson indexes were analyzed. (b) PCoA (b) and NMDS (c) analyses based on Bray–Curtis distance matrix. *p < 0.05, **p < 0.01, here and in similar places below.
Figure 4. Gut microbial community composition in wild and captiveR. brelichi . (a) Histogram analysis of the relative abundance of bacterial phyla. (b) Clustering heat map of bacterial genera with relative abundance of >1%. The color scale ranges from blue (low abundance) to red (high abundance). The blue, pink, black, green, orange, red, purple, and yellow characters represent the dominant bacterial phyla of Firmicutes, Bacteroidota, Proteobacteria, Desulfobacterota, Spirochaetota, Fibrobacterota, Actinobacteriota, and Verrucomicrobiota, respectively.
Figure. 5 LEfSe analysis of the gut microbiota in wild and captiveR. brelichi . (a) Evolutionary branching diagram: the diagram shows phylum, class, order, family, and genus in this order from the inside to the outside. The size of the small circle indicates the relative abundance of species at the taxonomic level, with species with no significant differences marked in white and species with significant differences marked in red and blue. (b) Histogram length represents the LDA score.
Figure 6 The prediction of the enrichment of KEGG pathways for all samples. (a) Annotated statistical chart of KEGG Level 2 metabolic pathways in the gut microbiota of wild and captive R. brelichi . The x-axis represents the relative abundance of annotations to the corresponding metabolic pathway, while the y-axis corresponds to the KEGG Level 2 metabolic pathways, with the Level 1 category to which each metabolic pathway belongs being listed on the right. (b), (c) Analysis of the differences of metabolic functions between groups at the first and second levels. *p < 0.05, **p < 0.01, ***p < 0.001.