Reference
Alberdi, A., Bideguren, G. M., Aizpurua, O. (2021). Diversity and
compositional changes in the gut microbiota of wild and captive
vertebrates: a meta-analysis. Scientific Reports, 11 (1), 22660.
https://doi.org/10.1038/S41598-021-02015-6
Amato, K. R., Leigh, S. R., Kent, A., Mackie, R. I., Yeoman, C. J.,
Stumpf, R. M., Wilson, B. A., Nelson K. E., White, B. A., Garber, P. A.
(2015). The gut microbiota appears to compensate for seasonal diet
variation in the wild black howler monkey (Alouatta pigra ).
Microbial ecology, 69(2), 434–443.
https://doi.org/10.1007/s00248-014-0554-7
Amato, K. R., Martinez-Mota, R., Righini, N., Raguet-Schofield, M.,
Corcione, F. P, Marini, E, Humphrey, G., Gaffney, J., Lovelace, E.,
Williams, L., Luong, A., Dominguez-Bello, M. G., Stumpf, R. M., White,
B., Nelson, K. E., Knight, R., Leigh, S. R. (2016). Phylogenetic and
ecological factors impact the gut microbiota of two Neotropical primate
species. Oecologia, 180(3), 717–733.
https://doi.org/10.1007/s00442-015-3507-z
Anderson, M. J., Ellingsen, K. E., McArdle, B. H. (2006). Multivariate
dispersion as a measure of beta diversity.
Ecology Letters, 9(6), 683–69.
https://doi.org/10.1111/j.1461-0248.2006.00926.x
Bennett, G., Malone, M., Sauther, M. L., Cuozzo, F. P., White, B.,
Nelson, K. E., Stumpf, R. M., Knight, R., Leigh, S. R., Amato, K. R.
(2016). Host age, social group, and habitat type influence the gut
microbiota of wild ring-tailed lemurs (Lemur catta ). American
Journal of Primatology, 78(8), 883–892.
https://doi.org/10.1002/ajp.22555
Bokulich, N. A., Kaehler, B. D., Rideout, J. R., Dillon, M., Bolyen, E.,
Knight, R., Huttley, G. A., Caporaso, J. G. (2018). Optimizing taxonomic
classification of marker-gene amplicon sequences with QIIME 2’s
q2-feature-classifier plugin. Microbiome, 6(1), 1–17.
https://doi.org/10.1186/s40168-018-0470-z
Bornbusch, S. L., Greene, L. K., Rahobilalaina, S., Calkins, S.,
Rothman, R. S., Clarke, T. A., LaFleur, M., Drea, C. M. (2022). Gut
microbiota of ring-tailed lemurs (Lemur catta ) vary across
natural and captive populations and correlate with environmental
microbiota. Animal Microbiome, 4(1), 29.
https://doi.org/10.1186/S42523-022-00176-X
Cabana, F., Clayton, J. B., Nekaris, K. A., Wirdateti, W., Knights, D.,
Seedorf, H. (2019). Nutrient-based diet modifications impact on the gut
microbiome of the Javan slow loris (Nycticebus javanicus ).
Scientific Reports, 9, 1–11.
https://doi.org/10.1038/s41598-019-40911-0
Callahan, B. J., Mcmurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A.
J., Holmes, S. P. (2016). Dada2: high-resolution sample inference from
illumina amplicon data. Nature Methods, 2016, 13(7): 581–583.
https://doi.org/10.1038/nmeth.3869
Campbell, T. P., Sun, X. Q., Patel, V. H., Sanz, C., Morgan, D., Dantas,
G. (2020). The microbiome and resistome of chimpanzees, gorillas, and
humans across host lifestyle and geography. ISME Journal, 14(6),
1584–1599.
https://doi.org/10.1038/s41396-020-0634-2
Cheng, M., Zou, S. Z., Liao, Z. T., Luo, Y., Tang, Y., Zhang, J. D.
(2020). Characteristics of intestinal micro-ecological environment of
wild and captive Giant Pandas and their differences. Journal of China
West Normal University (Natural Sciences), 41(2), 117–124.
https://doi.org/10.16246/j.issn.1673-5072.2020.02.001
Clayton, J. B., Vangay, P., Huang, H., Ward, T., Hillmann, B. M.,
Al-Ghalith, G. A., Travis, D. A., Long, H, T., Tuan, B. V., Minh, V. V.,
Cabana, F., Nadler, T., Toddes, B., Murphy, T., Glander, K. E., Johnson,
T. J., Knights, D. (2016). Captivity humanizes the primate microbiome.
Proceedings of the National Academy of Sciences of the United States of
America, 113(37), 10376–10381.
https://doi.org/10.1073/pnas.1521835113
Clayton, J. B., Al-Ghalith, G. A., Long, H. T., Tuan, B. V., Cabana, F.,
Huang, H., Vangay, P., Ward, T., Minh, V. V., Tam, N. A., Dat, N. T.,
Travis, D. A., Mur‐taugh, M. P., Covert, H., Glander, K. E., Nadler, T.,
Toddes, B., Sha, J. C. M., Singer, R., Knights, D., Johnson, T. J.
(2018). Associations between nutrition, gut microbiome, and health in a
novel nonhuman primate model. Scientific Reports. 8(1), 11159.
https://doi.org/10.1038/s41598-018-29277-x
Diaz, J., Reese, A. T. (2021). Possibilities and limits for using the
gut microbiome to improve captive animal health. Animal Microbiome,
3(1), 89.
https://doi.org/10.1186/S42523-021-00155-8
Douglas, G. M., Maffei, V. J., Zaneveld, J., Yurgel, S. N., Brown, J.
R., Taylor, C. M., Huttenhower, C. (2019). PICRUSt2: An improved and
extensible approach for metagenome inference. BioRxiv,
https://doi.org/10.1101/672295
Frankel, J. S., Mallott, E. K., Hopper, L. M., Ross, S. R., Amato, K. R.
(2019). The effect of captivity on the primate gut microbiome varies
with host dietary niche. American Journal of Primatology, 81(12),
e23061.
https://doi.org/10.1002/ajp.23061
Gani, M., Mohd-Ridwan, A., Sitam, F. T., Kamarudin, Z., Selamat, S. S.,
Awang, N. M. Z., Karuppannan, K. V., Md-Zain, B. M. (2024). Habitat
shapes the gut microbiome diversity of Malayan tigers (Panthera
tigris jacksoni ) as revealed through metabarcoding 16S rRNA profiling.
World Journal of Microbiology & Biotechnology, 40(4), 111.
https://doi.org/10.1007/s11274-023-03868-x
Gomez, A., Petrzelkova, K., Yeoman, C. J., Vlckova, K., Mrázek, J.,
Koppova, I., Carbonero, F., Ulanov, A., Modry, D., Todd, A., Torralba,
M., Nelson, K, E., Gaskins, H. R., Wilson, B., Stumpf, R.M., White, B.
A., Leigh, S. R. (2015). Gut microbiome composition and metabolomic
profiles of wild western lowland gorillas (Gorilla gorilla
gorilla ) reflect host ecology. Molecular Ecology, 24(10), 2551–2565.
https://doi.org/10.1111/mec.13181
Guo, Q. Y., Wei, X., Lu, M, J., Fan, P. L., Zhou, Q. H. (2023). Advances
and prospects of the gut microbiome in non-human primate. Acta
Theriologica Sinica, 43(1), 69–81.
https://doi.org/10.16829/j.slxb.150669
Hale, V. L., Tan, C. L., Niu, K. F., Yang, Y. Q., Knight, R., Zhang, Q.
K., Cui, D.Y., Amato, K. R. (2018). Diet versus phylogeny: a comparison
of gut microbiota in captive colobine monkey species. Mirobial Ecology,
75(2), 515–527.
https://doi.org/10.1007/s00248-017-1041-8
Hale, V. L., Tan, C. L., Niu, K. F., Yang, Y. Q., Zhang, Q. K., Knight,
R., Amato, K. R. (2019). Gut microbiota in wild and captive Guizhou
snub-nosed monkeys, Rhinopithecus brelichi . American Journal of
Primatology, 81(10–11), e22989.
https://doi.org/10.1002/ajp.22989
He, Y. Y., Zhang, M. H., Dai, C. Y., Yu, L. J. (2023). Comparison of the
gut microbial communities of domestic and wild Mallards (Anas
platyrhynchos ) based on high-throughput sequencing technology. Animals,
13(18), 2956.
https://doi.org/10.3390/ani13182956
Huang, X. L., Li, H. B., Zhang, X., Cheng, S. C., Yan, Y. Y., Yang, W.,
Meng, B. S., Wang, C., Yang, J., Ran, J. C. (2024). Difference of gut
microbial structure between Rhinopithecus brelichi andMacaca thibetana in Fanjingshan Nature Reserve. Acta Theriologica
Sinica, 44(2), 183–194.
https://doi.org/10.16829/j.slxb.150837
Jia, T., Chang, W. S., Marcelino, V, R., Zhao, S. F., Liu, X. F., You,
Y. Y., Holmes, E. C., Shi, M., Zhang, C. L. (2022). Characterization of
the gut microbiome and resistomes of wild and zoo-captive Macaques.
Frontiers in Veterinary Science, 8, 778556.
https://doi.org/10.3389/FVETS.2021.778556
Jia, W., He, Q. Q., Yan, S. S., Luo, T., Wu, H. H., Deng, H. Q., Zhou,
J. (2022). Preliminary study on the niche differentiation of Grey
Snub-nosed monkey and Tibetan Macaque in Fanjing Mountain in winter and
spring. Chinese Journal of Zoology, 57(4), 503–513.
https://doi.org/10.13859/j.cjz.202204003
Jiang, F., Song, P. F., Zhang, J. J., Gao, H. M., Wang, H. J., Cai, Z.
Y., Liu, D. X., Zhang, T. Z. (2023). Comparative analysis of gut
microbial composition and functions of forest musk deer in different
breeding centres. Acta Theriologica Sinica, 43(2), 129–140.
https://doi.org/10.16829/j.slxb.150701
Kohl, K. D., Skopec, M. M., Dearing, M. D. (2014). Captivity results in
disparate loss of gut microbial diversity in closely related hosts.
Conservation Physiology, 4(1), cou009.
https://doi.org/10.1093/conphys/cou009
Ley, R. E., Hamady, M., Lozupone, C., Turnbaugh, P. J., Ramey, R. R.,
Bircher, J. S., Schlegel, M. L., Tucker, T. A., Schrenzel, M. D.,
Knight, R., Gordon, J. I. (2008). Evolution of mammals and their gut
microbes. Science, 320(5883), 1647–1651.
https://doi.org/10.1126/science.1155725
Li, Y. M., Hu, X. L., Yang, S., Zhou, J. T., Zhang, T. X., Qi, L., Sun,
X. N., Fan, M. Y., Xu, S. H., Cha, M., Zhang, M. S., Lin, S. B., Liu, S.
Q., Hu, D. F. (2017). Comparative analysis of the gut microbiota
composition between captive and wild forest Musk Deer. Frontiers in
Microbiology, 8, 1705.
https://doi.org/10.3389/fmicb.2017.01705
Li, L., Shan, J., Tang, Y., Li, D. Y., Qin, M. S. (2024). The effects of
food provisioning on the gut microbiota community and antibiotic
resistance genes of Yunnan snub-nosed monkey. Frontiers in Microbiology,
15, 1361218.
https://doi.org/10.3389/fmicb.2024.1361218
Mamuad, L. L, Seo, B. J., Al Faruk, M. S., Espiritu, H. M., Jin, S. J.,
Kim, W. I., Lee, S. S., Cho, Y. I. (2020). Treponema spp., the
dominant pathogen in the lesion of bovine digital dermatitis and its
characterization in dairy cattle. Veterinary Microbiology, 245, 108696.
https://doi.org/10.1016/j.vetmic.2020.108696
Martin, M. (2011). Cutadapt removes adapter sequences from
high-throughput sequencing reads. EMBnet. Journal, 17(1), 10.
https://doi.org/10.14806/ej.17.1.200
McKenzie, V. J., Song, S. J., Delsuc, F., Prest, T. L., Oliverio, A. M.,
Korpita, T. M., Alexiev, A., Amato, K. R., Metcalf, J. L., Kowalewski,
M., Avenant, N. L., Link, A., Di Fiore, A., Seguin-Orlando, A., Feh, C.,
Orlando, L., Mendelson, J. R., Sanders, J., Knight, R. (2017). The
effects of captivity on the mammalian gut microbiome. Integrative and
Comparative, 57(4), 690–704.
https://doi.org/10.1093/icb/icx090
Narat, V., Amato, K. R., Ranger, N., Salmona, M., Mercier-Delarue, S.,
Rupp, S., Ambata, P., Njouom, R., Simon, F., Giles-Vernick, T., LeGoff,
J. (2020). A multi-disciplinary comparison of great ape gut microbiota
in a central African forest and European zoo. Scientific Reports, 10(1),
19107.
https://doi.org/10.1038/s41598-020-75847-3
Nguyen, T. Q., Martínez-alvaro, M., Lima, J., Auffret, M. D.,
Rutherford, K. M. D., Simm, G., Dewhurst, R. J., Baima, E. T., Roehe, R.
(2023). Identification of intestinal and fecal microbial biomarkers
using a porcine social stress model. Frontiers in Microbiology,
14,1197371.
https://doi.org/10.3389/FMICB.2023.1197371
Sawaswong, V., Praianantathavorn, K., Chanchaem, P., Khamwut, A.,
Kemthong, T., Hamada, Y., Malaivijitnond, S., Payungporn, S. (2021).
Comparative analysis of oral-gut microbiota between captive and wild
long-tailed macaque in Thailand. Scientific Reports, 11(1), 14280.
https://doi.org/10.1038/S41598-021-93779-4
Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett,
W. S., Huttenhower, C. (2011). Metagenomic biomarker discovery and
explanation. Genome Biology, 12(6), R60.
https://doi.org/10.1186/gb-2011-12-6-r60
Sun, B. H., Wang, X., Bernstein, S., Huffman, M. A., Xia, D. P., Gu, Z.
Y., Chen, R., Sheeran, L. K., Wagner, R.S., Li, J. H. (2016). Marked
variation between winter and spring gut microbiota in free-ranging
Tibetan macaques (Macaca thibetana ). Scientific Reports, 6,
e26035.
https://doi.org/10.1038/srep26035
Sun, Y. W., Sun, Y. J., Shi, Z. H., Liu, Z. S., Zhao, C., Lu, T. F.,
Gao, H., Feng, Z., Chen, R., Zhang, J., Pan, R. L., Li, B. G., Ten, L.
W., Guo, S. T. (2020). Gut microbiota of wild and captive alpine Musk
Deer (Moschus chrysogaster ). Frontiers in Microbiology, 10, 3156.
https://doi.org/10.3389/fmicb.2019.03156
Sun, Y., Yu, Y. Z., Wu, A. K., Zhang, C., Liu, X., Qian, C. J., Li, J.
F., Ran, J. C. (2023). The composition and function of the gut
microbiota of Francois’ langurs (Trachypithecus francoisi ) depend
on the environment and diet. Frontiers in Microbiology, 14, 1269492.
https://doi.org/10.3389/fmicb.2023.1269492
Tang, S., Xin, Y., Ma, Y. L., Xu, X. W., Zhao, S. H., Cao, J. H. (2020).
Screening of microbes associated with swine growth and fat deposition
traits across the intestinal tract. Frontiers in Microbiology, 11,
586776.
https://doi.org/10.3389/fmicb.2020.586776
Tian, X., Tian, L. M., Jia, S., Li, N., Fu, X. X., Cui, H. X., Quan, X.
J., Shi, K. (2020). Analysis of gut microbiome of wild and captive Sika
deer. Heilongjiang Animal Science and Veterinary Medicine, 18, 138–140.
https://doi.org/10.13881/j.cnki.hljxmsy.2019.12.0206
Wang, X. C., Zhang, J. L., Pan, H. J., Chen, Y. X., Mao, S. X., Qi, J.
W., Shen, Y., Zhang, M. Y., Xiang, Z. F., Li, M. (2023). Unique
characteristics of gut microbiota in black snub-nosed monkeys
(Rhinopithecus strykeri ) reveal an enzymatic mechanism of
adaptation to dietary vegetation. Zoological research, 44(2), 357–360.
https://doi.org/10.24272/j.issn.2095-8137.2022.500
Wang, X. Y., Shi, B. G., Zuo, Z., Qi, Y. P., Zhao, S. J., Zhang, X. P.,
Lan, L. J., Shi, Y., Liu, X., Li, S. B., Wang, J. Q., Hu, J. (2023).
Effects of two different straw pellets on Yak growth performance and
ruminal microbiota during cold season. Animals, 13(3), 335.
https://doi.org/10.3390/ani13030335
Wang, Y. T., Yang, X. Y., Zhang, M. Y., Pan, H. J. (2023). Comparative
analysis of gut microbiota between wild and captive Golden Snub-Nosed
Monkeys. Animals, 13(10), 1625.
https://doi.org/10.3390/ani13101625
Wu, B., Zhu, C. Q., Li, D. Q., Dong, K., Wang, X. L., Shi, P. L. (2006).
Setting biodiversity conservation priorities in the Forests of the Upper
Yangtze Ecoregion based on ecoregion conservation methodology.
Biodiversity Science, 14(2), 87–97.
https://doi.org/10.1360/biodiv.050232
Xi, L., Wen, X. H., Jia, T., Han, J. C., Qin, X. X., Zhang, Y. Z., Wang,
Z. H. (2023). Comparative study of the gut microbiota in three captiveRhinopithecus species. BMC Genomics, 24(1), 398.
https://doi.org/10.1186/S12864-023-09440-Z
Xia, Y. N., Xu, X. J., Chen, H. J., Yue, R., Xia, D. P., Wang, X., Li,
J. H., Sun, B. H. (2022). Effects of captive and primate-focused tourism
on the gut microbiome of Tibetan macaques. Frontiers in Microbiology,
13, 1023898.
https://doi.org/10.3389/fmicb.2022.1023898
Xiang, Z. F., Nie, S. G., Lei, X. P., Chang, Z. F., Wei, F. W., Li, M.
(2009). Current status and conservation of the gray snub-nosed monkeyRhinopithecus brelichi (Colobinae) in Guizhou, China. Biological
Conservation, 142(3), 469–476.
https://doi.org/10.1016/j.biocon.2008.11.019
Xiang, Z. F., Liang, W. B., Nie, S. G., Li, M. (2012). Diet and feeding
behavior of Rhinopithecus brelichi at Yangaoping, Guizhou.
American journal of primatology, 74(6), 551–560.
https://doi.org/10.1002/ajp.22008
Xu, L., Zhang, Y., Wang, L., Chen, W. M., Wei, G. H. (2014). Diversity
of endophytic bacteria associated with nodules of two indigenous legumes
at different altitudes of the Qilian Mountains in China. Systematic and
Applied Microbiology, 37(6), 457–465.
https://doi.org/10.1016/j.syapm.2014.05.009
Yang, C. C., Du, Y., Ren, D. Y., Yang, X. B., Zhao, Y. (2021). Gut
microbiota-dependent catabolites of tryptophan play a predominant role
in the protective effects of turmeric polysaccharides against
DSS-induced ulcerative colitis. Food & function, 12(20), 9793–9807.
https://doi.org/10.1039/d1fo01468d
Yang, T. Y., Cui, D. Y., Niu, K. F. (2023). Current knowledge and
conservation strategies of the Guizhou snub-nosed monkey in Fanjingshan,
China. Chinese Journal of Wildlife, 44(3), 695–704.
https://doi.org/10.12375/ysdwxb.20230326
Zeng, Y. (2020). Host gastrointestinal tract, living environment and
diet explain the gut microbiota of Rhinopithecus roxellana .
Sichuan Agricultural University.
https://doi.org/10.27345/d.cnki.gsnyu.2020.001328
Zhai, P. P., WU, Y. Q., LU, J. (2020). Progress of study onAcinetobacter classification. Electronic Journal of Emerging
Infectious Diseases, 5(1), 51–55+59.
https://doi.org/10.19871/j.cnki.xfcrbzz.2020.01.012
Zhang, K. Q., Wang, X. X., Gong, X., Sui, J. L. (2022). Gut microbiome
differences in rescued common kestrels (Falco tinnunculus ) before
and after captivity. Frontiers in Microbiology, 13, 858592.
https://doi.org/10.3389/FMICB.2022.858592
Zhang, S. F., Amanze, C., Sun, C. R., Zou, K., Fu, S. D., Deng, Y., Liu,
X. D., Liang, Y. L. (2021). Evolutionary, genomic, and biogeographic
characterization of two novel xenobiotics-degrading strains affiliated
with Dechloromonas . Heliyon, 7, e07181.
https://doi.org/10.1016/j.heliyon.2021.e07181
Zhang X, Zhong H F, Ran J C, Luo J X, Chen M F, Li H B, Wang, Y. Y.,
Chen, S. C., Yan, Y. Y., Huang, X. L. (2024). Analysis of winter diet in
Guizhou golden monkey (Rhinopithecus brelichi ) using DNA
metabarcoding data. Ecology and Evolution, 14(2), e10893.
https://doi.org/10.1002/ECE3.10893
Zhao, G., Qi, M. P., Wang, Q. K., Hu, C. M., Li, X., Chen, Y. Y., Yang,
J. Y., Yu, H. L., Chen, H. C., Guo, A. Z. (2023). Gut microbiome
variations in Rhinopithecus roxellanae caused by changes in the
environment. BMC Genomics, 24(1), 62.
https://doi.org/10.1186/S12864-023-09142-6
Zhao, J. S., Yao, Y. F., Li, D. Y., Xu, H. M., Wu, J. Y., Wen, A. X.,
Xie, M., Ni, Q. Y., Zhang, M. W., Peng, G. N., Xu, H. L. (2018).
Characterization of the gut microbiota in six geographical populations
of Chinese Rhesus Macaques (Macaca mulatta ), implying an
adaptation to high-altitude environment. Microbial Ecology, 76(2),
565–577.
https://doi.org/10.1007/s00248-018-1146-8
Zhao, X. R., Wang, X. C. Effects of captive environment and human
feeding on gut microbiome of Macaques. Chinese Journal of Wildlife,
45(2), 269-275.
https://doi.org/10.12375/ysdwxb.20240205
Figure legends
Figure 1. Fecal sampling points for the study of R. brelichi in
Fanjing Mountain National Nature Reserve. Identification was based on
the mitochondrial COⅠ technique: 31 fecal samples belonged to R.
brelichi and 11 to other monkey species.
Figure 2. Rarefaction ASV curves (a) and Venn diagram (b) of gut
microbiota of wild and captive R. brelichi . W stands for wild, C
stands for captive, here and in similar places below.
Figure 3. Analysis of gut microbial alpha and beta diversity in wild and
captive R. brelichi . (a) The alpha diversity differences between
groups as reflected in the Chao1, ACE, Shannon, and Simpson indexes were
analyzed. (b) PCoA (b) and NMDS (c) analyses based on Bray–Curtis
distance matrix. *p < 0.05, **p <
0.01, here and in similar places below.
Figure 4. Gut microbial community composition in wild and captiveR. brelichi . (a) Histogram analysis of the relative abundance of
bacterial phyla. (b) Clustering heat map of bacterial genera with
relative abundance of >1%. The color scale ranges from blue
(low abundance) to red (high abundance). The blue, pink, black, green,
orange, red, purple, and yellow characters represent the dominant
bacterial phyla of Firmicutes, Bacteroidota, Proteobacteria,
Desulfobacterota, Spirochaetota, Fibrobacterota, Actinobacteriota, and
Verrucomicrobiota, respectively.
Figure. 5 LEfSe analysis of the gut microbiota in wild and captiveR. brelichi . (a) Evolutionary branching diagram: the diagram
shows phylum, class, order, family, and genus in this order from the
inside to the outside. The size of the small circle indicates the
relative abundance of species at the taxonomic level, with species with
no significant differences marked in white and species with significant
differences marked in red and blue. (b) Histogram length represents the
LDA score.
Figure 6 The prediction of the enrichment of KEGG pathways for all
samples. (a) Annotated statistical chart of KEGG Level 2 metabolic
pathways in the gut microbiota of wild and captive R. brelichi .
The x-axis represents the relative abundance of annotations to the
corresponding metabolic pathway, while the y-axis corresponds to the
KEGG Level 2 metabolic pathways, with the Level 1 category to which each
metabolic pathway belongs being listed on the right. (b), (c) Analysis
of the differences of metabolic functions between groups at the first
and second levels. *p < 0.05, **p <
0.01, ***p < 0.001.